Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4800,2,Mod(3649,4800)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4800, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4800.3649");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 4800 = 2^{6} \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4800.f (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(38.3281929702\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 30) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 3649.2 | ||
Root | \(-1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 4800.3649 |
Dual form | 4800.2.f.w.3649.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4800\mathbb{Z}\right)^\times\).
\(n\) | \(577\) | \(901\) | \(1601\) | \(4351\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 1.00000i | 0.577350i | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | − 4.00000i | − 1.51186i | −0.654654 | − | 0.755929i | \(-0.727186\pi\) | ||||
0.654654 | − | 0.755929i | \(-0.272814\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | −1.00000 | −0.333333 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | − 2.00000i | − 0.554700i | −0.960769 | − | 0.277350i | \(-0.910544\pi\) | ||||
0.960769 | − | 0.277350i | \(-0.0894562\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | − 6.00000i | − 1.45521i | −0.685994 | − | 0.727607i | \(-0.740633\pi\) | ||||
0.685994 | − | 0.727607i | \(-0.259367\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 4.00000 | 0.917663 | 0.458831 | − | 0.888523i | \(-0.348268\pi\) | ||||
0.458831 | + | 0.888523i | \(0.348268\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 4.00000 | 0.872872 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | − 1.00000i | − 0.192450i | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −6.00000 | −1.11417 | −0.557086 | − | 0.830455i | \(-0.688081\pi\) | ||||
−0.557086 | + | 0.830455i | \(0.688081\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −8.00000 | −1.43684 | −0.718421 | − | 0.695608i | \(-0.755135\pi\) | ||||
−0.718421 | + | 0.695608i | \(0.755135\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 2.00000i | 0.328798i | 0.986394 | + | 0.164399i | \(0.0525685\pi\) | ||||
−0.986394 | + | 0.164399i | \(0.947432\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 2.00000 | 0.320256 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −6.00000 | −0.937043 | −0.468521 | − | 0.883452i | \(-0.655213\pi\) | ||||
−0.468521 | + | 0.883452i | \(0.655213\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | − 4.00000i | − 0.609994i | −0.952353 | − | 0.304997i | \(-0.901344\pi\) | ||||
0.952353 | − | 0.304997i | \(-0.0986555\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −9.00000 | −1.28571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 6.00000 | 0.840168 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 6.00000i | 0.824163i | 0.911147 | + | 0.412082i | \(0.135198\pi\) | ||||
−0.911147 | + | 0.412082i | \(0.864802\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 4.00000i | 0.529813i | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 10.0000 | 1.28037 | 0.640184 | − | 0.768221i | \(-0.278858\pi\) | ||||
0.640184 | + | 0.768221i | \(0.278858\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 4.00000i | 0.503953i | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 4.00000i | 0.488678i | 0.969690 | + | 0.244339i | \(0.0785709\pi\) | ||||
−0.969690 | + | 0.244339i | \(0.921429\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 2.00000i | 0.234082i | 0.993127 | + | 0.117041i | \(0.0373409\pi\) | ||||
−0.993127 | + | 0.117041i | \(0.962659\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 8.00000 | 0.900070 | 0.450035 | − | 0.893011i | \(-0.351411\pi\) | ||||
0.450035 | + | 0.893011i | \(0.351411\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 1.00000 | 0.111111 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 12.0000i | 1.31717i | 0.752506 | + | 0.658586i | \(0.228845\pi\) | ||||
−0.752506 | + | 0.658586i | \(0.771155\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | − 6.00000i | − 0.643268i | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −18.0000 | −1.90800 | −0.953998 | − | 0.299813i | \(-0.903076\pi\) | ||||
−0.953998 | + | 0.299813i | \(0.903076\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −8.00000 | −0.838628 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | − 8.00000i | − 0.829561i | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | − 2.00000i | − 0.203069i | −0.994832 | − | 0.101535i | \(-0.967625\pi\) | ||||
0.994832 | − | 0.101535i | \(-0.0323753\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −18.0000 | −1.79107 | −0.895533 | − | 0.444994i | \(-0.853206\pi\) | ||||
−0.895533 | + | 0.444994i | \(0.853206\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 4.00000i | 0.394132i | 0.980390 | + | 0.197066i | \(0.0631413\pi\) | ||||
