# Properties

 Label 4800.2.f.bi Level $4800$ Weight $2$ Character orbit 4800.f Analytic conductor $38.328$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [4800,2,Mod(3649,4800)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(4800, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("4800.3649");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$4800 = 2^{6} \cdot 3 \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4800.f (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$38.3281929702$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 300) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - i q^{3} + i q^{7} - q^{9} +O(q^{10})$$ q - i * q^3 + i * q^7 - q^9 $$q - i q^{3} + i q^{7} - q^{9} + 6 q^{11} + 5 i q^{13} - 6 i q^{17} - 5 q^{19} + q^{21} - 6 i q^{23} + i q^{27} - 6 q^{29} + q^{31} - 6 i q^{33} - 2 i q^{37} + 5 q^{39} + i q^{43} - 6 i q^{47} + 6 q^{49} - 6 q^{51} - 12 i q^{53} + 5 i q^{57} + 6 q^{59} + 13 q^{61} - i q^{63} + 11 i q^{67} - 6 q^{69} - 2 i q^{73} + 6 i q^{77} + 8 q^{79} + q^{81} + 6 i q^{83} + 6 i q^{87} - 5 q^{91} - i q^{93} - 7 i q^{97} - 6 q^{99} +O(q^{100})$$ q - i * q^3 + i * q^7 - q^9 + 6 * q^11 + 5*i * q^13 - 6*i * q^17 - 5 * q^19 + q^21 - 6*i * q^23 + i * q^27 - 6 * q^29 + q^31 - 6*i * q^33 - 2*i * q^37 + 5 * q^39 + i * q^43 - 6*i * q^47 + 6 * q^49 - 6 * q^51 - 12*i * q^53 + 5*i * q^57 + 6 * q^59 + 13 * q^61 - i * q^63 + 11*i * q^67 - 6 * q^69 - 2*i * q^73 + 6*i * q^77 + 8 * q^79 + q^81 + 6*i * q^83 + 6*i * q^87 - 5 * q^91 - i * q^93 - 7*i * q^97 - 6 * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{9}+O(q^{10})$$ 2 * q - 2 * q^9 $$2 q - 2 q^{9} + 12 q^{11} - 10 q^{19} + 2 q^{21} - 12 q^{29} + 2 q^{31} + 10 q^{39} + 12 q^{49} - 12 q^{51} + 12 q^{59} + 26 q^{61} - 12 q^{69} + 16 q^{79} + 2 q^{81} - 10 q^{91} - 12 q^{99}+O(q^{100})$$ 2 * q - 2 * q^9 + 12 * q^11 - 10 * q^19 + 2 * q^21 - 12 * q^29 + 2 * q^31 + 10 * q^39 + 12 * q^49 - 12 * q^51 + 12 * q^59 + 26 * q^61 - 12 * q^69 + 16 * q^79 + 2 * q^81 - 10 * q^91 - 12 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/4800\mathbb{Z}\right)^\times$$.

 $$n$$ $$577$$ $$901$$ $$1601$$ $$4351$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
3649.1
 1.00000i − 1.00000i
0 1.00000i 0 0 0 1.00000i 0 −1.00000 0
3649.2 0 1.00000i 0 0 0 1.00000i 0 −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4800.2.f.bi 2
4.b odd 2 1 4800.2.f.b 2
5.b even 2 1 inner 4800.2.f.bi 2
5.c odd 4 1 4800.2.a.p 1
5.c odd 4 1 4800.2.a.cf 1
8.b even 2 1 1200.2.f.a 2
8.d odd 2 1 300.2.d.a 2
20.d odd 2 1 4800.2.f.b 2
20.e even 4 1 4800.2.a.o 1
20.e even 4 1 4800.2.a.ce 1
24.f even 2 1 900.2.d.a 2
24.h odd 2 1 3600.2.f.v 2
40.e odd 2 1 300.2.d.a 2
40.f even 2 1 1200.2.f.a 2
40.i odd 4 1 1200.2.a.f 1
40.i odd 4 1 1200.2.a.n 1
40.k even 4 1 300.2.a.b 1
40.k even 4 1 300.2.a.c yes 1
120.i odd 2 1 3600.2.f.v 2
120.m even 2 1 900.2.d.a 2
120.q odd 4 1 900.2.a.c 1
120.q odd 4 1 900.2.a.e 1
120.w even 4 1 3600.2.a.s 1
120.w even 4 1 3600.2.a.z 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
300.2.a.b 1 40.k even 4 1
300.2.a.c yes 1 40.k even 4 1
300.2.d.a 2 8.d odd 2 1
300.2.d.a 2 40.e odd 2 1
900.2.a.c 1 120.q odd 4 1
900.2.a.e 1 120.q odd 4 1
900.2.d.a 2 24.f even 2 1
900.2.d.a 2 120.m even 2 1
1200.2.a.f 1 40.i odd 4 1
1200.2.a.n 1 40.i odd 4 1
1200.2.f.a 2 8.b even 2 1
1200.2.f.a 2 40.f even 2 1
3600.2.a.s 1 120.w even 4 1
3600.2.a.z 1 120.w even 4 1
3600.2.f.v 2 24.h odd 2 1
3600.2.f.v 2 120.i odd 2 1
4800.2.a.o 1 20.e even 4 1
4800.2.a.p 1 5.c odd 4 1
4800.2.a.ce 1 20.e even 4 1
4800.2.a.cf 1 5.c odd 4 1
4800.2.f.b 2 4.b odd 2 1
4800.2.f.b 2 20.d odd 2 1
4800.2.f.bi 2 1.a even 1 1 trivial
4800.2.f.bi 2 5.b even 2 1 inner

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(4800, [\chi])$$:

 $$T_{7}^{2} + 1$$ T7^2 + 1 $$T_{11} - 6$$ T11 - 6 $$T_{13}^{2} + 25$$ T13^2 + 25 $$T_{19} + 5$$ T19 + 5 $$T_{23}^{2} + 36$$ T23^2 + 36 $$T_{31} - 1$$ T31 - 1

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2} + 1$$
$5$ $$T^{2}$$
$7$ $$T^{2} + 1$$
$11$ $$(T - 6)^{2}$$
$13$ $$T^{2} + 25$$
$17$ $$T^{2} + 36$$
$19$ $$(T + 5)^{2}$$
$23$ $$T^{2} + 36$$
$29$ $$(T + 6)^{2}$$
$31$ $$(T - 1)^{2}$$
$37$ $$T^{2} + 4$$
$41$ $$T^{2}$$
$43$ $$T^{2} + 1$$
$47$ $$T^{2} + 36$$
$53$ $$T^{2} + 144$$
$59$ $$(T - 6)^{2}$$
$61$ $$(T - 13)^{2}$$
$67$ $$T^{2} + 121$$
$71$ $$T^{2}$$
$73$ $$T^{2} + 4$$
$79$ $$(T - 8)^{2}$$
$83$ $$T^{2} + 36$$
$89$ $$T^{2}$$
$97$ $$T^{2} + 49$$