Properties

Label 483.2.a.i.1.1
Level $483$
Weight $2$
Character 483.1
Self dual yes
Analytic conductor $3.857$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(1,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.85677441763\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.24197.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} - x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.46506\) of defining polynomial
Character \(\chi\) \(=\) 483.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.46506 q^{2} -1.00000 q^{3} +4.07653 q^{4} -0.653724 q^{5} +2.46506 q^{6} +1.00000 q^{7} -5.11879 q^{8} +1.00000 q^{9} +1.61147 q^{10} -2.42281 q^{11} -4.07653 q^{12} +4.26520 q^{13} -2.46506 q^{14} +0.653724 q^{15} +4.46506 q^{16} +2.38853 q^{17} -2.46506 q^{18} -5.35294 q^{19} -2.66493 q^{20} -1.00000 q^{21} +5.97238 q^{22} -1.00000 q^{23} +5.11879 q^{24} -4.57264 q^{25} -10.5140 q^{26} -1.00000 q^{27} +4.07653 q^{28} +3.23415 q^{29} -1.61147 q^{30} +0.388529 q^{31} -0.769086 q^{32} +2.42281 q^{33} -5.88787 q^{34} -0.653724 q^{35} +4.07653 q^{36} +9.31865 q^{37} +13.1953 q^{38} -4.26520 q^{39} +3.34628 q^{40} +5.73026 q^{41} +2.46506 q^{42} +10.8180 q^{43} -9.87667 q^{44} -0.653724 q^{45} +2.46506 q^{46} +1.18866 q^{47} -4.46506 q^{48} +1.00000 q^{49} +11.2719 q^{50} -2.38853 q^{51} +17.3872 q^{52} -1.38056 q^{53} +2.46506 q^{54} +1.58385 q^{55} -5.11879 q^{56} +5.35294 q^{57} -7.97238 q^{58} +12.9480 q^{59} +2.66493 q^{60} -2.00666 q^{61} -0.957747 q^{62} +1.00000 q^{63} -7.03428 q^{64} -2.78826 q^{65} -5.97238 q^{66} +10.8913 q^{67} +9.73692 q^{68} +1.00000 q^{69} +1.61147 q^{70} -1.73480 q^{71} -5.11879 q^{72} +12.2264 q^{73} -22.9711 q^{74} +4.57264 q^{75} -21.8214 q^{76} -2.42281 q^{77} +10.5140 q^{78} -5.69598 q^{79} -2.91892 q^{80} +1.00000 q^{81} -14.1254 q^{82} +6.07977 q^{83} -4.07653 q^{84} -1.56144 q^{85} -26.6670 q^{86} -3.23415 q^{87} +12.4018 q^{88} +5.57264 q^{89} +1.61147 q^{90} +4.26520 q^{91} -4.07653 q^{92} -0.388529 q^{93} -2.93013 q^{94} +3.49934 q^{95} +0.769086 q^{96} +0.0112053 q^{97} -2.46506 q^{98} -2.42281 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 4 q^{4} + 5 q^{5} + 4 q^{7} - 3 q^{8} + 4 q^{9} + 4 q^{10} - 5 q^{11} - 4 q^{12} + 7 q^{13} - 5 q^{15} + 8 q^{16} + 12 q^{17} + 3 q^{19} - q^{20} - 4 q^{21} - q^{22} - 4 q^{23} + 3 q^{24}+ \cdots - 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.46506 −1.74306 −0.871531 0.490340i \(-0.836873\pi\)
−0.871531 + 0.490340i \(0.836873\pi\)
\(3\) −1.00000 −0.577350
\(4\) 4.07653 2.03827
\(5\) −0.653724 −0.292354 −0.146177 0.989258i \(-0.546697\pi\)
−0.146177 + 0.989258i \(0.546697\pi\)
\(6\) 2.46506 1.00636
\(7\) 1.00000 0.377964
\(8\) −5.11879 −1.80976
\(9\) 1.00000 0.333333
\(10\) 1.61147 0.509592
\(11\) −2.42281 −0.730505 −0.365252 0.930909i \(-0.619017\pi\)
−0.365252 + 0.930909i \(0.619017\pi\)
\(12\) −4.07653 −1.17679
\(13\) 4.26520 1.18295 0.591476 0.806322i \(-0.298545\pi\)
0.591476 + 0.806322i \(0.298545\pi\)
\(14\) −2.46506 −0.658816
\(15\) 0.653724 0.168791
\(16\) 4.46506 1.11627
\(17\) 2.38853 0.579303 0.289652 0.957132i \(-0.406461\pi\)
0.289652 + 0.957132i \(0.406461\pi\)
\(18\) −2.46506 −0.581021
\(19\) −5.35294 −1.22805 −0.614024 0.789288i \(-0.710450\pi\)
−0.614024 + 0.789288i \(0.710450\pi\)
\(20\) −2.66493 −0.595896
\(21\) −1.00000 −0.218218
\(22\) 5.97238 1.27332
\(23\) −1.00000 −0.208514
\(24\) 5.11879 1.04487
\(25\) −4.57264 −0.914529
\(26\) −10.5140 −2.06196
\(27\) −1.00000 −0.192450
\(28\) 4.07653 0.770393
\(29\) 3.23415 0.600566 0.300283 0.953850i \(-0.402919\pi\)
0.300283 + 0.953850i \(0.402919\pi\)
\(30\) −1.61147 −0.294213
\(31\) 0.388529 0.0697818 0.0348909 0.999391i \(-0.488892\pi\)
0.0348909 + 0.999391i \(0.488892\pi\)
\(32\) −0.769086 −0.135956
\(33\) 2.42281 0.421757
\(34\) −5.88787 −1.00976
\(35\) −0.653724 −0.110500
\(36\) 4.07653 0.679422
\(37\) 9.31865 1.53198 0.765989 0.642854i \(-0.222250\pi\)
0.765989 + 0.642854i \(0.222250\pi\)
\(38\) 13.1953 2.14056
\(39\) −4.26520 −0.682978
\(40\) 3.34628 0.529093
\(41\) 5.73026 0.894916 0.447458 0.894305i \(-0.352329\pi\)
0.447458 + 0.894305i \(0.352329\pi\)
\(42\) 2.46506 0.380367
\(43\) 10.8180 1.64973 0.824865 0.565330i \(-0.191251\pi\)
0.824865 + 0.565330i \(0.191251\pi\)
\(44\) −9.87667 −1.48896
\(45\) −0.653724 −0.0974515
\(46\) 2.46506 0.363454
\(47\) 1.18866 0.173384 0.0866921 0.996235i \(-0.472370\pi\)
0.0866921 + 0.996235i \(0.472370\pi\)
\(48\) −4.46506 −0.644476
\(49\) 1.00000 0.142857
\(50\) 11.2719 1.59408
\(51\) −2.38853 −0.334461
\(52\) 17.3872 2.41117
\(53\) −1.38056 −0.189634 −0.0948170 0.995495i \(-0.530227\pi\)
−0.0948170 + 0.995495i \(0.530227\pi\)
\(54\) 2.46506 0.335453
\(55\) 1.58385 0.213566
\(56\) −5.11879 −0.684027
\(57\) 5.35294 0.709014
\(58\) −7.97238 −1.04682
\(59\) 12.9480 1.68568 0.842842 0.538160i \(-0.180881\pi\)
0.842842 + 0.538160i \(0.180881\pi\)
\(60\) 2.66493 0.344041
\(61\) −2.00666 −0.256926 −0.128463 0.991714i \(-0.541004\pi\)
−0.128463 + 0.991714i \(0.541004\pi\)
\(62\) −0.957747 −0.121634
\(63\) 1.00000 0.125988
\(64\) −7.03428 −0.879285
\(65\) −2.78826 −0.345841
\(66\) −5.97238 −0.735149