−0.980390 | + | 0.197066i | \(0.936859\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 12.0000i | 1.16008i | 0.814587 | + | 0.580042i | \(0.196964\pi\) | ||||
−0.814587 | + | 0.580042i | \(0.803036\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −10.0000 | −0.957826 | −0.478913 | − | 0.877862i | \(-0.658969\pi\) | ||||
−0.478913 | + | 0.877862i | \(0.658969\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | −2.00000 | −0.189832 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | − 18.0000i | − 1.69330i | −0.532152 | − | 0.846649i | \(-0.678617\pi\) | ||||
0.532152 | − | 0.846649i | \(-0.321383\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 2.00000i | 0.184900i | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −24.0000 | −2.20008 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −11.0000 | −1.00000 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | − 6.00000i | − 0.541002i | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 20.0000i | 1.77471i | 0.461084 | + | 0.887357i | \(0.347461\pi\) | ||||
−0.461084 | + | 0.887357i | \(0.652539\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 4.00000 | 0.352180 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | − 16.0000i | − 1.38738i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | − 6.00000i | − 0.512615i | −0.966595 | − | 0.256307i | \(-0.917494\pi\) | ||||
0.966595 | − | 0.256307i | \(-0.0825059\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 4.00000 | 0.339276 | 0.169638 | − | 0.985506i | \(-0.445740\pi\) | ||||
0.169638 | + | 0.985506i | \(0.445740\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | − 9.00000i | − 0.742307i | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −6.00000 | −0.491539 | −0.245770 | − | 0.969328i | \(-0.579041\pi\) | ||||
−0.245770 | + | 0.969328i | \(0.579041\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −8.00000 | −0.651031 | −0.325515 | − | 0.945537i | \(-0.605538\pi\) | ||||
−0.325515 | + | 0.945537i | \(0.605538\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 6.00000i | 0.485071i | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 2.00000i | 0.159617i | 0.996810 | + | 0.0798087i | \(0.0254309\pi\) | ||||
−0.996810 | + | 0.0798087i | \(0.974569\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | −6.00000 | −0.475831 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − 4.00000i | − 0.313304i | −0.987654 | − | 0.156652i | \(-0.949930\pi\) | ||||
0.987654 | − | 0.156652i | \(-0.0500701\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 9.00000 | 0.692308 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | −4.00000 | −0.305888 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − 18.0000i | − 1.36851i | −0.729241 | − | 0.684257i | \(-0.760127\pi\) | ||||
0.729241 | − | 0.684257i | \(-0.239873\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −24.0000 | −1.79384 | −0.896922 | − | 0.442189i | \(-0.854202\pi\) | ||||
−0.896922 | + | 0.442189i | \(0.854202\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −14.0000 | −1.04061 | −0.520306 | − | 0.853980i | \(-0.674182\pi\) | ||||
−0.520306 | + | 0.853980i | \(0.674182\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 10.0000i | 0.739221i | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | −4.00000 | −0.290957 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 24.0000 | 1.73658 | 0.868290 | − | 0.496058i | \(-0.165220\pi\) | ||||
0.868290 | + | 0.496058i | \(0.165220\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | − 22.0000i | − 1.58359i | −0.610784 | − | 0.791797i | \(-0.709146\pi\) | ||||
0.610784 | − | 0.791797i | \(-0.290854\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | − 6.00000i | − 0.427482i | −0.976890 | − | 0.213741i | \(-0.931435\pi\) | ||||
0.976890 | − | 0.213741i | \(-0.0685649\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 8.00000 | 0.567105 | 0.283552 | − | 0.958957i | \(-0.408487\pi\) | ||||
0.283552 | + | 0.958957i | \(0.408487\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | −4.00000 | −0.282138 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 24.0000i | 1.68447i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 20.0000 | 1.37686 | 0.688428 | − | 0.725304i | \(-0.258301\pi\) | ||||
0.688428 | + | 0.725304i | \(0.258301\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 32.0000i | 2.17230i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | −2.00000 | −0.135147 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −12.0000 | −0.807207 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | − 20.0000i | − 1.33930i | −0.742677 | − | 0.669650i | \(-0.766444\pi\) | ||||
0.742677 | − | 0.669650i | \(-0.233556\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 12.0000i | 0.796468i | 0.917284 | + | 0.398234i | \(0.130377\pi\) | ||||
−0.917284 | + | 0.398234i | \(0.869623\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −10.0000 | −0.660819 | −0.330409 | − | 0.943838i | \(-0.607187\pi\) | ||||
