Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4800,2,Mod(3649,4800)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4800, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4800.3649");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 4800 = 2^{6} \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4800.f (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(38.3281929702\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 480) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 3649.2 | ||
Root | \(1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 4800.3649 |
Dual form | 4800.2.f.v.3649.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4800\mathbb{Z}\right)^\times\).
\(n\) | \(577\) | \(901\) | \(1601\) | \(4351\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(1\) | \(1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 1.00000i | 0.577350i | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | −1.00000 | −0.333333 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 2.00000i | 0.554700i | 0.960769 | + | 0.277350i | \(0.0894562\pi\) | ||||
−0.960769 | + | 0.277350i | \(0.910544\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 6.00000i | 1.45521i | 0.685994 | + | 0.727607i | \(0.259367\pi\) | ||||
−0.685994 | + | 0.727607i | \(0.740633\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 4.00000 | 0.917663 | 0.458831 | − | 0.888523i | \(-0.348268\pi\) | ||||
0.458831 | + | 0.888523i | \(0.348268\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 8.00000i | 1.66812i | 0.551677 | + | 0.834058i | \(0.313988\pi\) | ||||
−0.551677 | + | 0.834058i | \(0.686012\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | − 1.00000i | − 0.192450i | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −2.00000 | −0.371391 | −0.185695 | − | 0.982607i | \(-0.559454\pi\) | ||||
−0.185695 | + | 0.982607i | \(0.559454\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −4.00000 | −0.718421 | −0.359211 | − | 0.933257i | \(-0.616954\pi\) | ||||
−0.359211 | + | 0.933257i | \(0.616954\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − 10.0000i | − 1.64399i | −0.569495 | − | 0.821995i | \(-0.692861\pi\) | ||||
0.569495 | − | 0.821995i | \(-0.307139\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | −2.00000 | −0.320256 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 2.00000 | 0.312348 | 0.156174 | − | 0.987730i | \(-0.450084\pi\) | ||||
0.156174 | + | 0.987730i | \(0.450084\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 4.00000i | 0.609994i | 0.952353 | + | 0.304997i | \(0.0986555\pi\) | ||||
−0.952353 | + | 0.304997i | \(0.901344\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | − 8.00000i | − 1.16692i | −0.812142 | − | 0.583460i | \(-0.801699\pi\) | ||||
0.812142 | − | 0.583460i | \(-0.198301\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 7.00000 | 1.00000 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | −6.00000 | −0.840168 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 2.00000i | − 0.274721i | −0.990521 | − | 0.137361i | \(-0.956138\pi\) | ||||
0.990521 | − | 0.137361i | \(-0.0438619\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 4.00000i | 0.529813i | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −8.00000 | −1.04151 | −0.520756 | − | 0.853706i | \(-0.674350\pi\) | ||||
−0.520756 | + | 0.853706i | \(0.674350\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 2.00000 | 0.256074 | 0.128037 | − | 0.991769i | \(-0.459132\pi\) | ||||
0.128037 | + | 0.991769i | \(0.459132\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 12.0000i | − 1.46603i | −0.680211 | − | 0.733017i | \(-0.738112\pi\) | ||||
0.680211 | − | 0.733017i | \(-0.261888\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | −8.00000 | −0.963087 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −8.00000 | −0.949425 | −0.474713 | − | 0.880141i | \(-0.657448\pi\) | ||||
−0.474713 | + | 0.880141i | \(0.657448\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 14.0000i | 1.63858i | 0.573382 | + | 0.819288i | \(0.305631\pi\) | ||||
−0.573382 | + | 0.819288i | \(0.694369\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −12.0000 | −1.35011 | −0.675053 | − | 0.737769i | \(-0.735879\pi\) | ||||
−0.675053 | + | 0.737769i | \(0.735879\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 1.00000 | 0.111111 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 4.00000i | 0.439057i | 0.975606 | + | 0.219529i | \(0.0704519\pi\) | ||||
−0.975606 | + | 0.219529i | \(0.929548\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | − 2.00000i | − 0.214423i | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 14.0000 | 1.48400 | 0.741999 | − | 0.670402i | \(-0.233878\pi\) | ||||
0.741999 | + | 0.670402i | \(0.233878\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | − 4.00000i | − 0.414781i | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 2.00000i | 0.203069i | 0.994832 | + | 0.101535i | \(0.0323753\pi\) | ||||
