# Properties

 Label 4800.2.f.ba.3649.1 Level $4800$ Weight $2$ Character 4800.3649 Analytic conductor $38.328$ Analytic rank $1$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$4800 = 2^{6} \cdot 3 \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4800.f (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$38.3281929702$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(i)$$ Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 480) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## Embedding invariants

 Embedding label 3649.1 Root $$1.00000i$$ of defining polynomial Character $$\chi$$ $$=$$ 4800.3649 Dual form 4800.2.f.ba.3649.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q-1.00000i q^{3} -1.00000 q^{9} +O(q^{10})$$ $$q-1.00000i q^{3} -1.00000 q^{9} +4.00000 q^{11} +2.00000i q^{13} -2.00000i q^{17} -8.00000 q^{19} +4.00000i q^{23} +1.00000i q^{27} -6.00000 q^{29} -4.00000i q^{33} -2.00000i q^{37} +2.00000 q^{39} -6.00000 q^{41} -4.00000i q^{43} +12.0000i q^{47} +7.00000 q^{49} -2.00000 q^{51} -6.00000i q^{53} +8.00000i q^{57} -12.0000 q^{59} -14.0000 q^{61} -12.0000i q^{67} +4.00000 q^{69} -2.00000i q^{73} -8.00000 q^{79} +1.00000 q^{81} +4.00000i q^{83} +6.00000i q^{87} -2.00000 q^{89} -14.0000i q^{97} -4.00000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{9}+O(q^{10})$$ 2 * q - 2 * q^9 $$2 q - 2 q^{9} + 8 q^{11} - 16 q^{19} - 12 q^{29} + 4 q^{39} - 12 q^{41} + 14 q^{49} - 4 q^{51} - 24 q^{59} - 28 q^{61} + 8 q^{69} - 16 q^{79} + 2 q^{81} - 4 q^{89} - 8 q^{99}+O(q^{100})$$ 2 * q - 2 * q^9 + 8 * q^11 - 16 * q^19 - 12 * q^29 + 4 * q^39 - 12 * q^41 + 14 * q^49 - 4 * q^51 - 24 * q^59 - 28 * q^61 + 8 * q^69 - 16 * q^79 + 2 * q^81 - 4 * q^89 - 8 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/4800\mathbb{Z}\right)^\times$$.

 $$n$$ $$577$$ $$901$$ $$1601$$ $$4351$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ − 1.00000i − 0.577350i
$$4$$ 0 0
$$5$$ 0 0
$$6$$ 0 0
$$7$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$8$$ 0 0
$$9$$ −1.00000 −0.333333
$$10$$ 0 0
$$11$$ 4.00000 1.20605 0.603023 0.797724i $$-0.293963\pi$$
0.603023 + 0.797724i $$0.293963\pi$$
$$12$$ 0 0
$$13$$ 2.00000i 0.554700i 0.960769 + 0.277350i $$0.0894562\pi$$
−0.960769 + 0.277350i $$0.910544\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ − 2.00000i − 0.485071i −0.970143 0.242536i $$-0.922021\pi$$
0.970143 0.242536i $$-0.0779791\pi$$
$$18$$ 0 0
$$19$$ −8.00000 −1.83533 −0.917663 0.397360i $$-0.869927\pi$$
−0.917663 + 0.397360i $$0.869927\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 4.00000i 0.834058i 0.908893 + 0.417029i $$0.136929\pi$$
−0.908893 + 0.417029i $$0.863071\pi$$
$$24$$ 0 0
$$25$$ 0 0
$$26$$ 0 0
$$27$$ 1.00000i 0.192450i
$$28$$ 0 0
$$29$$ −6.00000 −1.11417 −0.557086 0.830455i $$-0.688081\pi$$
−0.557086 + 0.830455i $$0.688081\pi$$
$$30$$ 0 0
$$31$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$32$$ 0 0
$$33$$ − 4.00000i − 0.696311i
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ − 2.00000i − 0.328798i −0.986394 0.164399i $$-0.947432\pi$$