−0.330409 | + | 0.943838i | \(0.607187\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | − 18.0000i | − 1.17922i | −0.807688 | − | 0.589610i | \(-0.799282\pi\) | ||||
0.807688 | − | 0.589610i | \(-0.200718\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 8.00000i | 0.519656i | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 24.0000 | 1.55243 | 0.776215 | − | 0.630468i | \(-0.217137\pi\) | ||||
0.776215 | + | 0.630468i | \(0.217137\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 2.00000 | 0.128831 | 0.0644157 | − | 0.997923i | \(-0.479482\pi\) | ||||
0.0644157 | + | 0.997923i | \(0.479482\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 1.00000i | 0.0641500i | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | − 8.00000i | − 0.509028i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | −12.0000 | −0.760469 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −24.0000 | −1.51487 | −0.757433 | − | 0.652913i | \(-0.773547\pi\) | ||||
−0.757433 | + | 0.652913i | \(0.773547\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 18.0000i | 1.12281i | 0.827541 | + | 0.561405i | \(0.189739\pi\) | ||||
−0.827541 | + | 0.561405i | \(0.810261\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 8.00000 | 0.497096 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 6.00000 | 0.371391 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | − 18.0000i | − 1.10158i | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −6.00000 | −0.365826 | −0.182913 | − | 0.983129i | \(-0.558553\pi\) | ||||
−0.182913 | + | 0.983129i | \(0.558553\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 16.0000 | 0.971931 | 0.485965 | − | 0.873978i | \(-0.338468\pi\) | ||||
0.485965 | + | 0.873978i | \(0.338468\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | − 8.00000i | − 0.484182i | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 2.00000i | 0.120168i | 0.998193 | + | 0.0600842i | \(0.0191369\pi\) | ||||
−0.998193 | + | 0.0600842i | \(0.980863\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 8.00000 | 0.478947 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 18.0000 | 1.07379 | 0.536895 | − | 0.843649i | \(-0.319597\pi\) | ||||
0.536895 | + | 0.843649i | \(0.319597\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | − 28.0000i | − 1.66443i | −0.554455 | − | 0.832214i | \(-0.687073\pi\) | ||||
0.554455 | − | 0.832214i | \(-0.312927\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 24.0000i | 1.41668i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −19.0000 | −1.11765 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 2.00000 | 0.117242 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 6.00000i | 0.350524i | 0.984522 | + | 0.175262i | \(0.0560772\pi\) | ||||
−0.984522 | + | 0.175262i | \(0.943923\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 0 | 0 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −16.0000 | −0.922225 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | − 18.0000i | − 1.03407i | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 20.0000i | − 1.14146i | −0.821138 | − | 0.570730i | \(-0.806660\pi\) | ||||
0.821138 | − | 0.570730i | \(-0.193340\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | −4.00000 | −0.227552 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 2.00000i | 0.113047i | 0.998401 | + | 0.0565233i | \(0.0180015\pi\) | ||||
−0.998401 | + | 0.0565233i | \(0.981998\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 18.0000i | 1.01098i | 0.862832 | + | 0.505490i | \(0.168688\pi\) | ||||
−0.862832 | + | 0.505490i | \(0.831312\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | −12.0000 | −0.669775 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | − 24.0000i | − 1.33540i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | − 10.0000i | − 0.553001i | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −28.0000 | −1.53902 | −0.769510 | − | 0.638635i | \(-0.779499\pi\) | ||||
−0.769510 | + | 0.638635i | \(0.779499\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | − 2.00000i | − 0.109599i | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | − 26.0000i | − 1.41631i | −0.706057 | − | 0.708155i | \(-0.749528\pi\) | ||||
0.706057 | − | 0.708155i | \(-0.250472\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 18.0000 | 0.977626 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 8.00000i | 0.431959i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 12.0000i | − 0.644194i | −0.946707 | − | 0.322097i | \(-0.895612\pi\) | ||||
0.946707 | − | 0.322097i | \(-0.104388\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −10.0000 | −0.535288 | −0.267644 | − | 0.963518i | \(-0.586245\pi\) | ||||
−0.267644 | + | 0.963518i | \(0.586245\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | −2.00000 | −0.106752 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 6.00000i | 0.319348i | 0.987170 | + | 0.159674i | \(0.0510443\pi\) | ||||