−0.994832 | + | 0.101535i | \(0.967625\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 10.0000 | 0.995037 | 0.497519 | − | 0.867453i | \(-0.334245\pi\) | ||||
0.497519 | + | 0.867453i | \(0.334245\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 8.00000i | 0.788263i | 0.919054 | + | 0.394132i | \(0.128955\pi\) | ||||
−0.919054 | + | 0.394132i | \(0.871045\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 12.0000i | 1.16008i | 0.814587 | + | 0.580042i | \(0.196964\pi\) | ||||
−0.814587 | + | 0.580042i | \(0.803036\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −10.0000 | −0.957826 | −0.478913 | − | 0.877862i | \(-0.658969\pi\) | ||||
−0.478913 | + | 0.877862i | \(0.658969\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 10.0000 | 0.949158 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 10.0000i | 0.940721i | 0.882474 | + | 0.470360i | \(0.155876\pi\) | ||||
−0.882474 | + | 0.470360i | \(0.844124\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | − 2.00000i | − 0.184900i | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −11.0000 | −1.00000 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 2.00000i | 0.180334i | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 16.0000i | 1.41977i | 0.704317 | + | 0.709885i | \(0.251253\pi\) | ||||
−0.704317 | + | 0.709885i | \(0.748747\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | −4.00000 | −0.352180 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −8.00000 | −0.698963 | −0.349482 | − | 0.936943i | \(-0.613642\pi\) | ||||
−0.349482 | + | 0.936943i | \(0.613642\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 22.0000i | 1.87959i | 0.341743 | + | 0.939793i | \(0.388983\pi\) | ||||
−0.341743 | + | 0.939793i | \(0.611017\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −20.0000 | −1.69638 | −0.848189 | − | 0.529694i | \(-0.822307\pi\) | ||||
−0.848189 | + | 0.529694i | \(0.822307\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 8.00000 | 0.673722 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 7.00000i | 0.577350i | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −10.0000 | −0.819232 | −0.409616 | − | 0.912258i | \(-0.634337\pi\) | ||||
−0.409616 | + | 0.912258i | \(0.634337\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −20.0000 | −1.62758 | −0.813788 | − | 0.581161i | \(-0.802599\pi\) | ||||
−0.813788 | + | 0.581161i | \(0.802599\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | − 6.00000i | − 0.485071i | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | − 10.0000i | − 0.798087i | −0.916932 | − | 0.399043i | \(-0.869342\pi\) | ||||
0.916932 | − | 0.399043i | \(-0.130658\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 2.00000 | 0.158610 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 20.0000i | 1.56652i | 0.621694 | + | 0.783260i | \(0.286445\pi\) | ||||
−0.621694 | + | 0.783260i | \(0.713555\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 9.00000 | 0.692308 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | −4.00000 | −0.305888 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − 2.00000i | − 0.152057i | −0.997106 | − | 0.0760286i | \(-0.975776\pi\) | ||||
0.997106 | − | 0.0760286i | \(-0.0242240\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | − 8.00000i | − 0.601317i | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −16.0000 | −1.19590 | −0.597948 | − | 0.801535i | \(-0.704017\pi\) | ||||
−0.597948 | + | 0.801535i | \(0.704017\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −14.0000 | −1.04061 | −0.520306 | − | 0.853980i | \(-0.674182\pi\) | ||||
−0.520306 | + | 0.853980i | \(0.674182\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 2.00000i | 0.147844i | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 24.0000 | 1.73658 | 0.868290 | − | 0.496058i | \(-0.165220\pi\) | ||||
0.868290 | + | 0.496058i | \(0.165220\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | − 10.0000i | − 0.719816i | −0.932988 | − | 0.359908i | \(-0.882808\pi\) | ||||
0.932988 | − | 0.359908i | \(-0.117192\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 2.00000i | 0.142494i | 0.997459 | + | 0.0712470i | \(0.0226979\pi\) | ||||
−0.997459 | + | 0.0712470i | \(0.977302\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −20.0000 | −1.41776 | −0.708881 | − | 0.705328i | \(-0.750800\pi\) | ||||
−0.708881 | + | 0.705328i | \(0.750800\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 12.0000 | 0.846415 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | − 8.00000i | − 0.556038i | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 28.0000 | 1.92760 | 0.963800 | − | 0.266627i | \(-0.0859092\pi\) | ||||
0.963800 | + | 0.266627i | \(0.0859092\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | − 8.00000i | − 0.548151i | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | −14.0000 | −0.946032 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −12.0000 | −0.807207 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | − 12.0000i | − 0.796468i | −0.917284 | − | 0.398234i | \(-0.869623\pi\) | ||||