0.986394 0.164399i $$-0.0525685\pi$$
$$38$$ 0 0
$$39$$ 2.00000 0.320256
$$40$$ 0 0
$$41$$ −6.00000 −0.937043 −0.468521 0.883452i $$-0.655213\pi$$
−0.468521 + 0.883452i $$0.655213\pi$$
$$42$$ 0 0
$$43$$ − 4.00000i − 0.609994i −0.952353 0.304997i $$-0.901344\pi$$
0.952353 0.304997i $$-0.0986555\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 12.0000i 1.75038i 0.483779 + 0.875190i $$0.339264\pi$$
−0.483779 + 0.875190i $$0.660736\pi$$
$$48$$ 0 0
$$49$$ 7.00000 1.00000
$$50$$ 0 0
$$51$$ −2.00000 −0.280056
$$52$$ 0 0
$$53$$ − 6.00000i − 0.824163i −0.911147 0.412082i $$-0.864802\pi$$
0.911147 0.412082i $$-0.135198\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 8.00000i 1.05963i
$$58$$ 0 0
$$59$$ −12.0000 −1.56227 −0.781133 0.624364i $$-0.785358\pi$$
−0.781133 + 0.624364i $$0.785358\pi$$
$$60$$ 0 0
$$61$$ −14.0000 −1.79252 −0.896258 0.443533i $$-0.853725\pi$$
−0.896258 + 0.443533i $$0.853725\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 0 0
$$66$$ 0 0
$$67$$ − 12.0000i − 1.46603i −0.680211 0.733017i $$-0.738112\pi$$
0.680211 0.733017i $$-0.261888\pi$$
$$68$$ 0 0
$$69$$ 4.00000 0.481543
$$70$$ 0 0
$$71$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$72$$ 0 0
$$73$$ − 2.00000i − 0.234082i −0.993127 0.117041i $$-0.962659\pi$$
0.993127 0.117041i $$-0.0373409\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ −8.00000 −0.900070 −0.450035 0.893011i $$-0.648589\pi$$
−0.450035 + 0.893011i $$0.648589\pi$$
$$80$$ 0 0
$$81$$ 1.00000 0.111111
$$82$$ 0 0
$$83$$ 4.00000i 0.439057i 0.975606 + 0.219529i $$0.0704519\pi$$
−0.975606 + 0.219529i $$0.929548\pi$$
$$84$$ 0 0
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 6.00000i 0.643268i
$$88$$ 0 0
$$89$$ −2.00000 −0.212000 −0.106000 0.994366i $$-0.533804\pi$$
−0.106000 + 0.994366i $$0.533804\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ − 14.0000i − 1.42148i −0.703452 0.710742i $$-0.748359\pi$$
0.703452 0.710742i $$-0.251641\pi$$
$$98$$ 0 0
$$99$$ −4.00000 −0.402015
$$100$$ 0 0
$$101$$ 14.0000 1.39305 0.696526 0.717532i $$-0.254728\pi$$
0.696526 + 0.717532i $$0.254728\pi$$
$$102$$ 0 0
$$103$$ 8.00000i 0.788263i 0.919054 + 0.394132i $$0.128955\pi$$
−0.919054 + 0.394132i $$0.871045\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ − 12.0000i − 1.16008i −0.814587 0.580042i $$-0.803036\pi$$
0.814587 0.580042i $$-0.196964\pi$$
$$108$$ 0 0
$$109$$ 14.0000 1.34096 0.670478 0.741929i $$-0.266089\pi$$
0.670478 + 0.741929i $$0.266089\pi$$
$$110$$ 0 0
$$111$$ −2.00000 −0.189832
$$112$$ 0 0
$$113$$ − 6.00000i − 0.564433i −0.959351 0.282216i $$-0.908930\pi$$
0.959351 0.282216i $$-0.0910696\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ − 2.00000i − 0.184900i
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ 5.00000 0.454545
$$122$$ 0 0
$$123$$ 6.00000i 0.541002i
$$124$$ 0 0
$$125$$ 0 0
$$126$$ 0 0
$$127$$ 16.0000i 1.41977i 0.704317 + 0.709885i $$0.251253\pi$$
−0.704317 + 0.709885i $$0.748747\pi$$
$$128$$ 0 0
$$129$$ −4.00000 −0.352180
$$130$$ 0 0
$$131$$ −20.0000 −1.74741 −0.873704 0.486458i $$-0.838289\pi$$