−0.987170 | + | 0.159674i | \(0.948956\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | − 24.0000i | − 1.27021i | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −24.0000 | −1.26667 | −0.633336 | − | 0.773877i | \(-0.718315\pi\) | ||||
−0.633336 | + | 0.773877i | \(0.718315\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −3.00000 | −0.157895 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | − 11.0000i | − 0.577350i | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | − 28.0000i | − 1.46159i | −0.682598 | − | 0.730794i | \(-0.739150\pi\) | ||||
0.682598 | − | 0.730794i | \(-0.260850\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 6.00000 | 0.312348 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 24.0000 | 1.24602 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | − 26.0000i | − 1.34623i | −0.739538 | − | 0.673114i | \(-0.764956\pi\) | ||||
0.739538 | − | 0.673114i | \(-0.235044\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 12.0000i | 0.618031i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 4.00000 | 0.205466 | 0.102733 | − | 0.994709i | \(-0.467241\pi\) | ||||
0.102733 | + | 0.994709i | \(0.467241\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | −20.0000 | −1.02463 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 4.00000i | 0.203331i | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −6.00000 | −0.304212 | −0.152106 | − | 0.988364i | \(-0.548606\pi\) | ||||
−0.152106 | + | 0.988364i | \(0.548606\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 22.0000i | − 1.10415i | −0.833795 | − | 0.552074i | \(-0.813837\pi\) | ||||
0.833795 | − | 0.552074i | \(-0.186163\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 16.0000 | 0.801002 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −6.00000 | −0.299626 | −0.149813 | − | 0.988714i | \(-0.547867\pi\) | ||||
−0.149813 | + | 0.988714i | \(0.547867\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 16.0000i | 0.797017i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −26.0000 | −1.28562 | −0.642809 | − | 0.766027i | \(-0.722231\pi\) | ||||
−0.642809 | + | 0.766027i | \(0.722231\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 6.00000 | 0.295958 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 4.00000i | 0.195881i | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 10.0000 | 0.487370 | 0.243685 | − | 0.969854i | \(-0.421644\pi\) | ||||
0.243685 | + | 0.969854i | \(0.421644\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | − 40.0000i | − 1.93574i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 26.0000i | 1.24948i | 0.780833 | + | 0.624740i | \(0.214795\pi\) | ||||
−0.780833 | + | 0.624740i | \(0.785205\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 8.00000 | 0.381819 | 0.190910 | − | 0.981608i | \(-0.438856\pi\) | ||||
0.190910 | + | 0.981608i | \(0.438856\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 9.00000 | 0.428571 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 12.0000i | 0.570137i | 0.958507 | + | 0.285069i | \(0.0920164\pi\) | ||||
−0.958507 | + | 0.285069i | \(0.907984\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | − 6.00000i | − 0.283790i | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 6.00000 | 0.283158 | 0.141579 | − | 0.989927i | \(-0.454782\pi\) | ||||
0.141579 | + | 0.989927i | \(0.454782\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | − 8.00000i | − 0.375873i | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | − 26.0000i | − 1.21623i | −0.793849 | − | 0.608114i | \(-0.791926\pi\) | ||||
0.793849 | − | 0.608114i | \(-0.208074\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | −6.00000 | −0.280056 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 30.0000 | 1.39724 | 0.698620 | − | 0.715493i | \(-0.253798\pi\) | ||||
0.698620 | + | 0.715493i | \(0.253798\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 4.00000i | 0.185896i | 0.995671 | + | 0.0929479i | \(0.0296290\pi\) | ||||
−0.995671 | + | 0.0929479i | \(0.970371\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 36.0000i | 1.66588i | 0.553362 | + | 0.832941i | \(0.313345\pi\) | ||||
−0.553362 | + | 0.832941i | \(0.686655\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 16.0000 | 0.738811 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | −2.00000 | −0.0921551 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | − 6.00000i | − 0.274721i | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −24.0000 | −1.09659 | −0.548294 | − | 0.836286i | \(-0.684723\pi\) | ||||
−0.548294 | + | 0.836286i | \(0.684723\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 4.00000 | 0.182384 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | − 28.0000i | − 1.26880i | −0.773004 | − | 0.634401i | \(-0.781247\pi\) | ||||