0.917284 | − | 0.398234i | \(-0.130377\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 6.00000 | 0.396491 | 0.198246 | − | 0.980152i | \(-0.436476\pi\) | ||||
0.198246 | + | 0.980152i | \(0.436476\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | − 6.00000i | − 0.393073i | −0.980497 | − | 0.196537i | \(-0.937031\pi\) | ||||
0.980497 | − | 0.196537i | \(-0.0629694\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | − 12.0000i | − 0.779484i | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −24.0000 | −1.55243 | −0.776215 | − | 0.630468i | \(-0.782863\pi\) | ||||
−0.776215 | + | 0.630468i | \(0.782863\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 2.00000 | 0.128831 | 0.0644157 | − | 0.997923i | \(-0.479482\pi\) | ||||
0.0644157 | + | 0.997923i | \(0.479482\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 1.00000i | 0.0641500i | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 8.00000i | 0.509028i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | −4.00000 | −0.253490 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −24.0000 | −1.51487 | −0.757433 | − | 0.652913i | \(-0.773547\pi\) | ||||
−0.757433 | + | 0.652913i | \(0.773547\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 6.00000i | 0.374270i | 0.982334 | + | 0.187135i | \(0.0599201\pi\) | ||||
−0.982334 | + | 0.187135i | \(0.940080\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 2.00000 | 0.123797 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 14.0000i | 0.856786i | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 30.0000 | 1.82913 | 0.914566 | − | 0.404436i | \(-0.132532\pi\) | ||||
0.914566 | + | 0.404436i | \(0.132532\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −4.00000 | −0.242983 | −0.121491 | − | 0.992592i | \(-0.538768\pi\) | ||||
−0.121491 | + | 0.992592i | \(0.538768\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | − 18.0000i | − 1.08152i | −0.841178 | − | 0.540758i | \(-0.818138\pi\) | ||||
0.841178 | − | 0.540758i | \(-0.181862\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 4.00000 | 0.239474 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 2.00000 | 0.119310 | 0.0596550 | − | 0.998219i | \(-0.481000\pi\) | ||||
0.0596550 | + | 0.998219i | \(0.481000\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | − 12.0000i | − 0.713326i | −0.934233 | − | 0.356663i | \(-0.883914\pi\) | ||||
0.934233 | − | 0.356663i | \(-0.116086\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −19.0000 | −1.11765 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | −2.00000 | −0.117242 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 14.0000i | 0.817889i | 0.912559 | + | 0.408944i | \(0.134103\pi\) | ||||
−0.912559 | + | 0.408944i | \(0.865897\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −16.0000 | −0.925304 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 10.0000i | 0.574485i | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 20.0000i | − 1.14146i | −0.821138 | − | 0.570730i | \(-0.806660\pi\) | ||||
0.821138 | − | 0.570730i | \(-0.193340\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | −8.00000 | −0.455104 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − 2.00000i | − 0.113047i | −0.998401 | − | 0.0565233i | \(-0.981998\pi\) | ||||
0.998401 | − | 0.0565233i | \(-0.0180015\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 26.0000i | 1.46031i | 0.683284 | + | 0.730153i | \(0.260551\pi\) | ||||
−0.683284 | + | 0.730153i | \(0.739449\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | −12.0000 | −0.669775 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 24.0000i | 1.33540i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | − 10.0000i | − 0.553001i | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 12.0000 | 0.659580 | 0.329790 | − | 0.944054i | \(-0.393022\pi\) | ||||
0.329790 | + | 0.944054i | \(0.393022\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 10.0000i | 0.547997i | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | − 22.0000i | − 1.19842i | −0.800593 | − | 0.599208i | \(-0.795482\pi\) | ||||
0.800593 | − | 0.599208i | \(-0.204518\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | −10.0000 | −0.543125 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 12.0000i | 0.644194i | 0.946707 | + | 0.322097i | \(0.104388\pi\) | ||||
−0.946707 | + | 0.322097i | \(0.895612\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −2.00000 | −0.107058 | −0.0535288 | − | 0.998566i | \(-0.517047\pi\) | ||||
−0.0535288 | + | 0.998566i | \(0.517047\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 2.00000 | 0.106752 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 2.00000i | 0.106449i | 0.998583 | + | 0.0532246i | \(0.0169499\pi\) | ||||
−0.998583 | + | 0.0532246i | \(0.983050\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −16.0000 | −0.844448 | −0.422224 | − | 0.906492i | \(-0.638750\pi\) | ||||