\(67\) 10.8913 1.33058 0.665292 0.746583i \(-0.268307\pi\)
0.665292 + 0.746583i \(0.268307\pi\)
\(68\) 9.73692 1.18077
\(69\) 1.00000 0.120386
\(70\) 1.61147 0.192608
\(71\) −1.73480 −0.205883 −0.102942 0.994687i \(-0.532826\pi\)
−0.102942 + 0.994687i \(0.532826\pi\)
\(72\) −5.11879 −0.603255
\(73\) 12.2264 1.43099 0.715494 0.698619i \(-0.246202\pi\)
0.715494 + 0.698619i \(0.246202\pi\)
\(74\) −22.9711 −2.67033
\(75\) 4.57264 0.528004
\(76\) −21.8214 −2.50309
\(77\) −2.42281 −0.276105
\(78\) 10.5140 1.19047
\(79\) −5.69598 −0.640848 −0.320424 0.947274i \(-0.603825\pi\)
−0.320424 + 0.947274i \(0.603825\pi\)
\(80\) −2.91892 −0.326345
\(81\) 1.00000 0.111111
\(82\) −14.1254 −1.55989
\(83\) 6.07977 0.667341 0.333671 0.942690i \(-0.391713\pi\)
0.333671 + 0.942690i \(0.391713\pi\)
\(84\) −4.07653 −0.444786
\(85\) −1.56144 −0.169362
\(86\) −26.6670 −2.87558
\(87\) −3.23415 −0.346737
\(88\) 12.4018 1.32204
\(89\) 5.57264 0.590699 0.295350 0.955389i \(-0.404564\pi\)
0.295350 + 0.955389i \(0.404564\pi\)
\(90\) 1.61147 0.169864
\(91\) 4.26520 0.447114
\(92\) −4.07653 −0.425008
\(93\) −0.388529 −0.0402885
\(94\) −2.93013 −0.302219
\(95\) 3.49934 0.359025
\(96\) 0.769086 0.0784945
\(97\) 0.0112053 0.00113772 0.000568862 1.00000i \(-0.499819\pi\)
0.000568862 1.00000i \(0.499819\pi\)
\(98\) −2.46506 −0.249009
\(99\) −2.42281 −0.243502
\(100\) −18.6405 −1.86405
\(101\) 13.8557 1.37869 0.689347 0.724431i \(-0.257898\pi\)
0.689347 + 0.724431i \(0.257898\pi\)
\(102\) 5.88787 0.582986
\(103\) −7.41029 −0.730158 −0.365079 0.930977i \(-0.618958\pi\)
−0.365079 + 0.930977i \(0.618958\pi\)
\(104\) −21.8326 −2.14087
\(105\) 0.653724 0.0637970
\(106\) 3.40316 0.330544
\(107\) −10.2652 −0.992374 −0.496187 0.868216i \(-0.665267\pi\)
−0.496187 + 0.868216i \(0.665267\pi\)
\(108\) −4.07653 −0.392265
\(109\) −14.2897 −1.36871 −0.684353 0.729150i \(-0.739915\pi\)
−0.684353 + 0.729150i \(0.739915\pi\)
\(110\) −3.90429 −0.372259
\(111\) −9.31865 −0.884487
\(112\) 4.46506 0.421909
\(113\) −2.50066 −0.235242 −0.117621 0.993059i \(-0.537527\pi\)
−0.117621 + 0.993059i \(0.537527\pi\)
\(114\) −13.1953 −1.23586
\(115\) 0.653724 0.0609601
\(116\) 13.1841 1.22411
\(117\) 4.26520 0.394317
\(118\) −31.9176 −2.93825
\(119\) 2.38853 0.218956
\(120\) −3.34628 −0.305472
\(121\) −5.12999 −0.466363
\(122\) 4.94654 0.447839
\(123\) −5.73026 −0.516680
\(124\) 1.58385 0.142234
\(125\) 6.25787 0.559721
\(126\) −2.46506 −0.219605
\(127\) −14.9592 −1.32741 −0.663707 0.747993i \(-0.731018\pi\)
−0.663707 + 0.747993i \(0.731018\pi\)
\(128\) 18.8781 1.66861
\(129\) −10.8180 −0.952472
\(130\) 6.87324 0.602823
\(131\) 9.64575 0.842753 0.421377 0.906886i \(-0.361547\pi\)
0.421377 + 0.906886i \(0.361547\pi\)
\(132\) 9.87667 0.859654
\(133\) −5.35294 −0.464158
\(134\) −26.8477 −2.31929
\(135\) 0.653724 0.0562636
\(136\) −12.2264 −1.04840
\(137\) 7.96098 0.680153 0.340076 0.940398i \(-0.389547\pi\)
0.340076 + 0.940398i \(0.389547\pi\)
\(138\) −2.46506 −0.209840
\(139\) 6.94654 0.589198 0.294599 0.955621i \(-0.404814\pi\)
0.294599 + 0.955621i \(0.404814\pi\)
\(140\) −2.66493 −0.225228
\(141\) −1.18866 −0.100103
\(142\) 4.27640 0.358868
\(143\) −10.3338 −0.864152
\(144\) 4.46506 0.372089
\(145\) −2.11424 −0.175578
\(146\) −30.1388 −2.49430
\(147\) −1.00000 −0.0824786
\(148\) 37.9878 3.12258
\(149\) 5.82597 0.477282 0.238641 0.971108i \(-0.423298\pi\)
0.238641 + 0.971108i \(0.423298\pi\)
\(150\) −11.2719 −0.920343
\(151\) −10.9803 −0.893568 −0.446784 0.894642i \(-0.647431\pi\)
−0.446784 + 0.894642i \(0.647431\pi\)
\(152\) 27.4005 2.22248
\(153\) 2.38853 0.193101
\(154\) 5.97238 0.481268
\(155\) −0.253991 −0.0204010
\(156\) −17.3872 −1.39209
\(157\) 1.56598 0.124979 0.0624896 0.998046i \(-0.480096\pi\)
0.0624896 + 0.998046i \(0.480096\pi\)
\(158\) 14.0409 1.11704
\(159\) 1.38056 0.109485
\(160\) 0.502770 0.0397475
\(161\) −1.00000 −0.0788110
\(162\) −2.46506 −0.193674
\(163\) 15.6867 1.22868 0.614338 0.789043i \(-0.289423\pi\)
0.614338 + 0.789043i \(0.289423\pi\)
\(164\) 23.3596 1.82408
\(165\) −1.58385 −0.123303
\(166\) −14.9870 −1.16322
\(167\) 9.03771 0.699359 0.349679 0.936869i \(-0.386291\pi\)
0.349679 + 0.936869i \(0.386291\pi\)
\(168\) 5.11879 0.394923
\(169\) 5.19190 0.399377
\(170\) 3.84905 0.295208
\(171\) −5.35294 −0.409349
\(172\) 44.0999 3.36259
\(173\) 7.98879 0.607377 0.303688 0.952771i \(-0.401782\pi\)
0.303688 + 0.952771i \(0.401782\pi\)
\(174\) 7.97238 0.604384
\(175\) −4.57264 −0.345659
\(176\) −10.8180 −0.815437
\(177\) −12.9480 −0.973231
\(178\) −13.7369 −1.02963
\(179\) −14.9137 −1.11470 −0.557351 0.830277i \(-0.688182\pi\)
−0.557351 + 0.830277i \(0.688182\pi\)
\(180\) −2.66493 −0.198632
\(181\) 2.45709 0.182634 0.0913171 0.995822i \(-0.470892\pi\)
0.0913171 + 0.995822i \(0.470892\pi\)
\(182\) −10.5140 −0.779348
\(183\) 2.00666 0.148337
\(184\) 5.11879 0.377362
\(185\) −6.09183 −0.447880
\(186\) 0.957747 0.0702254
\(187\) −5.78695 −0.423184
\(188\) 4.84562 0.353403
\(189\) −1.00000 −0.0727393
\(190\) −8.62610 −0.625803
\(191\) 9.66381 0.699249 0.349624 0.936890i \(-0.386309\pi\)
0.349624 + 0.936890i \(0.386309\pi\)
\(192\) 7.03428 0.507656