0.773004 | − | 0.634401i | \(-0.218753\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 4.00000 | 0.180886 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 24.0000 | 1.08310 | 0.541552 | − | 0.840667i | \(-0.317837\pi\) | ||||
0.541552 | + | 0.840667i | \(0.317837\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 36.0000i | 1.62136i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 4.00000 | 0.179065 | 0.0895323 | − | 0.995984i | \(-0.471463\pi\) | ||||
0.0895323 | + | 0.995984i | \(0.471463\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | − 24.0000i | − 1.07011i | −0.844818 | − | 0.535054i | \(-0.820291\pi\) | ||||
0.844818 | − | 0.535054i | \(-0.179709\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 9.00000i | 0.399704i | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −6.00000 | −0.265945 | −0.132973 | − | 0.991120i | \(-0.542452\pi\) | ||||
−0.132973 | + | 0.991120i | \(0.542452\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 8.00000 | 0.353899 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | − 4.00000i | − 0.176604i | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 18.0000 | 0.790112 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 18.0000 | 0.788594 | 0.394297 | − | 0.918983i | \(-0.370988\pi\) | ||||
0.394297 | + | 0.918983i | \(0.370988\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 20.0000i | 0.874539i | 0.899331 | + | 0.437269i | \(0.144054\pi\) | ||||
−0.899331 | + | 0.437269i | \(0.855946\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 48.0000i | 2.09091i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 23.0000 | 1.00000 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 12.0000i | 0.519778i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | − 24.0000i | − 1.03568i | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 10.0000 | 0.429934 | 0.214967 | − | 0.976621i | \(-0.431036\pi\) | ||||
0.214967 | + | 0.976621i | \(0.431036\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | − 14.0000i | − 0.600798i | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 28.0000i | 1.19719i | 0.801050 | + | 0.598597i | \(0.204275\pi\) | ||||
−0.801050 | + | 0.598597i | \(0.795725\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | −10.0000 | −0.426790 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −24.0000 | −1.02243 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | − 32.0000i | − 1.36078i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 18.0000i | 0.762684i | 0.924434 | + | 0.381342i | \(0.124538\pi\) | ||||
−0.924434 | + | 0.381342i | \(0.875462\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −8.00000 | −0.338364 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 12.0000i | − 0.505740i | −0.967500 | − | 0.252870i | \(-0.918626\pi\) | ||||
0.967500 | − | 0.252870i | \(-0.0813744\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | − 4.00000i | − 0.167984i | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −18.0000 | −0.754599 | −0.377300 | − | 0.926091i | \(-0.623147\pi\) | ||||
−0.377300 | + | 0.926091i | \(0.623147\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 20.0000 | 0.836974 | 0.418487 | − | 0.908223i | \(-0.362561\pi\) | ||||
0.418487 | + | 0.908223i | \(0.362561\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 24.0000i | 1.00261i | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 2.00000i | − 0.0832611i | −0.999133 | − | 0.0416305i | \(-0.986745\pi\) | ||||
0.999133 | − | 0.0416305i | \(-0.0132552\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 22.0000 | 0.914289 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 48.0000 | 1.99138 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 12.0000i | 0.495293i | 0.968850 | + | 0.247647i | \(0.0796572\pi\) | ||||
−0.968850 | + | 0.247647i | \(0.920343\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −32.0000 | −1.31854 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 6.00000 | 0.246807 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 30.0000i | 1.23195i | 0.787765 | + | 0.615976i | \(0.211238\pi\) | ||||
−0.787765 | + | 0.615976i | \(0.788762\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 8.00000i | 0.327418i | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −24.0000 | −0.980613 | −0.490307 | − | 0.871550i | \(-0.663115\pi\) | ||||
−0.490307 | + | 0.871550i | \(0.663115\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −22.0000 | −0.897399 | −0.448699 | − | 0.893683i | \(-0.648113\pi\) | ||||
−0.448699 | + | 0.893683i | \(0.648113\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | − 4.00000i | − 0.162893i | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | − 4.00000i | − 0.162355i | −0.996700 | − | 0.0811775i | \(-0.974132\pi\) | ||||
0.996700 | − | 0.0811775i | \(-0.0258681\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | −24.0000 | −0.972529 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | − 2.00000i | − 0.0807792i | −0.999184 | − | 0.0403896i | \(-0.987140\pi\) | ||||