−0.422224 | + | 0.906492i | \(0.638750\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −3.00000 | −0.157895 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | − 11.0000i | − 0.577350i | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | − 8.00000i | − 0.417597i | −0.977959 | − | 0.208798i | \(-0.933045\pi\) | ||||
0.977959 | − | 0.208798i | \(-0.0669552\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | −2.00000 | −0.104116 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | − 14.0000i | − 0.724893i | −0.932005 | − | 0.362446i | \(-0.881942\pi\) | ||||
0.932005 | − | 0.362446i | \(-0.118058\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | − 4.00000i | − 0.206010i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 20.0000 | 1.02733 | 0.513665 | − | 0.857991i | \(-0.328287\pi\) | ||||
0.513665 | + | 0.857991i | \(0.328287\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | −16.0000 | −0.819705 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 16.0000i | 0.817562i | 0.912633 | + | 0.408781i | \(0.134046\pi\) | ||||
−0.912633 | + | 0.408781i | \(0.865954\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | − 4.00000i | − 0.203331i | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 6.00000 | 0.304212 | 0.152106 | − | 0.988364i | \(-0.451394\pi\) | ||||
0.152106 | + | 0.988364i | \(0.451394\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −48.0000 | −2.42746 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | − 8.00000i | − 0.403547i | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 30.0000i | 1.50566i | 0.658217 | + | 0.752828i | \(0.271311\pi\) | ||||
−0.658217 | + | 0.752828i | \(0.728689\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −14.0000 | −0.699127 | −0.349563 | − | 0.936913i | \(-0.613670\pi\) | ||||
−0.349563 | + | 0.936913i | \(0.613670\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | − 8.00000i | − 0.398508i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −10.0000 | −0.494468 | −0.247234 | − | 0.968956i | \(-0.579522\pi\) | ||||
−0.247234 | + | 0.968956i | \(0.579522\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | −22.0000 | −1.08518 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | − 20.0000i | − 0.979404i | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 32.0000 | 1.56330 | 0.781651 | − | 0.623716i | \(-0.214378\pi\) | ||||
0.781651 | + | 0.623716i | \(0.214378\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 10.0000 | 0.487370 | 0.243685 | − | 0.969854i | \(-0.421644\pi\) | ||||
0.243685 | + | 0.969854i | \(0.421644\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 8.00000i | 0.388973i | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 8.00000 | 0.385346 | 0.192673 | − | 0.981263i | \(-0.438284\pi\) | ||||
0.192673 | + | 0.981263i | \(0.438284\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | − 26.0000i | − 1.24948i | −0.780833 | − | 0.624740i | \(-0.785205\pi\) | ||||
0.780833 | − | 0.624740i | \(-0.214795\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 32.0000i | 1.53077i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −4.00000 | −0.190910 | −0.0954548 | − | 0.995434i | \(-0.530431\pi\) | ||||
−0.0954548 | + | 0.995434i | \(0.530431\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | −7.00000 | −0.333333 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 20.0000i | 0.950229i | 0.879924 | + | 0.475114i | \(0.157593\pi\) | ||||
−0.879924 | + | 0.475114i | \(0.842407\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | − 10.0000i | − 0.472984i | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 30.0000 | 1.41579 | 0.707894 | − | 0.706319i | \(-0.249646\pi\) | ||||
0.707894 | + | 0.706319i | \(0.249646\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | − 20.0000i | − 0.939682i | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | − 38.0000i | − 1.77757i | −0.458329 | − | 0.888783i | \(-0.651552\pi\) | ||||
0.458329 | − | 0.888783i | \(-0.348448\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 6.00000 | 0.280056 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −14.0000 | −0.652045 | −0.326023 | − | 0.945362i | \(-0.605709\pi\) | ||||
−0.326023 | + | 0.945362i | \(0.605709\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 24.0000i | 1.11537i | 0.830051 | + | 0.557687i | \(0.188311\pi\) | ||||
−0.830051 | + | 0.557687i | \(0.811689\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − 4.00000i | − 0.185098i | −0.995708 | − | 0.0925490i | \(-0.970499\pi\) | ||||
0.995708 | − | 0.0925490i | \(-0.0295015\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 10.0000 | 0.460776 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 2.00000i | 0.0915737i | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 32.0000 | 1.46212 | 0.731059 | − | 0.682315i | \(-0.239027\pi\) | ||||
0.731059 | + | 0.682315i | \(0.239027\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 20.0000 | 0.911922 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 40.0000i | 1.81257i | 0.422664 | + | 0.906287i | \(0.361095\pi\) | ||||