\(193\) −3.35767 −0.241691 −0.120845 0.992671i \(-0.538560\pi\)
−0.120845 + 0.992671i \(0.538560\pi\)
\(194\) −0.0276217 −0.00198312
\(195\) 2.78826 0.199672
\(196\) 4.07653 0.291181
\(197\) 1.79690 0.128024 0.0640119 0.997949i \(-0.479610\pi\)
0.0640119 + 0.997949i \(0.479610\pi\)
\(198\) 5.97238 0.424438
\(199\) −8.39519 −0.595119 −0.297560 0.954703i \(-0.596173\pi\)
−0.297560 + 0.954703i \(0.596173\pi\)
\(200\) 23.4064 1.65508
\(201\) −10.8913 −0.768213
\(202\) −34.1552 −2.40315
\(203\) 3.23415 0.226993
\(204\) −9.73692 −0.681721
\(205\) −3.74601 −0.261633
\(206\) 18.2668 1.27271
\(207\) −1.00000 −0.0695048
\(208\) 19.0444 1.32049
\(209\) 12.9691 0.897094
\(210\) −1.61147 −0.111202
\(211\) 21.7371 1.49644 0.748222 0.663448i \(-0.230908\pi\)
0.748222 + 0.663448i \(0.230908\pi\)
\(212\) −5.62789 −0.386525
\(213\) 1.73480 0.118867
\(214\) 25.3044 1.72977
\(215\) −7.07199 −0.482306
\(216\) 5.11879 0.348289
\(217\) 0.388529 0.0263750
\(218\) 35.2251 2.38574
\(219\) −12.2264 −0.826181
\(220\) 6.45662 0.435305
\(221\) 10.1875 0.685288
\(222\) 22.9711 1.54172
\(223\) 26.1500 1.75113 0.875566 0.483099i \(-0.160489\pi\)
0.875566 + 0.483099i \(0.160489\pi\)
\(224\) −0.769086 −0.0513867
\(225\) −4.57264 −0.304843
\(226\) 6.16427 0.410041
\(227\) −16.6606 −1.10580 −0.552901 0.833247i \(-0.686479\pi\)
−0.552901 + 0.833247i \(0.686479\pi\)
\(228\) 21.8214 1.44516
\(229\) 28.8082 1.90370 0.951851 0.306561i \(-0.0991783\pi\)
0.951851 + 0.306561i \(0.0991783\pi\)
\(230\) −1.61147 −0.106257
\(231\) 2.42281 0.159409
\(232\) −16.5549 −1.08688
\(233\) 11.8214 0.774447 0.387224 0.921986i \(-0.373434\pi\)
0.387224 + 0.921986i \(0.373434\pi\)
\(234\) −10.5140 −0.687320
\(235\) −0.777057 −0.0506896
\(236\) 52.7829 3.43588
\(237\) 5.69598 0.369993
\(238\) −5.88787 −0.381654
\(239\) −19.7236 −1.27581 −0.637907 0.770114i \(-0.720199\pi\)
−0.637907 + 0.770114i \(0.720199\pi\)
\(240\) 2.91892 0.188415
\(241\) 4.95320 0.319064 0.159532 0.987193i \(-0.449002\pi\)
0.159532 + 0.987193i \(0.449002\pi\)
\(242\) 12.6458 0.812900
\(243\) −1.00000 −0.0641500
\(244\) −8.18022 −0.523685
\(245\) −0.653724 −0.0417649
\(246\) 14.1254 0.900606
\(247\) −22.8313 −1.45272
\(248\) −1.98879 −0.126289
\(249\) −6.07977 −0.385290
\(250\) −15.4260 −0.975629
\(251\) −31.4053 −1.98228 −0.991142 0.132809i \(-0.957600\pi\)
−0.991142 + 0.132809i \(0.957600\pi\)
\(252\) 4.07653 0.256798
\(253\) 2.42281 0.152321
\(254\) 36.8754 2.31377
\(255\) 1.56144 0.0977811
\(256\) −32.4672 −2.02920
\(257\) −26.3697 −1.64490 −0.822448 0.568841i \(-0.807392\pi\)
−0.822448 + 0.568841i \(0.807392\pi\)
\(258\) 26.6670 1.66022
\(259\) 9.31865 0.579033
\(260\) −11.3664 −0.704917
\(261\) 3.23415 0.200189
\(262\) −23.7774 −1.46897
\(263\) −29.1196 −1.79559 −0.897795 0.440413i \(-0.854832\pi\)
−0.897795 + 0.440413i \(0.854832\pi\)
\(264\) −12.4018 −0.763281
\(265\) 0.902504 0.0554404
\(266\) 13.1953 0.809057
\(267\) −5.57264 −0.341040
\(268\) 44.3988 2.71209
\(269\) 3.12676 0.190642 0.0953209 0.995447i \(-0.469612\pi\)
0.0953209 + 0.995447i \(0.469612\pi\)
\(270\) −1.61147 −0.0980710
\(271\) −16.5484 −1.00525 −0.502623 0.864506i \(-0.667632\pi\)
−0.502623 + 0.864506i \(0.667632\pi\)
\(272\) 10.6649 0.646656
\(273\) −4.26520 −0.258141
\(274\) −19.6243 −1.18555
\(275\) 11.0786 0.668068
\(276\) 4.07653 0.245379
\(277\) 9.70052 0.582848 0.291424 0.956594i \(-0.405871\pi\)
0.291424 + 0.956594i \(0.405871\pi\)
\(278\) −17.1237 −1.02701
\(279\) 0.388529 0.0232606
\(280\) 3.34628 0.199978
\(281\) −23.4670 −1.39992 −0.699961 0.714181i \(-0.746800\pi\)
−0.699961 + 0.714181i \(0.746800\pi\)
\(282\) 2.93013 0.174486
\(283\) −25.3372 −1.50614 −0.753070 0.657941i \(-0.771428\pi\)
−0.753070 + 0.657941i \(0.771428\pi\)
\(284\) −7.07199 −0.419645
\(285\) −3.49934 −0.207283
\(286\) 25.4734 1.50627
\(287\) 5.73026 0.338246
\(288\) −0.769086 −0.0453188
\(289\) −11.2949 −0.664408
\(290\) 5.21174 0.306044
\(291\) −0.0112053 −0.000656865 0
\(292\) 49.8412 2.91674
\(293\) −6.25998 −0.365712 −0.182856 0.983140i \(-0.558534\pi\)
−0.182856 + 0.983140i \(0.558534\pi\)
\(294\) 2.46506 0.143765
\(295\) −8.46442 −0.492817
\(296\) −47.7002 −2.77252
\(297\) 2.42281 0.140586
\(298\) −14.3614 −0.831932
\(299\) −4.26520 −0.246663
\(300\) 18.6405 1.07621
\(301\) 10.8180 0.623539
\(302\) 27.0673 1.55755
\(303\) −13.8557 −0.795989
\(304\) −23.9012 −1.37083
\(305\) 1.31180 0.0751136
\(306\) −5.88787 −0.336587
\(307\) −20.1776 −1.15160 −0.575798 0.817592i \(-0.695309\pi\)
−0.575798 + 0.817592i \(0.695309\pi\)
\(308\) −9.87667 −0.562775
\(309\) 7.41029 0.421557
\(310\) 0.626103 0.0355602
\(311\) 21.6888 1.22986 0.614930 0.788582i \(-0.289184\pi\)
0.614930 + 0.788582i \(0.289184\pi\)
\(312\) 21.8326 1.23603
\(313\) 27.9790 1.58147 0.790734 0.612159i \(-0.209699\pi\)
0.790734 + 0.612159i \(0.209699\pi\)
\(314\) −3.86025 −0.217847
\(315\) −0.653724 −0.0368332
\(316\) −23.2198 −1.30622
\(317\) 19.3372 1.08608 0.543042 0.839705i \(-0.317272\pi\)
0.543042 + 0.839705i \(0.317272\pi\)
\(318\) −3.40316 −0.190840
\(319\) −7.83573 −0.438716
\(320\) 4.59848 0.257063
\(321\) 10.2652 0.572947
\(322\) 2.46506 0.137373