0.999184 | − | 0.0403896i | \(-0.0128599\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | − 30.0000i | − 1.20775i | −0.797077 | − | 0.603877i | \(-0.793622\pi\) | ||||
0.797077 | − | 0.603877i | \(-0.206378\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −44.0000 | −1.76851 | −0.884255 | − | 0.467005i | \(-0.845333\pi\) | ||||
−0.884255 | + | 0.467005i | \(0.845333\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 72.0000i | 2.88462i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 12.0000 | 0.478471 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −32.0000 | −1.27390 | −0.636950 | − | 0.770905i | \(-0.719804\pi\) | ||||
−0.636950 | + | 0.770905i | \(0.719804\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 20.0000i | 0.794929i | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 18.0000i | 0.713186i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −30.0000 | −1.18493 | −0.592464 | − | 0.805597i | \(-0.701845\pi\) | ||||
−0.592464 | + | 0.805597i | \(0.701845\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 4.00000i | − 0.157745i | −0.996885 | − | 0.0788723i | \(-0.974868\pi\) | ||||
0.996885 | − | 0.0788723i | \(-0.0251319\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 24.0000i | 0.943537i | 0.881722 | + | 0.471769i | \(0.156384\pi\) | ||||
−0.881722 | + | 0.471769i | \(0.843616\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | −32.0000 | −1.25418 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | − 18.0000i | − 0.704394i | −0.935926 | − | 0.352197i | \(-0.885435\pi\) | ||||
0.935926 | − | 0.352197i | \(-0.114565\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | − 2.00000i | − 0.0780274i | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −48.0000 | −1.86981 | −0.934907 | − | 0.354892i | \(-0.884518\pi\) | ||||
−0.934907 | + | 0.354892i | \(0.884518\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −14.0000 | −0.544537 | −0.272268 | − | 0.962221i | \(-0.587774\pi\) | ||||
−0.272268 | + | 0.962221i | \(0.587774\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | − 12.0000i | − 0.466041i | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 0 | 0 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 20.0000 | 0.773245 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 26.0000i | 1.00223i | 0.865382 | + | 0.501113i | \(0.167076\pi\) | ||||
−0.865382 | + | 0.501113i | \(0.832924\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | − 6.00000i | − 0.230599i | −0.993331 | − | 0.115299i | \(-0.963217\pi\) | ||||
0.993331 | − | 0.115299i | \(-0.0367827\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −8.00000 | −0.307012 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | −12.0000 | −0.459841 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | − 12.0000i | − 0.459167i | −0.973289 | − | 0.229584i | \(-0.926264\pi\) | ||||
0.973289 | − | 0.229584i | \(-0.0737364\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | − 10.0000i | − 0.381524i | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 12.0000 | 0.457164 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 44.0000 | 1.67384 | 0.836919 | − | 0.547326i | \(-0.184354\pi\) | ||||
0.836919 | + | 0.547326i | \(0.184354\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 36.0000i | 1.36360i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 18.0000 | 0.680823 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 6.00000 | 0.226617 | 0.113308 | − | 0.993560i | \(-0.463855\pi\) | ||||
0.113308 | + | 0.993560i | \(0.463855\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 8.00000i | 0.301726i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 72.0000i | 2.70784i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 38.0000 | 1.42712 | 0.713560 | − | 0.700594i | \(-0.247082\pi\) | ||||
0.713560 | + | 0.700594i | \(0.247082\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | −8.00000 | −0.300023 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 0 | 0 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 24.0000i | 0.896296i | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 16.0000 | 0.595871 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 2.00000i | 0.0743808i | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | − 28.0000i | − 1.03846i | −0.854634 | − | 0.519231i | \(-0.826218\pi\) | ||||
0.854634 | − | 0.519231i | \(-0.173782\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | −1.00000 | −0.0370370 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −24.0000 | −0.887672 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 22.0000i | 0.812589i | 0.913742 | + | 0.406294i | \(0.133179\pi\) | ||||
−0.913742 | + | 0.406294i | \(0.866821\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 52.0000 | 1.91285 | 0.956425 | − | 0.291977i | \(-0.0943129\pi\) | ||||
