Properties

Label 483.2.a.c
Level $483$
Weight $2$
Character orbit 483.a
Self dual yes
Analytic conductor $3.857$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [483,2,Mod(1,483)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(483, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("483.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 483 = 3 \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 483.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.85677441763\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{5})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 1) q^{2} + q^{3} + 3 \beta q^{4} + ( - \beta - 2) q^{5} + ( - \beta - 1) q^{6} + q^{7} + ( - 4 \beta - 1) q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta - 1) q^{2} + q^{3} + 3 \beta q^{4} + ( - \beta - 2) q^{5} + ( - \beta - 1) q^{6} + q^{7} + ( - 4 \beta - 1) q^{8} + q^{9} + (4 \beta + 3) q^{10} + (4 \beta - 3) q^{11} + 3 \beta q^{12} + ( - \beta - 3) q^{13} + ( - \beta - 1) q^{14} + ( - \beta - 2) q^{15} + (3 \beta + 5) q^{16} - q^{17} + ( - \beta - 1) q^{18} - 3 q^{19} + ( - 9 \beta - 3) q^{20} + q^{21} + ( - 5 \beta - 1) q^{22} - q^{23} + ( - 4 \beta - 1) q^{24} + 5 \beta q^{25} + (5 \beta + 4) q^{26} + q^{27} + 3 \beta q^{28} + (4 \beta - 5) q^{29} + (4 \beta + 3) q^{30} + ( - 2 \beta - 5) q^{31} + ( - 3 \beta - 6) q^{32} + (4 \beta - 3) q^{33} + (\beta + 1) q^{34} + ( - \beta - 2) q^{35} + 3 \beta q^{36} + ( - 4 \beta - 1) q^{37} + (3 \beta + 3) q^{38} + ( - \beta - 3) q^{39} + (13 \beta + 6) q^{40} + (6 \beta - 1) q^{41} + ( - \beta - 1) q^{42} + ( - 5 \beta + 5) q^{43} + (3 \beta + 12) q^{44} + ( - \beta - 2) q^{45} + (\beta + 1) q^{46} + ( - 6 \beta - 2) q^{47} + (3 \beta + 5) q^{48} + q^{49} + ( - 10 \beta - 5) q^{50} - q^{51} + ( - 12 \beta - 3) q^{52} + ( - \beta - 4) q^{53} + ( - \beta - 1) q^{54} + ( - 9 \beta + 2) q^{55} + ( - 4 \beta - 1) q^{56} - 3 q^{57} + ( - 3 \beta + 1) q^{58} + ( - 3 \beta - 8) q^{59} + ( - 9 \beta - 3) q^{60} + ( - 11 \beta + 7) q^{61} + (9 \beta + 7) q^{62} + q^{63} + (6 \beta - 1) q^{64} + (6 \beta + 7) q^{65} + ( - 5 \beta - 1) q^{66} + (3 \beta + 6) q^{67} - 3 \beta q^{68} - q^{69} + (4 \beta + 3) q^{70} + ( - 5 \beta - 7) q^{71} + ( - 4 \beta - 1) q^{72} + ( - 6 \beta - 1) q^{73} + (9 \beta + 5) q^{74} + 5 \beta q^{75} - 9 \beta q^{76} + (4 \beta - 3) q^{77} + (5 \beta + 4) q^{78} + (4 \beta + 3) q^{79} + ( - 14 \beta - 13) q^{80} + q^{81} + ( - 11 \beta - 5) q^{82} - 3 q^{83} + 3 \beta q^{84} + (\beta + 2) q^{85} + 5 \beta q^{86} + (4 \beta - 5) q^{87} + ( - 8 \beta - 13) q^{88} + (3 \beta + 5) q^{89} + (4 \beta + 3) q^{90} + ( - \beta - 3) q^{91} - 3 \beta q^{92} + ( - 2 \beta - 5) q^{93} + (14 \beta + 8) q^{94} + (3 \beta + 6) q^{95} + ( - 3 \beta - 6) q^{96} + 5 q^{97} + ( - \beta - 1) q^{98} + (4 \beta - 3) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{2} + 2 q^{3} + 3 q^{4} - 5 q^{5} - 3 q^{6} + 2 q^{7} - 6 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 3 q^{2} + 2 q^{3} + 3 q^{4} - 5 q^{5} - 3 q^{6} + 2 q^{7} - 6 q^{8} + 2 q^{9} + 10 q^{10} - 2 q^{11} + 3 q^{12} - 7 q^{13} - 3 q^{14} - 5 q^{15} + 13 q^{16} - 