\(323\) −12.7856 −0.711412
\(324\) 4.07653 0.226474
\(325\) −19.5032 −1.08184
\(326\) −38.6687 −2.14166
\(327\) 14.2897 0.790223
\(328\) −29.3320 −1.61959
\(329\) 1.18866 0.0655330
\(330\) 3.90429 0.214924
\(331\) −17.1796 −0.944275 −0.472137 0.881525i \(-0.656517\pi\)
−0.472137 + 0.881525i \(0.656517\pi\)
\(332\) 24.7844 1.36022
\(333\) 9.31865 0.510659
\(334\) −22.2785 −1.21903
\(335\) −7.11991 −0.389002
\(336\) −4.46506 −0.243589
\(337\) −20.7403 −1.12980 −0.564899 0.825160i \(-0.691085\pi\)
−0.564899 + 0.825160i \(0.691085\pi\)
\(338\) −12.7983 −0.696138
\(339\) 2.50066 0.135817
\(340\) −6.36526 −0.345205
\(341\) −0.941331 −0.0509759
\(342\) 13.1953 0.713521
\(343\) 1.00000 0.0539949
\(344\) −55.3750 −2.98562
\(345\) −0.653724 −0.0351953
\(346\) −19.6929 −1.05870
\(347\) −21.0008 −1.12738 −0.563691 0.825986i \(-0.690619\pi\)
−0.563691 + 0.825986i \(0.690619\pi\)
\(348\) −13.1841 −0.706743
\(349\) 23.2819 1.24625 0.623127 0.782121i \(-0.285862\pi\)
0.623127 + 0.782121i \(0.285862\pi\)
\(350\) 11.2719 0.602506
\(351\) −4.26520 −0.227659
\(352\) 1.86335 0.0993168
\(353\) 33.5471 1.78553 0.892767 0.450519i \(-0.148761\pi\)
0.892767 + 0.450519i \(0.148761\pi\)
\(354\) 31.9176 1.69640
\(355\) 1.13408 0.0601909
\(356\) 22.7171 1.20400
\(357\) −2.38853 −0.126414
\(358\) 36.7632 1.94300
\(359\) 33.1025 1.74708 0.873542 0.486749i \(-0.161817\pi\)
0.873542 + 0.486749i \(0.161817\pi\)
\(360\) 3.34628 0.176364
\(361\) 9.65392 0.508101
\(362\) −6.05688 −0.318343
\(363\) 5.12999 0.269255
\(364\) 17.3872 0.911338
\(365\) −7.99267 −0.418356
\(366\) −4.94654 −0.258560
\(367\) 20.3576 1.06266 0.531329 0.847165i \(-0.321693\pi\)
0.531329 + 0.847165i \(0.321693\pi\)
\(368\) −4.46506 −0.232757
\(369\) 5.73026 0.298305
\(370\) 15.0167 0.780683
\(371\) −1.38056 −0.0716749
\(372\) −1.58385 −0.0821188
\(373\) 6.21043 0.321564 0.160782 0.986990i \(-0.448598\pi\)
0.160782 + 0.986990i \(0.448598\pi\)
\(374\) 14.2652 0.737636
\(375\) −6.25787 −0.323155
\(376\) −6.08451 −0.313784
\(377\) 13.7943 0.710441
\(378\) 2.46506 0.126789
\(379\) 13.9288 0.715475 0.357738 0.933822i \(-0.383548\pi\)
0.357738 + 0.933822i \(0.383548\pi\)
\(380\) 14.2652 0.731789
\(381\) 14.9592 0.766383
\(382\) −23.8219 −1.21883
\(383\) −18.0798 −0.923833 −0.461916 0.886923i \(-0.652838\pi\)
−0.461916 + 0.886923i \(0.652838\pi\)
\(384\) −18.8781 −0.963370
\(385\) 1.58385 0.0807205
\(386\) 8.27687 0.421282
\(387\) 10.8180 0.549910
\(388\) 0.0456787 0.00231898
\(389\) −3.03230 −0.153744 −0.0768720 0.997041i \(-0.524493\pi\)
−0.0768720 + 0.997041i \(0.524493\pi\)
\(390\) −6.87324 −0.348040
\(391\) −2.38853 −0.120793
\(392\) −5.11879 −0.258538
\(393\) −9.64575 −0.486564
\(394\) −4.42947 −0.223153
\(395\) 3.72360 0.187355
\(396\) −9.87667 −0.496321
\(397\) −37.6428 −1.88924 −0.944620 0.328166i \(-0.893570\pi\)
−0.944620 + 0.328166i \(0.893570\pi\)
\(398\) 20.6947 1.03733
\(399\) 5.35294 0.267982
\(400\) −20.4171 −1.02086
\(401\) −20.6604 −1.03173 −0.515865 0.856670i \(-0.672529\pi\)
−0.515865 + 0.856670i \(0.672529\pi\)
\(402\) 26.8477 1.33904
\(403\) 1.65715 0.0825485
\(404\) 56.4833 2.81015
\(405\) −0.653724 −0.0324838
\(406\) −7.97238 −0.395662
\(407\) −22.5773 −1.11912
\(408\) 12.2264 0.605295
\(409\) −10.8728 −0.537624 −0.268812 0.963193i \(-0.586631\pi\)
−0.268812 + 0.963193i \(0.586631\pi\)
\(410\) 9.23415 0.456042
\(411\) −7.96098 −0.392686
\(412\) −30.2083 −1.48826
\(413\) 12.9480 0.637129
\(414\) 2.46506 0.121151
\(415\) −3.97449 −0.195100
\(416\) −3.28030 −0.160830
\(417\) −6.94654 −0.340174
\(418\) −31.9698 −1.56369
\(419\) 35.4574 1.73221 0.866104 0.499864i \(-0.166617\pi\)
0.866104 + 0.499864i \(0.166617\pi\)
\(420\) 2.66493 0.130035
\(421\) 5.91028 0.288050 0.144025 0.989574i \(-0.453995\pi\)
0.144025 + 0.989574i \(0.453995\pi\)
\(422\) −53.5833 −2.60840
\(423\) 1.18866 0.0577947
\(424\) 7.06678 0.343193
\(425\) −10.9219 −0.529790
\(426\) −4.27640 −0.207192
\(427\) −2.00666 −0.0971091
\(428\) −41.8464 −2.02272
\(429\) 10.3338 0.498919
\(430\) 17.4329 0.840689
\(431\) −30.2826 −1.45866 −0.729330 0.684162i \(-0.760168\pi\)
−0.729330 + 0.684162i \(0.760168\pi\)
\(432\) −4.46506 −0.214825
\(433\) −2.48964 −0.119645 −0.0598223 0.998209i \(-0.519053\pi\)
−0.0598223 + 0.998209i \(0.519053\pi\)
\(434\) −0.957747 −0.0459733
\(435\) 2.11424 0.101370
\(436\) −58.2525 −2.78979
\(437\) 5.35294 0.256066
\(438\) 30.1388 1.44009
\(439\) 32.6527 1.55843 0.779215 0.626757i \(-0.215618\pi\)
0.779215 + 0.626757i \(0.215618\pi\)
\(440\) −8.10739 −0.386505
\(441\) 1.00000 0.0476190
\(442\) −25.1129 −1.19450
\(443\) −26.3354 −1.25123 −0.625616 0.780131i \(-0.715152\pi\)
−0.625616 + 0.780131i \(0.715152\pi\)
\(444\) −37.9878 −1.80282
\(445\) −3.64297 −0.172693
\(446\) −64.4613 −3.05233
\(447\) −5.82597 −0.275559
\(448\) −7.03428 −0.332339
\(449\) 13.8279 0.652579 0.326289 0.945270i \(-0.394202\pi\)
0.326289 + 0.945270i \(0.394202\pi\)
\(450\) 11.2719 0.531360
\(451\) −13.8833 −0.653740
\(452\) −10.1940 −0.479486
\(453\) 10.9803 0.515902
\(454\) 41.0694 1.92748
\(455\) −2.78826 −0.130716
\(456\) −27.4005 −1.28315
\(457\) −21.8055 −1.02002 −0.510009 0.860169i \(-0.670358\pi\)