0.956425 | + | 0.291977i | \(0.0943129\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 8.00000 | 0.293887 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 24.0000i | 0.880475i | 0.897881 | + | 0.440237i | \(0.145106\pi\) | ||||
−0.897881 | + | 0.440237i | \(0.854894\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | − 12.0000i | − 0.439057i | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 48.0000 | 1.75388 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 40.0000 | 1.45962 | 0.729810 | − | 0.683650i | \(-0.239608\pi\) | ||||
0.729810 | + | 0.683650i | \(0.239608\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | − 24.0000i | − 0.874609i | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 2.00000i | 0.0726912i | 0.999339 | + | 0.0363456i | \(0.0115717\pi\) | ||||
−0.999339 | + | 0.0363456i | \(0.988428\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 18.0000 | 0.652499 | 0.326250 | − | 0.945284i | \(-0.394215\pi\) | ||||
0.326250 | + | 0.945284i | \(0.394215\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 40.0000i | 1.44810i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −2.00000 | −0.0721218 | −0.0360609 | − | 0.999350i | \(-0.511481\pi\) | ||||
−0.0360609 | + | 0.999350i | \(0.511481\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | −18.0000 | −0.648254 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | − 42.0000i | − 1.51064i | −0.655359 | − | 0.755318i | \(-0.727483\pi\) | ||||
0.655359 | − | 0.755318i | \(-0.272517\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 8.00000i | 0.286998i | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −24.0000 | −0.859889 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 6.00000i | 0.214423i | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 4.00000i | 0.142585i | 0.997455 | + | 0.0712923i | \(0.0227123\pi\) | ||||
−0.997455 | + | 0.0712923i | \(0.977288\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −72.0000 | −2.56003 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | − 20.0000i | − 0.710221i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | − 30.0000i | − 1.06265i | −0.847167 | − | 0.531327i | \(-0.821693\pi\) | ||||
0.847167 | − | 0.531327i | \(-0.178307\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 18.0000 | 0.635999 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | − 6.00000i | − 0.211210i | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 54.0000 | 1.89854 | 0.949269 | − | 0.314464i | \(-0.101825\pi\) | ||||
0.949269 | + | 0.314464i | \(0.101825\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −4.00000 | −0.140459 | −0.0702295 | − | 0.997531i | \(-0.522373\pi\) | ||||
−0.0702295 | + | 0.997531i | \(0.522373\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 16.0000i | 0.561144i | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | − 16.0000i | − 0.559769i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 8.00000 | 0.279543 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −18.0000 | −0.628204 | −0.314102 | − | 0.949389i | \(-0.601703\pi\) | ||||
−0.314102 | + | 0.949389i | \(0.601703\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | − 20.0000i | − 0.697156i | −0.937280 | − | 0.348578i | \(-0.886665\pi\) | ||||
0.937280 | − | 0.348578i | \(-0.113335\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | − 12.0000i | − 0.417281i | −0.977992 | − | 0.208640i | \(-0.933096\pi\) | ||||
0.977992 | − | 0.208640i | \(-0.0669038\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 38.0000 | 1.31979 | 0.659897 | − | 0.751356i | \(-0.270600\pi\) | ||||
0.659897 | + | 0.751356i | \(0.270600\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | −2.00000 | −0.0693792 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 54.0000i | 1.87099i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 8.00000i | 0.276520i | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 24.0000 | 0.828572 | 0.414286 | − | 0.910147i | \(-0.364031\pi\) | ||||
0.414286 | + | 0.910147i | \(0.364031\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 7.00000 | 0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 18.0000i | 0.619953i | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 44.0000i | 1.51186i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 28.0000 | 0.960958 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 0 | 0 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 46.0000i | 1.57501i | 0.616308 | + | 0.787505i | \(0.288628\pi\) | ||||
−0.616308 | + | 0.787505i | \(0.711372\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 18.0000i | 0.614868i | 0.951569 | + | 0.307434i | \(0.0994704\pi\) | ||||
−0.951569 | + | 0.307434i | \(0.900530\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 4.00000 | 0.136478 | 0.0682391 | − | 0.997669i | \(-0.478262\pi\) | ||||
0.0682391 | + | 0.997669i | \(0.478262\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | −24.0000 | −0.817918 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | − 24.0000i | − 0.816970i | −0.912765 | − | 0.408485i | \(-0.866057\pi\) | ||||