−0.422664 | + | 0.906287i | \(0.638905\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | −20.0000 | −0.904431 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −16.0000 | −0.722070 | −0.361035 | − | 0.932552i | \(-0.617576\pi\) | ||||
−0.361035 | + | 0.932552i | \(0.617576\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | − 12.0000i | − 0.540453i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −4.00000 | −0.179065 | −0.0895323 | − | 0.995984i | \(-0.528537\pi\) | ||||
−0.0895323 | + | 0.995984i | \(0.528537\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 9.00000i | 0.399704i | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 30.0000 | 1.32973 | 0.664863 | − | 0.746965i | \(-0.268490\pi\) | ||||
0.664863 | + | 0.746965i | \(0.268490\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | − 4.00000i | − 0.176604i | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 2.00000 | 0.0877903 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −22.0000 | −0.963837 | −0.481919 | − | 0.876216i | \(-0.660060\pi\) | ||||
−0.481919 | + | 0.876216i | \(0.660060\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 28.0000i | 1.22435i | 0.790721 | + | 0.612177i | \(0.209706\pi\) | ||||
−0.790721 | + | 0.612177i | \(0.790294\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | − 24.0000i | − 1.04546i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −41.0000 | −1.78261 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 8.00000 | 0.347170 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 4.00000i | 0.173259i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | − 16.0000i | − 0.690451i | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 42.0000 | 1.80572 | 0.902861 | − | 0.429934i | \(-0.141463\pi\) | ||||
0.902861 | + | 0.429934i | \(0.141463\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | − 14.0000i | − 0.600798i | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | − 28.0000i | − 1.19719i | −0.801050 | − | 0.598597i | \(-0.795725\pi\) | ||||
0.801050 | − | 0.598597i | \(-0.204275\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | −2.00000 | −0.0853579 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −8.00000 | −0.340811 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 18.0000i | 0.762684i | 0.924434 | + | 0.381342i | \(0.124538\pi\) | ||||
−0.924434 | + | 0.381342i | \(0.875462\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −8.00000 | −0.338364 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 36.0000i | − 1.51722i | −0.651546 | − | 0.758610i | \(-0.725879\pi\) | ||||
0.651546 | − | 0.758610i | \(-0.274121\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −10.0000 | −0.419222 | −0.209611 | − | 0.977785i | \(-0.567220\pi\) | ||||
−0.209611 | + | 0.977785i | \(0.567220\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −4.00000 | −0.167395 | −0.0836974 | − | 0.996491i | \(-0.526673\pi\) | ||||
−0.0836974 | + | 0.996491i | \(0.526673\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 24.0000i | 1.00261i | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 2.00000i | 0.0832611i | 0.999133 | + | 0.0416305i | \(0.0132552\pi\) | ||||
−0.999133 | + | 0.0416305i | \(0.986745\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 10.0000 | 0.415586 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 12.0000i | 0.495293i | 0.968850 | + | 0.247647i | \(0.0796572\pi\) | ||||
−0.968850 | + | 0.247647i | \(0.920343\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −16.0000 | −0.659269 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | −2.00000 | −0.0822690 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 26.0000i | 1.06769i | 0.845582 | + | 0.533846i | \(0.179254\pi\) | ||||
−0.845582 | + | 0.533846i | \(0.820746\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | − 20.0000i | − 0.818546i | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 26.0000 | 1.06056 | 0.530281 | − | 0.847822i | \(-0.322086\pi\) | ||||
0.530281 | + | 0.847822i | \(0.322086\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 12.0000i | 0.488678i | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | − 40.0000i | − 1.62355i | −0.583970 | − | 0.811775i | \(-0.698502\pi\) | ||||
0.583970 | − | 0.811775i | \(-0.301498\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 16.0000 | 0.647291 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 26.0000i | 1.05013i | 0.851062 | + | 0.525065i | \(0.175959\pi\) | ||||
−0.851062 | + | 0.525065i | \(0.824041\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 6.00000i | 0.241551i | 0.992680 | + | 0.120775i | \(0.0385381\pi\) | ||||
−0.992680 | + | 0.120775i | \(0.961462\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −4.00000 | −0.160774 | −0.0803868 | − | 0.996764i | \(-0.525616\pi\) | ||||