−0.510009 + 0.860169i \(0.670358\pi\)
\(458\) −71.0141 −3.31827
\(459\) −2.38853 −0.111487
\(460\) 2.66493 0.124253
\(461\) −31.4415 −1.46438 −0.732188 0.681103i \(-0.761501\pi\)
−0.732188 + 0.681103i \(0.761501\pi\)
\(462\) −5.97238 −0.277860
\(463\) 39.5102 1.83620 0.918098 0.396353i \(-0.129724\pi\)
0.918098 + 0.396353i \(0.129724\pi\)
\(464\) 14.4407 0.670391
\(465\) 0.253991 0.0117785
\(466\) −29.1406 −1.34991
\(467\) 21.7779 1.00776 0.503880 0.863774i \(-0.331906\pi\)
0.503880 + 0.863774i \(0.331906\pi\)
\(468\) 17.3872 0.803724
\(469\) 10.8913 0.502913
\(470\) 1.91549 0.0883552
\(471\) −1.56598 −0.0721568
\(472\) −66.2780 −3.05069
\(473\) −26.2100 −1.20513
\(474\) −14.0409 −0.644922
\(475\) 24.4771 1.12309
\(476\) 9.73692 0.446291
\(477\) −1.38056 −0.0632114
\(478\) 48.6199 2.22382
\(479\) −2.54160 −0.116129 −0.0580643 0.998313i \(-0.518493\pi\)
−0.0580643 + 0.998313i \(0.518493\pi\)
\(480\) −0.502770 −0.0229482
\(481\) 39.7459 1.81226
\(482\) −12.2100 −0.556148
\(483\) 1.00000 0.0455016
\(484\) −20.9126 −0.950572
\(485\) −0.00732516 −0.000332619 0
\(486\) 2.46506 0.111818
\(487\) −42.7148 −1.93559 −0.967797 0.251732i \(-0.919000\pi\)
−0.967797 + 0.251732i \(0.919000\pi\)
\(488\) 10.2717 0.464976
\(489\) −15.6867 −0.709377
\(490\) 1.61147 0.0727989
\(491\) −18.9184 −0.853778 −0.426889 0.904304i \(-0.640390\pi\)
−0.426889 + 0.904304i \(0.640390\pi\)
\(492\) −23.3596 −1.05313
\(493\) 7.72486 0.347910
\(494\) 56.2806 2.53219
\(495\) 1.58385 0.0711888
\(496\) 1.73480 0.0778950
\(497\) −1.73480 −0.0778166
\(498\) 14.9870 0.671584
\(499\) 17.9771 0.804766 0.402383 0.915471i \(-0.368182\pi\)
0.402383 + 0.915471i \(0.368182\pi\)
\(500\) 25.5104 1.14086
\(501\) −9.03771 −0.403775
\(502\) 77.4160 3.45524
\(503\) −14.7447 −0.657434 −0.328717 0.944429i \(-0.606616\pi\)
−0.328717 + 0.944429i \(0.606616\pi\)
\(504\) −5.11879 −0.228009
\(505\) −9.05781 −0.403067
\(506\) −5.97238 −0.265505
\(507\) −5.19190 −0.230580
\(508\) −60.9817 −2.70562
\(509\) −18.6492 −0.826610 −0.413305 0.910593i \(-0.635626\pi\)
−0.413305 + 0.910593i \(0.635626\pi\)
\(510\) −3.84905 −0.170439
\(511\) 12.2264 0.540863
\(512\) 42.2774 1.86841
\(513\) 5.35294 0.236338
\(514\) 65.0029 2.86716
\(515\) 4.84429 0.213465
\(516\) −44.0999 −1.94139
\(517\) −2.87990 −0.126658
\(518\) −22.9711 −1.00929
\(519\) −7.98879 −0.350669
\(520\) 14.2725 0.625891
\(521\) −23.0608 −1.01031 −0.505156 0.863028i \(-0.668565\pi\)
−0.505156 + 0.863028i \(0.668565\pi\)
\(522\) −7.97238 −0.348942
\(523\) 34.6781 1.51637 0.758183 0.652042i \(-0.226087\pi\)
0.758183 + 0.652042i \(0.226087\pi\)
\(524\) 39.3212 1.71776
\(525\) 4.57264 0.199567
\(526\) 71.7816 3.12983
\(527\) 0.928011 0.0404248
\(528\) 10.8180 0.470793
\(529\) 1.00000 0.0434783
\(530\) −2.22473 −0.0966360
\(531\) 12.9480 0.561895
\(532\) −21.8214 −0.946079
\(533\) 24.4407 1.05864
\(534\) 13.7369 0.594455
\(535\) 6.71061 0.290125
\(536\) −55.7502 −2.40804
\(537\) 14.9137 0.643574
\(538\) −7.70766 −0.332301
\(539\) −2.42281 −0.104358
\(540\) 2.66493 0.114680
\(541\) −1.72552 −0.0741859 −0.0370930 0.999312i \(-0.511810\pi\)
−0.0370930 + 0.999312i \(0.511810\pi\)
\(542\) 40.7930 1.75221
\(543\) −2.45709 −0.105444
\(544\) −1.83698 −0.0787600
\(545\) 9.34154 0.400148
\(546\) 10.5140 0.449957
\(547\) −10.6670 −0.456090 −0.228045 0.973651i \(-0.573233\pi\)
−0.228045 + 0.973651i \(0.573233\pi\)
\(548\) 32.4532 1.38633
\(549\) −2.00666 −0.0856421
\(550\) −27.3096 −1.16448
\(551\) −17.3122 −0.737524
\(552\) −5.11879 −0.217870
\(553\) −5.69598 −0.242218
\(554\) −23.9124 −1.01594
\(555\) 6.09183 0.258584
\(556\) 28.3178 1.20094
\(557\) 10.0819 0.427183 0.213592 0.976923i \(-0.431484\pi\)
0.213592 + 0.976923i \(0.431484\pi\)
\(558\) −0.957747 −0.0405447
\(559\) 46.1409 1.95155
\(560\) −2.91892 −0.123347
\(561\) 5.78695 0.244325
\(562\) 57.8476 2.44015
\(563\) −4.50924 −0.190042 −0.0950209 0.995475i \(-0.530292\pi\)
−0.0950209 + 0.995475i \(0.530292\pi\)
\(564\) −4.84562 −0.204037
\(565\) 1.63474 0.0687740
\(566\) 62.4577 2.62529
\(567\) 1.00000 0.0419961
\(568\) 8.88009 0.372600
\(569\) 43.1376 1.80842 0.904212 0.427084i \(-0.140459\pi\)
0.904212 + 0.427084i \(0.140459\pi\)
\(570\) 8.62610 0.361308
\(571\) −33.1565 −1.38756 −0.693778 0.720189i \(-0.744055\pi\)
−0.693778 + 0.720189i \(0.744055\pi\)
\(572\) −42.1259 −1.76137
\(573\) −9.66381 −0.403711
\(574\) −14.1254 −0.589585
\(575\) 4.57264 0.190692
\(576\) −7.03428 −0.293095
\(577\) 4.65972 0.193987 0.0969933 0.995285i \(-0.469077\pi\)
0.0969933 + 0.995285i \(0.469077\pi\)
\(578\) 27.8427 1.15810
\(579\) 3.35767 0.139540
\(580\) −8.61878 −0.357875
\(581\) 6.07977 0.252231
\(582\) 0.0276217 0.00114496
\(583\) 3.34483 0.138529
\(584\) −62.5842 −2.58975
\(585\) −2.78826 −0.115280
\(586\) 15.4313 0.637459
\(587\) −18.8272 −0.777084 −0.388542 0.921431i \(-0.627021\pi\)
−0.388542 + 0.921431i \(0.627021\pi\)
\(588\) −4.07653 −0.168113
\(589\) −2.07977 −0.0856953
\(590\) 20.8653 0.859012
\(591\) −1.79690 −0.0739146
\(592\) 41.6084 1.71009
\(593\) −16.8658 −0.692595 −0.346298 0.938125i \(-0.612561\pi\)
−0.346298 + 0.938125i \(0.612561\pi\)
\(594\) −5.97238 −0.245050