0.912765 | − | 0.408485i | \(-0.133943\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | − 19.0000i | − 0.645274i | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 8.00000 | 0.271070 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 2.00000i | 0.0676897i | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 2.00000i | 0.0675352i | 0.999430 | + | 0.0337676i | \(0.0107506\pi\) | ||||
−0.999430 | + | 0.0337676i | \(0.989249\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | −6.00000 | −0.202375 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −54.0000 | −1.81931 | −0.909653 | − | 0.415369i | \(-0.863653\pi\) | ||||
−0.909653 | + | 0.415369i | \(0.863653\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 4.00000i | − 0.134611i | −0.997732 | − | 0.0673054i | \(-0.978560\pi\) | ||||
0.997732 | − | 0.0673054i | \(-0.0214402\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 80.0000 | 2.68311 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 48.0000 | 1.60089 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 36.0000 | 1.19933 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | − 16.0000i | − 0.532447i | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | − 44.0000i | − 1.46100i | −0.682915 | − | 0.730498i | \(-0.739288\pi\) | ||||
0.682915 | − | 0.730498i | \(-0.260712\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 18.0000 | 0.597022 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 48.0000 | 1.59031 | 0.795155 | − | 0.606406i | \(-0.207389\pi\) | ||||
0.795155 | + | 0.606406i | \(0.207389\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −16.0000 | −0.527791 | −0.263896 | − | 0.964551i | \(-0.585007\pi\) | ||||
−0.263896 | + | 0.964551i | \(0.585007\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 20.0000 | 0.659022 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 0 | 0 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | − 4.00000i | − 0.131377i | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 6.00000 | 0.196854 | 0.0984268 | − | 0.995144i | \(-0.468619\pi\) | ||||
0.0984268 | + | 0.995144i | \(0.468619\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −36.0000 | −1.17985 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | − 26.0000i | − 0.849383i | −0.905338 | − | 0.424691i | \(-0.860383\pi\) | ||||
0.905338 | − | 0.424691i | \(-0.139617\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | −2.00000 | −0.0652675 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −18.0000 | −0.586783 | −0.293392 | − | 0.955992i | \(-0.594784\pi\) | ||||
−0.293392 | + | 0.955992i | \(0.594784\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | − 36.0000i | − 1.16984i | −0.811090 | − | 0.584921i | \(-0.801125\pi\) | ||||
0.811090 | − | 0.584921i | \(-0.198875\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 4.00000 | 0.129845 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | −18.0000 | −0.583690 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 6.00000i | 0.194359i | 0.995267 | + | 0.0971795i | \(0.0309821\pi\) | ||||
−0.995267 | + | 0.0971795i | \(0.969018\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −24.0000 | −0.775000 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 33.0000 | 1.06452 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | − 12.0000i | − 0.386695i | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | − 4.00000i | − 0.128631i | −0.997930 | − | 0.0643157i | \(-0.979514\pi\) | ||||
0.997930 | − | 0.0643157i | \(-0.0204865\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 24.0000 | 0.770991 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 24.0000 | 0.770197 | 0.385098 | − | 0.922876i | \(-0.374168\pi\) | ||||
0.385098 | + | 0.922876i | \(0.374168\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | − 16.0000i | − 0.512936i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 42.0000i | 1.34370i | 0.740688 | + | 0.671850i | \(0.234500\pi\) | ||||
−0.740688 | + | 0.671850i | \(0.765500\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 10.0000 | 0.319275 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 24.0000i | 0.765481i | 0.923856 | + | 0.382741i | \(0.125020\pi\) | ||||
−0.923856 | + | 0.382741i | \(0.874980\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 0 | 0 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 16.0000 | 0.508257 | 0.254128 | − | 0.967170i | \(-0.418211\pi\) | ||||
0.254128 | + | 0.967170i | \(0.418211\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | − 28.0000i | − 0.888553i | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 26.0000i | 0.823428i | 0.911313 | + | 0.411714i | \(0.135070\pi\) | ||||
−0.911313 | + | 0.411714i | \(0.864930\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 2.00000 | 0.0632772 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))