−0.0803868 | + | 0.996764i | \(0.525616\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 8.00000 | 0.321029 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 60.0000 | 2.39236 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 4.00000 | 0.159237 | 0.0796187 | − | 0.996825i | \(-0.474630\pi\) | ||||
0.0796187 | + | 0.996825i | \(0.474630\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 28.0000i | 1.11290i | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 14.0000i | 0.554700i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 8.00000 | 0.316475 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 26.0000 | 1.02694 | 0.513469 | − | 0.858108i | \(-0.328360\pi\) | ||||
0.513469 | + | 0.858108i | \(0.328360\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 4.00000i | 0.157745i | 0.996885 | + | 0.0788723i | \(0.0251319\pi\) | ||||
−0.996885 | + | 0.0788723i | \(0.974868\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 30.0000i | 1.17399i | 0.809590 | + | 0.586995i | \(0.199689\pi\) | ||||
−0.809590 | + | 0.586995i | \(0.800311\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | − 14.0000i | − 0.546192i | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −24.0000 | −0.934907 | −0.467454 | − | 0.884018i | \(-0.654829\pi\) | ||||
−0.467454 | + | 0.884018i | \(0.654829\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −38.0000 | −1.47803 | −0.739014 | − | 0.673690i | \(-0.764708\pi\) | ||||
−0.739014 | + | 0.673690i | \(0.764708\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | − 12.0000i | − 0.466041i | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | − 16.0000i | − 0.619522i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | − 26.0000i | − 1.00223i | −0.865382 | − | 0.501113i | \(-0.832924\pi\) | ||||
0.865382 | − | 0.501113i | \(-0.167076\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 42.0000i | 1.61419i | 0.590421 | + | 0.807096i | \(0.298962\pi\) | ||||
−0.590421 | + | 0.807096i | \(0.701038\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 12.0000 | 0.459841 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | − 36.0000i | − 1.37750i | −0.724998 | − | 0.688751i | \(-0.758159\pi\) | ||||
0.724998 | − | 0.688751i | \(-0.241841\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 6.00000i | 0.228914i | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 4.00000 | 0.152388 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 28.0000 | 1.06517 | 0.532585 | − | 0.846376i | \(-0.321221\pi\) | ||||
0.532585 | + | 0.846376i | \(0.321221\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 12.0000i | 0.454532i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 6.00000 | 0.226941 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −30.0000 | −1.13308 | −0.566542 | − | 0.824033i | \(-0.691719\pi\) | ||||
−0.566542 | + | 0.824033i | \(0.691719\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | − 40.0000i | − 1.50863i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −10.0000 | −0.375558 | −0.187779 | − | 0.982211i | \(-0.560129\pi\) | ||||
−0.187779 | + | 0.982211i | \(0.560129\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 12.0000 | 0.450035 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | − 32.0000i | − 1.19841i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | − 24.0000i | − 0.896296i | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 40.0000 | 1.49175 | 0.745874 | − | 0.666087i | \(-0.232032\pi\) | ||||
0.745874 | + | 0.666087i | \(0.232032\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 2.00000i | 0.0743808i | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 40.0000i | 1.48352i | 0.670667 | + | 0.741759i | \(0.266008\pi\) | ||||
−0.670667 | + | 0.741759i | \(0.733992\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | −1.00000 | −0.0370370 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −24.0000 | −0.887672 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | − 22.0000i | − 0.812589i | −0.913742 | − | 0.406294i | \(-0.866821\pi\) | ||||
0.913742 | − | 0.406294i | \(-0.133179\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 28.0000 | 1.03000 | 0.514998 | − | 0.857191i | \(-0.327793\pi\) | ||||
0.514998 | + | 0.857191i | \(0.327793\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | −8.00000 | −0.293887 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | − 8.00000i | − 0.293492i | −0.989174 | − | 0.146746i | \(-0.953120\pi\) | ||||
0.989174 | − | 0.146746i | \(-0.0468799\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | − 4.00000i | − 0.146352i | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 28.0000 | 1.02173 | 0.510867 | − | 0.859660i | \(-0.329324\pi\) | ||||
0.510867 | + | 0.859660i | \(0.329324\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | − 24.0000i | − 0.874609i | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | − 2.00000i | − 0.0726912i | −0.999339 | − | 0.0363456i | \(-0.988428\pi\) | ||||
0.999339 | − | 0.0363456i | \(-0.0115717\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −6.00000 | −0.217500 | −0.108750 | − | 0.994069i | \(-0.534685\pi\) | ||||