\(595\) −1.56144 −0.0640128
\(596\) 23.7498 0.972828
\(597\) 8.39519 0.343592
\(598\) 10.5140 0.429948
\(599\) 15.3246 0.626148 0.313074 0.949729i \(-0.398641\pi\)
0.313074 + 0.949729i \(0.398641\pi\)
\(600\) −23.4064 −0.955562
\(601\) −16.8556 −0.687553 −0.343776 0.939052i \(-0.611706\pi\)
−0.343776 + 0.939052i \(0.611706\pi\)
\(602\) −26.6670 −1.08687
\(603\) 10.8913 0.443528
\(604\) −44.7618 −1.82133
\(605\) 3.35360 0.136343
\(606\) 34.1552 1.38746
\(607\) 25.0267 1.01580 0.507901 0.861415i \(-0.330422\pi\)
0.507901 + 0.861415i \(0.330422\pi\)
\(608\) 4.11687 0.166961
\(609\) −3.23415 −0.131054
\(610\) −3.23367 −0.130928
\(611\) 5.06987 0.205105
\(612\) 9.73692 0.393592
\(613\) 29.4100 1.18786 0.593930 0.804517i \(-0.297576\pi\)
0.593930 + 0.804517i \(0.297576\pi\)
\(614\) 49.7390 2.00730
\(615\) 3.74601 0.151054
\(616\) 12.4018 0.499685
\(617\) −27.8167 −1.11986 −0.559929 0.828541i \(-0.689172\pi\)
−0.559929 + 0.828541i \(0.689172\pi\)
\(618\) −18.2668 −0.734800
\(619\) −10.0504 −0.403960 −0.201980 0.979390i \(-0.564738\pi\)
−0.201980 + 0.979390i \(0.564738\pi\)
\(620\) −1.03540 −0.0415827
\(621\) 1.00000 0.0401286
\(622\) −53.4643 −2.14372
\(623\) 5.57264 0.223263
\(624\) −19.0444 −0.762385
\(625\) 18.7723 0.750892
\(626\) −68.9701 −2.75660
\(627\) −12.9691 −0.517938
\(628\) 6.38379 0.254741
\(629\) 22.2579 0.887479
\(630\) 1.61147 0.0642026
\(631\) 40.8542 1.62638 0.813190 0.581998i \(-0.197729\pi\)
0.813190 + 0.581998i \(0.197729\pi\)
\(632\) 29.1565 1.15978
\(633\) −21.7371 −0.863973
\(634\) −47.6674 −1.89311
\(635\) 9.77919 0.388075
\(636\) 5.62789 0.223160
\(637\) 4.26520 0.168993
\(638\) 19.3156 0.764710
\(639\) −1.73480 −0.0686278
\(640\) −12.3411 −0.487824
\(641\) 1.15195 0.0454992 0.0227496 0.999741i \(-0.492758\pi\)
0.0227496 + 0.999741i \(0.492758\pi\)
\(642\) −25.3044 −0.998683
\(643\) 9.15419 0.361006 0.180503 0.983574i \(-0.442227\pi\)
0.180503 + 0.983574i \(0.442227\pi\)
\(644\) −4.07653 −0.160638
\(645\) 7.07199 0.278459
\(646\) 31.5174 1.24004
\(647\) 2.79994 0.110077 0.0550385 0.998484i \(-0.482472\pi\)
0.0550385 + 0.998484i \(0.482472\pi\)
\(648\) −5.11879 −0.201085
\(649\) −31.3705 −1.23140
\(650\) 48.0767 1.88572
\(651\) −0.388529 −0.0152276
\(652\) 63.9473 2.50437
\(653\) 36.1276 1.41378 0.706890 0.707323i \(-0.250097\pi\)
0.706890 + 0.707323i \(0.250097\pi\)
\(654\) −35.2251 −1.37741
\(655\) −6.30566 −0.246383
\(656\) 25.5860 0.998964
\(657\) 12.2264 0.476996
\(658\) −2.93013 −0.114228
\(659\) −40.3794 −1.57296 −0.786480 0.617616i \(-0.788099\pi\)
−0.786480 + 0.617616i \(0.788099\pi\)
\(660\) −6.45662 −0.251324
\(661\) −37.4732 −1.45754 −0.728769 0.684760i \(-0.759907\pi\)
−0.728769 + 0.684760i \(0.759907\pi\)
\(662\) 42.3487 1.64593
\(663\) −10.1875 −0.395651
\(664\) −31.1210 −1.20773
\(665\) 3.49934 0.135699
\(666\) −22.9711 −0.890111
\(667\) −3.23415 −0.125227
\(668\) 36.8425 1.42548
\(669\) −26.1500 −1.01102
\(670\) 17.5510 0.678055
\(671\) 4.86175 0.187686
\(672\) 0.769086 0.0296681
\(673\) −25.9122 −0.998842 −0.499421 0.866359i \(-0.666454\pi\)
−0.499421 + 0.866359i \(0.666454\pi\)
\(674\) 51.1262 1.96931
\(675\) 4.57264 0.176001
\(676\) 21.1649 0.814036
\(677\) −31.2444 −1.20082 −0.600409 0.799693i \(-0.704996\pi\)
−0.600409 + 0.799693i \(0.704996\pi\)
\(678\) −6.16427 −0.236738
\(679\) 0.0112053 0.000430019 0
\(680\) 7.99267 0.306505
\(681\) 16.6606 0.638435
\(682\) 2.32044 0.0888542
\(683\) 33.8559 1.29546 0.647730 0.761870i \(-0.275719\pi\)
0.647730 + 0.761870i \(0.275719\pi\)
\(684\) −21.8214 −0.834363
\(685\) −5.20429 −0.198846
\(686\) −2.46506 −0.0941165
\(687\) −28.8082 −1.09910
\(688\) 48.3030 1.84154
\(689\) −5.88835 −0.224328
\(690\) 1.61147 0.0613477
\(691\) 20.3273 0.773287 0.386643 0.922229i \(-0.373634\pi\)
0.386643 + 0.922229i \(0.373634\pi\)
\(692\) 32.5666 1.23800
\(693\) −2.42281 −0.0920349
\(694\) 51.7683 1.96510
\(695\) −4.54112 −0.172255
\(696\) 16.5549 0.627512
\(697\) 13.6869 0.518428
\(698\) −57.3914 −2.17230
\(699\) −11.8214 −0.447127
\(700\) −18.6405 −0.704546
\(701\) 44.7211 1.68909 0.844547 0.535482i \(-0.179870\pi\)
0.844547 + 0.535482i \(0.179870\pi\)
\(702\) 10.5140 0.396824
\(703\) −49.8822 −1.88134
\(704\) 17.0427 0.642322
\(705\) 0.777057 0.0292657
\(706\) −82.6958 −3.11230
\(707\) 13.8557 0.521097
\(708\) −52.7829 −1.98370
\(709\) −0.740344 −0.0278042 −0.0139021 0.999903i \(-0.504425\pi\)
−0.0139021 + 0.999903i \(0.504425\pi\)
\(710\) −2.79559 −0.104917
\(711\) −5.69598 −0.213616
\(712\) −28.5252 −1.06903
\(713\) −0.388529 −0.0145505
\(714\) 5.88787 0.220348
\(715\) 6.75543 0.252639
\(716\) −60.7962 −2.27206
\(717\) 19.7236 0.736591
\(718\) −81.5998 −3.04528
\(719\) −45.1142 −1.68248 −0.841238 0.540666i \(-0.818172\pi\)
−0.841238 + 0.540666i \(0.818172\pi\)
\(720\) −2.91892 −0.108782
\(721\) −7.41029 −0.275974
\(722\) −23.7975 −0.885652
\(723\) −4.95320 −0.184212
\(724\) 10.0164 0.372257
\(725\) −14.7886 −0.549235
\(726\) −12.6458 −0.469328
\(727\) −4.53395 −0.168155 −0.0840775 0.996459i \(-0.526794\pi\)
−0.0840775 + 0.996459i \(0.526794\pi\)
\(728\) −21.8326 −0.809171
\(729\) 1.00000 0.0370370
\(730\) 19.7024 0.729220
