Properties

Label 483.2.a.f
Level $483$
Weight $2$
Character orbit 483.a
Self dual yes
Analytic conductor $3.857$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(3.85677441763\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
Defining polynomial: \(x^{2} - x - 3\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{13})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta q^{2} + q^{3} + ( 1 + \beta ) q^{4} + ( -3 + \beta ) q^{5} -\beta q^{6} - q^{7} -3 q^{8} + q^{9} +O(q^{10})\) \( q -\beta q^{2} + q^{3} + ( 1 + \beta ) q^{4} + ( -3 + \beta ) q^{5} -\beta q^{6} - q^{7} -3 q^{8} + q^{9} + ( -3 + 2 \beta ) q^{10} -5 q^{11} + ( 1 + \beta ) q^{12} + \beta q^{13} + \beta q^{14} + ( -3 + \beta ) q^{15} + ( -2 + \beta ) q^{16} + ( -1 - 2 \beta ) q^{17} -\beta q^{18} + ( 3 - 2 \beta ) q^{19} -\beta q^{20} - q^{21} + 5 \beta q^{22} + q^{23} -3 q^{24} + ( 7 - 5 \beta ) q^{25} + ( -3 - \beta ) q^{26} + q^{27} + ( -1 - \beta ) q^{28} + ( -3 + 4 \beta ) q^{29} + ( -3 + 2 \beta ) q^{30} + 3 q^{31} + ( 3 + \beta ) q^{32} -5 q^{33} + ( 6 + 3 \beta ) q^{34} + ( 3 - \beta ) q^{35} + ( 1 + \beta ) q^{36} -9 q^{37} + ( 6 - \beta ) q^{38} + \beta q^{39} + ( 9 - 3 \beta ) q^{40} + ( -3 - 4 \beta ) q^{41} + \beta q^{42} + ( -6 + 5 \beta ) q^{43} + ( -5 - 5 \beta ) q^{44} + ( -3 + \beta ) q^{45} -\beta q^{46} + ( -4 - 2 \beta ) q^{47} + ( -2 + \beta ) q^{48} + q^{49} + ( 15 - 2 \beta ) q^{50} + ( -1 - 2 \beta ) q^{51} + ( 3 + 2 \beta ) q^{52} + ( -1 - 5 \beta ) q^{53} -\beta q^{54} + ( 15 - 5 \beta ) q^{55} + 3 q^{56} + ( 3 - 2 \beta ) q^{57} + ( -12 - \beta ) q^{58} + ( -3 + 3 \beta ) q^{59} -\beta q^{60} + ( -8 + 3 \beta ) q^{61} -3 \beta q^{62} - q^{63} + ( 1 - 6 \beta ) q^{64} + ( 3 - 2 \beta ) q^{65} + 5 \beta q^{66} + ( -5 - 3 \beta ) q^{67} + ( -7 - 5 \beta ) q^{68} + q^{69} + ( 3 - 2 \beta ) q^{70} + ( -6 + 3 \beta ) q^{71} -3 q^{72} + ( 7 - 4 \beta ) q^{73} + 9 \beta q^{74} + ( 7 - 5 \beta ) q^{75} + ( -3 - \beta ) q^{76} + 5 q^{77} + ( -3 - \beta ) q^{78} - q^{79} + ( 9 - 4 \beta ) q^{80} + q^{81} + ( 12 + 7 \beta ) q^{82} + ( 1 + 2 \beta ) q^{83} + ( -1 - \beta ) q^{84} + ( -3 + 3 \beta ) q^{85} + ( -15 + \beta ) q^{86} + ( -3 + 4 \beta ) q^{87} + 15 q^{88} + ( 4 + 3 \beta ) q^{89} + ( -3 + 2 \beta ) q^{90} -\beta q^{91} + ( 1 + \beta ) q^{92} + 3 q^{93} + ( 6 + 6 \beta ) q^{94} + ( -15 + 7 \beta ) q^{95} + ( 3 + \beta ) q^{96} + ( -13 - 2 \beta ) q^{97} -\beta q^{98} -5 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 2 q^{3} + 3 q^{4} - 5 q^{5} - q^{6} - 2 q^{7} - 6 q^{8} + 2 