−0.108750 | + | 0.994069i | \(0.534685\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | − 16.0000i | − 0.577727i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −50.0000 | −1.80305 | −0.901523 | − | 0.432731i | \(-0.857550\pi\) | ||||
−0.901523 | + | 0.432731i | \(0.857550\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | −6.00000 | −0.216085 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 46.0000i | 1.65451i | 0.561830 | + | 0.827253i | \(0.310097\pi\) | ||||
−0.561830 | + | 0.827253i | \(0.689903\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 8.00000 | 0.286630 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 2.00000i | 0.0714742i | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 44.0000i | 1.56843i | 0.620489 | + | 0.784215i | \(0.286934\pi\) | ||||
−0.620489 | + | 0.784215i | \(0.713066\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 4.00000i | 0.142044i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | − 30.0000i | − 1.06265i | −0.847167 | − | 0.531327i | \(-0.821693\pi\) | ||||
0.847167 | − | 0.531327i | \(-0.178307\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 48.0000 | 1.69812 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | −14.0000 | −0.494666 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 30.0000i | 1.05605i | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 30.0000 | 1.05474 | 0.527372 | − | 0.849635i | \(-0.323177\pi\) | ||||
0.527372 | + | 0.849635i | \(0.323177\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −36.0000 | −1.26413 | −0.632065 | − | 0.774915i | \(-0.717793\pi\) | ||||
−0.632065 | + | 0.774915i | \(0.717793\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | − 4.00000i | − 0.140286i | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 16.0000i | 0.559769i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 42.0000 | 1.46581 | 0.732905 | − | 0.680331i | \(-0.238164\pi\) | ||||
0.732905 | + | 0.680331i | \(0.238164\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | − 40.0000i | − 1.39431i | −0.716919 | − | 0.697156i | \(-0.754448\pi\) | ||||
0.716919 | − | 0.697156i | \(-0.245552\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 4.00000i | 0.139094i | 0.997579 | + | 0.0695468i | \(0.0221553\pi\) | ||||
−0.997579 | + | 0.0695468i | \(0.977845\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 6.00000 | 0.208389 | 0.104194 | − | 0.994557i | \(-0.466774\pi\) | ||||
0.104194 | + | 0.994557i | \(0.466774\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 18.0000 | 0.624413 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 42.0000i | 1.45521i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 4.00000i | 0.138260i | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 16.0000 | 0.552381 | 0.276191 | − | 0.961103i | \(-0.410928\pi\) | ||||
0.276191 | + | 0.961103i | \(0.410928\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −25.0000 | −0.862069 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 2.00000i | 0.0688837i | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 12.0000 | 0.411839 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 80.0000 | 2.74236 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − 6.00000i | − 0.205436i | −0.994711 | − | 0.102718i | \(-0.967246\pi\) | ||||
0.994711 | − | 0.102718i | \(-0.0327539\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 30.0000i | 1.02478i | 0.858753 | + | 0.512390i | \(0.171240\pi\) | ||||
−0.858753 | + | 0.512390i | \(0.828760\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 20.0000 | 0.682391 | 0.341196 | − | 0.939992i | \(-0.389168\pi\) | ||||
0.341196 | + | 0.939992i | \(0.389168\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | − 24.0000i | − 0.816970i | −0.912765 | − | 0.408485i | \(-0.866057\pi\) | ||||
0.912765 | − | 0.408485i | \(-0.133943\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | − 19.0000i | − 0.645274i | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 24.0000 | 0.813209 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | − 2.00000i | − 0.0676897i | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 6.00000i | 0.202606i | 0.994856 | + | 0.101303i | \(0.0323011\pi\) | ||||
−0.994856 | + | 0.101303i | \(0.967699\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | −14.0000 | −0.472208 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 26.0000 | 0.875962 | 0.437981 | − | 0.898984i | \(-0.355694\pi\) | ||||
0.437981 | + | 0.898984i | \(0.355694\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 44.0000i | − 1.48072i | −0.672212 | − | 0.740359i | \(-0.734656\pi\) | ||||
0.672212 | − | 0.740359i | \(-0.265344\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 32.0000i | 1.07445i | 0.843437 | + | 0.537227i | \(0.180528\pi\) | ||||