\(731\) 25.8391 0.955694
\(732\) 8.18022 0.302350
\(733\) 48.4621 1.78999 0.894994 0.446078i \(-0.147179\pi\)
0.894994 + 0.446078i \(0.147179\pi\)
\(734\) −50.1828 −1.85228
\(735\) 0.653724 0.0241130
\(736\) 0.769086 0.0283489
\(737\) −26.3875 −0.971998
\(738\) −14.1254 −0.519965
\(739\) −14.1802 −0.521628 −0.260814 0.965389i \(-0.583991\pi\)
−0.260814 + 0.965389i \(0.583991\pi\)
\(740\) −24.8336 −0.912900
\(741\) 22.8313 0.838729
\(742\) 3.40316 0.124934
\(743\) 5.97171 0.219081 0.109540 0.993982i \(-0.465062\pi\)
0.109540 + 0.993982i \(0.465062\pi\)
\(744\) 1.98879 0.0729128
\(745\) −3.80858 −0.139536
\(746\) −15.3091 −0.560506
\(747\) 6.07977 0.222447
\(748\) −23.5907 −0.862561
\(749\) −10.2652 −0.375082
\(750\) 15.4260 0.563279
\(751\) 28.3902 1.03597 0.517986 0.855389i \(-0.326682\pi\)
0.517986 + 0.855389i \(0.326682\pi\)
\(752\) 5.30745 0.193543
\(753\) 31.4053 1.14447
\(754\) −34.0038 −1.23834
\(755\) 7.17812 0.261239
\(756\) −4.07653 −0.148262
\(757\) −33.9995 −1.23573 −0.617866 0.786283i \(-0.712003\pi\)
−0.617866 + 0.786283i \(0.712003\pi\)
\(758\) −34.3354 −1.24712
\(759\) −2.42281 −0.0879424
\(760\) −17.9124 −0.649751
\(761\) 0.844171 0.0306012 0.0153006 0.999883i \(-0.495129\pi\)
0.0153006 + 0.999883i \(0.495129\pi\)
\(762\) −36.8754 −1.33585
\(763\) −14.2897 −0.517323
\(764\) 39.3949 1.42526
\(765\) −1.56144 −0.0564540
\(766\) 44.5678 1.61030
\(767\) 55.2257 1.99408
\(768\) 32.4672 1.17156
\(769\) −9.02110 −0.325309 −0.162655 0.986683i \(-0.552006\pi\)
−0.162655 + 0.986683i \(0.552006\pi\)
\(770\) −3.90429 −0.140701
\(771\) 26.3697 0.949681
\(772\) −13.6877 −0.492630
\(773\) −16.3083 −0.586567 −0.293284 0.956026i \(-0.594748\pi\)
−0.293284 + 0.956026i \(0.594748\pi\)
\(774\) −26.6670 −0.958527
\(775\) −1.77660 −0.0638175
\(776\) −0.0573574 −0.00205901
\(777\) −9.31865 −0.334305
\(778\) 7.47482 0.267985
\(779\) −30.6737 −1.09900
\(780\) 11.3664 0.406984
\(781\) 4.20310 0.150399
\(782\) 5.88787 0.210550
\(783\) −3.23415 −0.115579
\(784\) 4.46506 0.159467
\(785\) −1.02372 −0.0365382
\(786\) 23.7774 0.848111
\(787\) 3.79756 0.135369 0.0676843 0.997707i \(-0.478439\pi\)
0.0676843 + 0.997707i \(0.478439\pi\)
\(788\) 7.32512 0.260947
\(789\) 29.1196 1.03668
\(790\) −9.17890 −0.326571
\(791\) −2.50066 −0.0889131
\(792\) 12.4018 0.440680
\(793\) −8.55880 −0.303932
\(794\) 92.7920 3.29306
\(795\) −0.902504 −0.0320085
\(796\) −34.2233 −1.21301
\(797\) 12.5502 0.444550 0.222275 0.974984i \(-0.428652\pi\)
0.222275 + 0.974984i \(0.428652\pi\)
\(798\) −13.1953 −0.467109
\(799\) 2.83915 0.100442
\(800\) 3.51675 0.124336
\(801\) 5.57264 0.196900
\(802\) 50.9291 1.79837
\(803\) −29.6222 −1.04534
\(804\) −44.3988 −1.56582
\(805\) 0.653724 0.0230408
\(806\) −4.08498 −0.143887
\(807\) −3.12676 −0.110067
\(808\) −70.9244 −2.49511
\(809\) 48.2047 1.69479 0.847394 0.530965i \(-0.178171\pi\)
0.847394 + 0.530965i \(0.178171\pi\)
\(810\) 1.61147 0.0566213
\(811\) −20.3014 −0.712879 −0.356439 0.934318i \(-0.616009\pi\)
−0.356439 + 0.934318i \(0.616009\pi\)
\(812\) 13.1841 0.462672
\(813\) 16.5484 0.580379
\(814\) 55.6545 1.95069
\(815\) −10.2548 −0.359209
\(816\) −10.6649 −0.373347
\(817\) −57.9080 −2.02595
\(818\) 26.8021 0.937112
\(819\) 4.26520 0.149038
\(820\) −15.2707 −0.533277
\(821\) −35.8778 −1.25214 −0.626072 0.779765i \(-0.715338\pi\)
−0.626072 + 0.779765i \(0.715338\pi\)
\(822\) 19.6243 0.684477
\(823\) 26.9324 0.938806 0.469403 0.882984i \(-0.344469\pi\)
0.469403 + 0.882984i \(0.344469\pi\)
\(824\) 37.9317 1.32141
\(825\) −11.0786 −0.385709
\(826\) −31.9176 −1.11056
\(827\) 23.0101 0.800139 0.400070 0.916485i \(-0.368986\pi\)
0.400070 + 0.916485i \(0.368986\pi\)
\(828\) −4.07653 −0.141669
\(829\) −32.7106 −1.13609 −0.568043 0.822999i \(-0.692299\pi\)
−0.568043 + 0.822999i \(0.692299\pi\)
\(830\) 9.79737 0.340072
\(831\) −9.70052 −0.336507
\(832\) −30.0026 −1.04015
\(833\) 2.38853 0.0827576
\(834\) 17.1237 0.592944
\(835\) −5.90817 −0.204461
\(836\) 52.8692 1.82852
\(837\) −0.388529 −0.0134295
\(838\) −87.4048 −3.01935
\(839\) −45.8300 −1.58223 −0.791114 0.611669i \(-0.790498\pi\)
−0.791114 + 0.611669i \(0.790498\pi\)
\(840\) −3.34628 −0.115457
\(841\) −18.5403 −0.639320
\(842\) −14.5692 −0.502088
\(843\) 23.4670 0.808246
\(844\) 88.6121 3.05015
\(845\) −3.39407 −0.116760
\(846\) −2.93013 −0.100740
\(847\) −5.12999 −0.176269
\(848\) −6.16427 −0.211682
\(849\) 25.3372 0.869570
\(850\) 26.9231 0.923456
\(851\) −9.31865 −0.319439
\(852\) 7.07199 0.242282
\(853\) 3.35360 0.114825 0.0574126 0.998351i \(-0.481715\pi\)
0.0574126 + 0.998351i \(0.481715\pi\)
\(854\) 4.94654 0.169267
\(855\) 3.49934 0.119675
\(856\) 52.5454 1.79596
\(857\) −27.7324 −0.947320 −0.473660 0.880708i \(-0.657067\pi\)
−0.473660 + 0.880708i \(0.657067\pi\)
\(858\) −25.4734 −0.869646
\(859\) 29.2970 0.999602 0.499801 0.866140i \(-0.333407\pi\)
0.499801 + 0.866140i \(0.333407\pi\)
\(860\) −28.8292 −0.983068
\(861\) −5.73026 −0.195287
\(862\) 74.6485 2.54254
\(863\) 19.0673 0.649057 0.324528 0.945876i \(-0.394794\pi\)
0.324528 + 0.945876i \(0.394794\pi\)
\(864\) 0.769086 0.0261648
\(865\) −5.22247 −0.177569
\(866\) 6.13713 0.208548
\(867\) 11.2949 0.383596