2 q^{17} - 3 q^{18} - 6 q^{19} - 15 q^{20} + 2 q^{21} - 7 q^{22} - 2 q^{23} - 6 q^{24} + 5 q^{25} + 13 q^{26} + 2 q^{27} + 3 q^{28} - 6 q^{29} + 10 q^{30} - 12 q^{31} - 15 q^{32} - 2 q^{33} + 3 q^{34} - 5 q^{35} + 3 q^{36} - 6 q^{37} + 9 q^{38} - 7 q^{39} + 25 q^{40} + 4 q^{41} - 3 q^{42} + 5 q^{43} + 27 q^{44} - 5 q^{45} + 3 q^{46} - 10 q^{47} + 13 q^{48} + 2 q^{49} - 20 q^{50} - 2 q^{51} - 18 q^{52} - 9 q^{53} - 3 q^{54} - 5 q^{55} - 6 q^{56} - 6 q^{57} - q^{58} - 19 q^{59} - 15 q^{60} + 3 q^{61} + 23 q^{62} + 2 q^{63} + 4 q^{64} + 20 q^{65} - 7 q^{66} + 15 q^{67} - 3 q^{68} - 2 q^{69} + 10 q^{70} - 19 q^{71} - 6 q^{72} - 8 q^{73} + 19 q^{74} + 5 q^{75} - 9 q^{76} - 2 q^{77} + 13 q^{78} + 10 q^{79} - 40 q^{80} + 2 q^{81} - 21 q^{82} - 6 q^{83} + 3 q^{84} + 5 q^{85} + 5 q^{86} - 6 q^{87} - 34 q^{88} + 13 q^{89} + 10 q^{90} - 7 q^{91} - 3 q^{92} - 12 q^{93} + 30 q^{94} + 15 q^{95} - 15 q^{96} + 10 q^{97} - 3 q^{98} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
−2.61803 1.00000 4.85410 −3.61803 −2.61803 1.00000 −7.47214 1.00000 9.47214
1.2 −0.381966 1.00000 −1.85410 −1.38197 −0.381966 1.00000 1.47214 1.00000 0.527864
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( -1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 483.2.a.c 2
3.b odd 2 1 1449.2.a.k 2
4.b odd 2 1 7728.2.a.v 2
7.b odd 2 1 3381.2.a.n 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
483.2.a.c 2 1.a even 1 1 trivial
1449.2.a.k 2 3.b odd 2 1
3381.2.a.n 2 7.b odd 2 1
7728.2.a.v 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(483))\):

\( T_{2}^{2} + 3T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{2} + 5T_{5} + 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 3T + 1 \) Copy content Toggle raw display
$3$ \( (T - 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 5T + 5 \) Copy content Toggle raw display
$7$ \( (T - 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 2T - 19 \) Copy content Toggle raw display
$13$ \( T^{2} + 7T + 11 \) Copy content Toggle raw display
$17$ \( (T + 1)^{2} \) Copy content Toggle raw display
$19$ \( (T + 3)^{2} \) Copy content Toggle raw display
$23$ \( (T + 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 6T - 11 \) Copy content Toggle raw display
$31$ \( T^{2} + 12T + 31 \) Copy content Toggle raw display
$37$ \( T^{2} + 6T - 11 \) Copy content Toggle raw display
$41$ \( T^{2} - 4T - 41 \) Copy content Toggle raw display
$43$ \( T^{2} - 5T - 25 \) Copy content Toggle raw display
$47$ \( T^{2} + 10T - 20 \) Copy content Toggle raw display
$53$ \( T^{2} + 9T + 19 \) Copy content Toggle raw display
$59$ \( T^{2} + 19T + 79 \) Copy content Toggle raw display
$61$ \( T^{2} - 3T - 149 \) Copy content Toggle raw display
$67$ \( T^{2} - 15T + 45 \) Copy content Toggle raw display
$71$ \( T^{2} + 19T + 59 \) Copy content Toggle raw display
$73$ \( T^{2} + 8T - 29 \) Copy content Toggle raw display
$79$ \( T^{2} - 10T + 5 \) Copy content Toggle raw display
$83$ \( (T + 3)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 13T + 31 \) Copy content Toggle raw display
$97$ \( (T - 5)^{2} \) Copy content Toggle raw display
show more
show less