−0.843437 | + | 0.537227i | \(0.819472\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | − 32.0000i | − 1.07084i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | − 16.0000i | − 0.534224i | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 8.00000 | 0.266815 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 12.0000 | 0.399778 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 28.0000i | 0.929725i | 0.885383 | + | 0.464862i | \(0.153896\pi\) | ||||
−0.885383 | + | 0.464862i | \(0.846104\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | −10.0000 | −0.331679 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −4.00000 | −0.131948 | −0.0659739 | − | 0.997821i | \(-0.521015\pi\) | ||||
−0.0659739 | + | 0.997821i | \(0.521015\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 20.0000 | 0.659022 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | − 16.0000i | − 0.526646i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | − 8.00000i | − 0.262754i | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 14.0000 | 0.459325 | 0.229663 | − | 0.973270i | \(-0.426238\pi\) | ||||
0.229663 | + | 0.973270i | \(0.426238\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 28.0000 | 0.917663 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | − 6.00000i | − 0.196011i | −0.995186 | − | 0.0980057i | \(-0.968754\pi\) | ||||
0.995186 | − | 0.0980057i | \(-0.0312463\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 2.00000 | 0.0652675 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 18.0000 | 0.586783 | 0.293392 | − | 0.955992i | \(-0.405216\pi\) | ||||
0.293392 | + | 0.955992i | \(0.405216\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 16.0000i | 0.521032i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 28.0000i | 0.909878i | 0.890523 | + | 0.454939i | \(0.150339\pi\) | ||||
−0.890523 | + | 0.454939i | \(0.849661\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −28.0000 | −0.908918 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | −26.0000 | −0.843108 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 26.0000i | 0.842223i | 0.907009 | + | 0.421111i | \(0.138360\pi\) | ||||
−0.907009 | + | 0.421111i | \(0.861640\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −15.0000 | −0.483871 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | − 12.0000i | − 0.386695i | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | − 8.00000i | − 0.257263i | −0.991692 | − | 0.128631i | \(-0.958942\pi\) | ||||
0.991692 | − | 0.128631i | \(-0.0410584\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | −24.0000 | −0.770991 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 8.00000 | 0.256732 | 0.128366 | − | 0.991727i | \(-0.459027\pi\) | ||||
0.128366 | + | 0.991727i | \(0.459027\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 38.0000i | 1.21573i | 0.794041 | + | 0.607864i | \(0.207973\pi\) | ||||
−0.794041 | + | 0.607864i | \(0.792027\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 10.0000 | 0.319275 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − 56.0000i | − 1.78612i | −0.449935 | − | 0.893061i | \(-0.648553\pi\) | ||||
0.449935 | − | 0.893061i | \(-0.351447\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −32.0000 | −1.01754 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 52.0000 | 1.65183 | 0.825917 | − | 0.563791i | \(-0.190658\pi\) | ||||
0.825917 | + | 0.563791i | \(0.190658\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 12.0000i | 0.380808i | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | − 18.0000i | − 0.570066i | −0.958518 | − | 0.285033i | \(-0.907995\pi\) | ||||
0.958518 | − | 0.285033i | \(-0.0920045\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | −10.0000 | −0.316386 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
480.2.a.d.1.1 | ✓ | 1 | 40.3 | even | 4 | ||
480.2.a.g.1.1 | yes | 1 | 40.13 | odd | 4 | ||
960.2.a.b.1.1 | 1 | 5.3 | odd | 4 | |||
960.2.a.k.1.1 | 1 | 20.3 | even | 4 | |||
1440.2.a.c.1.1 | 1 | 120.83 | odd | 4 | |||
1440.2.a.d.1.1 | 1 | 120.53 | even | 4 | |||
2400.2.a.i.1.1 | 1 | 40.37 | odd | 4 | |||
2400.2.a.z.1.1 | 1 | 40.27 | even | 4 | |||
2400.2.f.g.1249.1 | 2 | 8.5 | even | 2 | |||
2400.2.f.g.1249.2 | 2 | 40.29 | even | 2 | |||
2400.2.f.l.1249.1 | 2 | 40.19 | odd | 2 | |||
2400.2.f.l.1249.2 | 2 | 8.3 | odd | 2 | |||
2880.2.a.z.1.1 | 1 | 15.8 | even | 4 | |||
2880.2.a.ba.1.1 | 1 | 60.23 | odd | 4 | |||
3840.2.k.n.1921.1 | 2 | 80.43 | even | 4 | |||
3840.2.k.n.1921.2 | 2 | 80.3 | even | 4 | |||
3840.2.k.s.1921.1 | 2 | 80.13 | odd | 4 | |||
3840.2.k.s.1921.2 | 2 | 80.53 | odd | 4 | |||
4800.2.a.s.1.1 | 1 | 20.7 | even | 4 | |||
4800.2.a.cb.1.1 | 1 | 5.2 | odd | 4 | |||
4800.2.f.o.3649.1 | 2 | 4.3 | odd | 2 | |||
4800.2.f.o.3649.2 | 2 | 20.19 | odd | 2 | |||
4800.2.f.v.3649.1 | 2 | 5.4 | even | 2 | inner | ||
4800.2.f.v.3649.2 | 2 | 1.1 | even | 1 | trivial | ||
7200.2.a.z.1.1 | 1 | 120.107 | odd | 4 | |||
7200.2.a.ba.1.1 | 1 | 120.77 | even | 4 | |||
7200.2.f.k.6049.1 | 2 | 24.5 | odd | 2 | |||
7200.2.f.k.6049.2 | 2 | 120.29 | odd | 2 | |||
7200.2.f.s.6049.1 | 2 | 24.11 | even | 2 | |||
7200.2.f.s.6049.2 | 2 | 120.59 | even | 2 |