\(868\) 1.58385 0.0537594
\(869\) 13.8003 0.468142
\(870\) −5.21174 −0.176694
\(871\) 46.4535 1.57402
\(872\) 73.1460 2.47704
\(873\) 0.0112053 0.000379241 0
\(874\) −13.1953 −0.446338
\(875\) 6.25787 0.211555
\(876\) −49.8412 −1.68398
\(877\) −19.4591 −0.657086 −0.328543 0.944489i \(-0.606558\pi\)
−0.328543 + 0.944489i \(0.606558\pi\)
\(878\) −80.4911 −2.71644
\(879\) 6.25998 0.211144
\(880\) 7.07199 0.238397
\(881\) −36.1111 −1.21662 −0.608308 0.793701i \(-0.708151\pi\)
−0.608308 + 0.793701i \(0.708151\pi\)
\(882\) −2.46506 −0.0830030
\(883\) 45.6061 1.53477 0.767384 0.641187i \(-0.221558\pi\)
0.767384 + 0.641187i \(0.221558\pi\)
\(884\) 41.5299 1.39680
\(885\) 8.46442 0.284528
\(886\) 64.9184 2.18098
\(887\) −6.71371 −0.225424 −0.112712 0.993628i \(-0.535954\pi\)
−0.112712 + 0.993628i \(0.535954\pi\)
\(888\) 47.7002 1.60071
\(889\) −14.9592 −0.501715
\(890\) 8.98016 0.301016
\(891\) −2.42281 −0.0811672
\(892\) 106.601 3.56927
\(893\) −6.36283 −0.212924
\(894\) 14.3614 0.480316
\(895\) 9.74945 0.325888
\(896\) 18.8781 0.630674
\(897\) 4.26520 0.142411
\(898\) −34.0866 −1.13749
\(899\) 1.25656 0.0419086
\(900\) −18.6405 −0.621351
\(901\) −3.29750 −0.109856
\(902\) 34.2233 1.13951
\(903\) −10.8180 −0.360000
\(904\) 12.8003 0.425732
\(905\) −1.60626 −0.0533939
\(906\) −27.0673 −0.899249
\(907\) 9.74339 0.323524 0.161762 0.986830i \(-0.448282\pi\)
0.161762 + 0.986830i \(0.448282\pi\)
\(908\) −67.9174 −2.25392
\(909\) 13.8557 0.459565
\(910\) 6.87324 0.227846
\(911\) −59.9266 −1.98546 −0.992728 0.120379i \(-0.961589\pi\)
−0.992728 + 0.120379i \(0.961589\pi\)
\(912\) 23.9012 0.791448
\(913\) −14.7301 −0.487496
\(914\) 53.7519 1.77795
\(915\) −1.31180 −0.0433668
\(916\) 117.438 3.88025
\(917\) 9.64575 0.318531
\(918\) 5.88787 0.194329
\(919\) −42.5816 −1.40464 −0.702318 0.711863i \(-0.747851\pi\)
−0.702318 + 0.711863i \(0.747851\pi\)
\(920\) −3.34628 −0.110323
\(921\) 20.1776 0.664874
\(922\) 77.5052 2.55250
\(923\) −7.39928 −0.243550
\(924\) 9.87667 0.324918
\(925\) −42.6109 −1.40104
\(926\) −97.3952 −3.20060
\(927\) −7.41029 −0.243386
\(928\) −2.48734 −0.0816508
\(929\) 1.83831 0.0603131 0.0301566 0.999545i \(-0.490399\pi\)
0.0301566 + 0.999545i \(0.490399\pi\)
\(930\) −0.626103 −0.0205307
\(931\) −5.35294 −0.175435
\(932\) 48.1904 1.57853
\(933\) −21.6888 −0.710060
\(934\) −53.6838 −1.75659
\(935\) 3.78307 0.123720
\(936\) −21.8326 −0.713622
\(937\) −4.03863 −0.131936 −0.0659682 0.997822i \(-0.521014\pi\)
−0.0659682 + 0.997822i \(0.521014\pi\)
\(938\) −26.8477 −0.876610
\(939\) −27.9790 −0.913061
\(940\) −3.16770 −0.103319
\(941\) 8.07541 0.263251 0.131625 0.991300i \(-0.457980\pi\)
0.131625 + 0.991300i \(0.457980\pi\)
\(942\) 3.86025 0.125774
\(943\) −5.73026 −0.186603
\(944\) 57.8136 1.88167
\(945\) 0.653724 0.0212657
\(946\) 64.6092 2.10063
\(947\) 36.1732 1.17547 0.587736 0.809053i \(-0.300019\pi\)
0.587736 + 0.809053i \(0.300019\pi\)
\(948\) 23.2198 0.754146
\(949\) 52.1479 1.69279
\(950\) −60.3375 −1.95761
\(951\) −19.3372 −0.627051
\(952\) −12.2264 −0.396259
\(953\) −29.8867 −0.968125 −0.484063 0.875033i \(-0.660839\pi\)
−0.484063 + 0.875033i \(0.660839\pi\)
\(954\) 3.40316 0.110181
\(955\) −6.31747 −0.204428
\(956\) −80.4039 −2.60045
\(957\) 7.83573 0.253293
\(958\) 6.26520 0.202419
\(959\) 7.96098 0.257073
\(960\) −4.59848 −0.148415
\(961\) −30.8490 −0.995131
\(962\) −97.9761 −3.15888
\(963\) −10.2652 −0.330791
\(964\) 20.1919 0.650337
\(965\) 2.19499 0.0706593
\(966\) −2.46506 −0.0793121
\(967\) −0.283726 −0.00912402 −0.00456201 0.999990i \(-0.501452\pi\)
−0.00456201 + 0.999990i \(0.501452\pi\)
\(968\) 26.2593 0.844007
\(969\) 12.7856 0.410734
\(970\) 0.0180570 0.000579775 0
\(971\) 39.8102 1.27757 0.638785 0.769385i \(-0.279437\pi\)
0.638785 + 0.769385i \(0.279437\pi\)
\(972\) −4.07653 −0.130755
\(973\) 6.94654 0.222696
\(974\) 105.295 3.37386
\(975\) 19.5032 0.624603
\(976\) −8.95986 −0.286798
\(977\) 50.4503 1.61405 0.807024 0.590518i \(-0.201077\pi\)
0.807024 + 0.590518i \(0.201077\pi\)
\(978\) 38.6687 1.23649
\(979\) −13.5015 −0.431508
\(980\) −2.66493 −0.0851281
\(981\) −14.2897 −0.456236
\(982\) 46.6352 1.48819
\(983\) 25.3027 0.807031 0.403516 0.914973i \(-0.367788\pi\)
0.403516 + 0.914973i \(0.367788\pi\)
\(984\) 29.3320 0.935069
\(985\) −1.17468 −0.0374283
\(986\) −19.0423 −0.606429
\(987\) −1.18866 −0.0378355
\(988\) −93.0726 −2.96104
\(989\) −10.8180 −0.343992
\(990\) −3.90429 −0.124086
\(991\) 12.8751 0.408990 0.204495 0.978868i \(-0.434445\pi\)
0.204495 + 0.978868i \(0.434445\pi\)
\(992\) −0.298812 −0.00948728
\(993\) 17.1796 0.545177
\(994\) 4.27640 0.135639
\(995\) 5.48814 0.173986
\(996\) −24.7844 −0.785323
\(997\) 20.8464 0.660212 0.330106 0.943944i \(-0.392915\pi\)
0.330106 + 0.943944i \(0.392915\pi\)
\(998\) −44.3147 −1.40276
\(999\) −9.31865 −0.294829
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 483.2.a.i.1.1 4
3.2 odd 2 1449.2.a.p.1.4 4
4.3 odd 2 7728.2.a.cd.1.2 4
7.6 odd 2 3381.2.a.w.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.2.a.i.1.1 4 1.1 even 1 trivial
1449.2.a.p.1.4 4 3.2 odd 2
3381.2.a.w.1.1 4 7.6 odd 2
7728.2.a.cd.1.2 4 4.3 odd 2