q^{9} + O(q^{10}) \) \( 2 q - q^{2} + 2 q^{3} + 3 q^{4} - 5 q^{5} - q^{6} - 2 q^{7} - 6 q^{8} + 2 q^{9} - 4 q^{10} - 10 q^{11} + 3 q^{12} + q^{13} + q^{14} - 5 q^{15} - 3 q^{16} - 4 q^{17} - q^{18} + 4 q^{19} - q^{20} - 2 q^{21} + 5 q^{22} + 2 q^{23} - 6 q^{24} + 9 q^{25} - 7 q^{26} + 2 q^{27} - 3 q^{28} - 2 q^{29} - 4 q^{30} + 6 q^{31} + 7 q^{32} - 10 q^{33} + 15 q^{34} + 5 q^{35} + 3 q^{36} - 18 q^{37} + 11 q^{38} + q^{39} + 15 q^{40} - 10 q^{41} + q^{42} - 7 q^{43} - 15 q^{44} - 5 q^{45} - q^{46} - 10 q^{47} - 3 q^{48} + 2 q^{49} + 28 q^{50} - 4 q^{51} + 8 q^{52} - 7 q^{53} - q^{54} + 25 q^{55} + 6 q^{56} + 4 q^{57} - 25 q^{58} - 3 q^{59} - q^{60} - 13 q^{61} - 3 q^{62} - 2 q^{63} - 4 q^{64} + 4 q^{65} + 5 q^{66} - 13 q^{67} - 19 q^{68} + 2 q^{69} + 4 q^{70} - 9 q^{71} - 6 q^{72} + 10 q^{73} + 9 q^{74} + 9 q^{75} - 7 q^{76} + 10 q^{77} - 7 q^{78} - 2 q^{79} + 14 q^{80} + 2 q^{81} + 31 q^{82} + 4 q^{83} - 3 q^{84} - 3 q^{85} - 29 q^{86} - 2 q^{87} + 30 q^{88} + 11 q^{89} - 4 q^{90} - q^{91} + 3 q^{92} + 6 q^{93} + 18 q^{94} - 23 q^{95} + 7 q^{96} - 28 q^{97} - q^{98} - 10 q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.30278
−1.30278
−2.30278 1.00000 3.30278 −0.697224 −2.30278 −1.00000 −3.00000 1.00000 1.60555
1.2 1.30278 1.00000 −0.302776 −4.30278 1.30278 −1.00000 −3.00000 1.00000 −5.60555
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(7\) \(1\)
\(23\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 483.2.a.f 2
3.b odd 2 1 1449.2.a.j 2
4.b odd 2 1 7728.2.a.x 2
7.b odd 2 1 3381.2.a.p 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
483.2.a.f 2 1.a even 1 1 trivial
1449.2.a.j 2 3.b odd 2 1
3381.2.a.p 2 7.b odd 2 1
7728.2.a.x 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(483))\):

\( T_{2}^{2} + T_{2} - 3 \)
\( T_{5}^{2} + 5 T_{5} + 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -3 + T + T^{2} \)
$3$ \( ( -1 + T )^{2} \)
$5$ \( 3 + 5 T + T^{2} \)
$7$ \( ( 1 + T )^{2} \)
$11$ \( ( 5 + T )^{2} \)
$13$ \( -3 - T + T^{2} \)
$17$ \( -9 + 4 T + T^{2} \)
$19$ \( -9 - 4 T + T^{2} \)
$23$ \( ( -1 + T )^{2} \)
$29$ \( -51 + 2 T + T^{2} \)
$31$ \( ( -3 + T )^{2} \)
$37$ \( ( 9 + T )^{2} \)
$41$ \( -27 + 10 T + T^{2} \)
$43$ \( -69 + 7 T + T^{2} \)
$47$ \( 12 + 10 T + T^{2} \)
$53$ \( -69 + 7 T + T^{2} \)
$59$ \( -27 + 3 T + T^{2} \)
$61$ \( 13 + 13 T + T^{2} \)
$67$ \( 13 + 13 T + T^{2} \)
$71$ \( -9 + 9 T + T^{2} \)
$73$ \( -27 - 10 T + T^{2} \)
$79$ \( ( 1 + T )^{2} \)
$83$ \( -9 - 4 T + T^{2} \)
$89$ \( 1 - 11 T + T^{2} \)
$97$ \( 183 + 28 T + T^{2} \)
show more
show less