Defining parameters
| Level: | \( N \) | \(=\) | \( 483 = 3 \cdot 7 \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 483.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 10 \) | ||
| Sturm bound: | \(128\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(483))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 68 | 23 | 45 |
| Cusp forms | 61 | 23 | 38 |
| Eisenstein series | 7 | 0 | 7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(7\) | \(23\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(4\) | \(2\) | \(2\) | \(4\) | \(2\) | \(2\) | \(0\) | \(0\) | \(0\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(12\) | \(4\) | \(8\) | \(11\) | \(4\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(11\) | \(4\) | \(7\) | \(10\) | \(4\) | \(6\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(7\) | \(2\) | \(5\) | \(6\) | \(2\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(9\) | \(4\) | \(5\) | \(8\) | \(4\) | \(4\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(9\) | \(2\) | \(7\) | \(8\) | \(2\) | \(6\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(10\) | \(2\) | \(8\) | \(9\) | \(2\) | \(7\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(6\) | \(3\) | \(3\) | \(5\) | \(3\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(30\) | \(8\) | \(22\) | \(27\) | \(8\) | \(19\) | \(3\) | \(0\) | \(3\) | |||||
| Minus space | \(-\) | \(38\) | \(15\) | \(23\) | \(34\) | \(15\) | \(19\) | \(4\) | \(0\) | \(4\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(483))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(483))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(483)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(69))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(161))\)\(^{\oplus 2}\)