−0.873704 + 0.486458i $$0.838289\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ − 2.00000i − 0.170872i −0.996344 0.0854358i $$-0.972772\pi$$
0.996344 0.0854358i $$-0.0272282\pi$$
$$138$$ 0 0
$$139$$ −16.0000 −1.35710 −0.678551 0.734553i $$-0.737392\pi$$
−0.678551 + 0.734553i $$0.737392\pi$$
$$140$$ 0 0
$$141$$ 12.0000 1.01058
$$142$$ 0 0
$$143$$ 8.00000i 0.668994i
$$144$$ 0 0
$$145$$ 0 0
$$146$$ 0 0
$$147$$ − 7.00000i − 0.577350i
$$148$$ 0 0
$$149$$ −6.00000 −0.491539 −0.245770 0.969328i $$-0.579041\pi$$
−0.245770 + 0.969328i $$0.579041\pi$$
$$150$$ 0 0
$$151$$ −8.00000 −0.651031 −0.325515 0.945537i $$-0.605538\pi$$
−0.325515 + 0.945537i $$0.605538\pi$$
$$152$$ 0 0
$$153$$ 2.00000i 0.161690i
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ 14.0000i 1.11732i 0.829396 + 0.558661i $$0.188685\pi$$
−0.829396 + 0.558661i $$0.811315\pi$$
$$158$$ 0 0
$$159$$ −6.00000 −0.475831
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ 20.0000i 1.56652i 0.621694 + 0.783260i $$0.286445\pi$$
−0.621694 + 0.783260i $$0.713555\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ − 12.0000i − 0.928588i −0.885681 0.464294i $$-0.846308\pi$$
0.885681 0.464294i $$-0.153692\pi$$
$$168$$ 0 0
$$169$$ 9.00000 0.692308
$$170$$ 0 0
$$171$$ 8.00000 0.611775
$$172$$ 0 0
$$173$$ − 14.0000i − 1.06440i −0.846619 0.532200i $$-0.821365\pi$$
0.846619 0.532200i $$-0.178635\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 12.0000i 0.901975i
$$178$$ 0 0
$$179$$ −12.0000 −0.896922 −0.448461 0.893802i $$-0.648028\pi$$
−0.448461 + 0.893802i $$0.648028\pi$$
$$180$$ 0 0
$$181$$ −22.0000 −1.63525 −0.817624 0.575753i $$-0.804709\pi$$
−0.817624 + 0.575753i $$0.804709\pi$$
$$182$$ 0 0
$$183$$ 14.0000i 1.03491i
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ − 8.00000i − 0.585018i
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ −16.0000 −1.15772 −0.578860 0.815427i $$-0.696502\pi$$
−0.578860 + 0.815427i $$0.696502\pi$$
$$192$$ 0 0
$$193$$ 22.0000i 1.58359i 0.610784 + 0.791797i $$0.290854\pi$$
−0.610784 + 0.791797i $$0.709146\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ − 26.0000i − 1.85242i −0.377004 0.926212i $$-0.623046\pi$$
0.377004 0.926212i $$-0.376954\pi$$
$$198$$ 0 0
$$199$$ 16.0000 1.13421 0.567105 0.823646i $$-0.308063\pi$$
0.567105 + 0.823646i $$0.308063\pi$$
$$200$$ 0 0
$$201$$ −12.0000 −0.846415
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ − 4.00000i − 0.278019i
$$208$$ 0 0
$$209$$ −32.0000 −2.21349
$$210$$ 0 0
$$211$$ −8.00000 −0.550743 −0.275371 0.961338i $$-0.588801\pi$$
−0.275371 + 0.961338i $$0.588801\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ −2.00000 −0.135147
$$220$$ 0 0
$$221$$ 4.00000 0.269069
$$222$$ 0 0
$$223$$ 24.0000i 1.60716i 0.595198 + 0.803579i $$0.297074\pi$$
−0.595198 + 0.803579i $$0.702926\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ − 4.00000i − 0.265489i −0.991150 0.132745i $$-0.957621\pi$$
0.991150 0.132745i $$-0.0423790\pi$$
$$228$$ 0 0
$$229$$ −18.0000 −1.18947 −0.594737 0.803921i $$-0.702744\pi$$
−0.594737 + 0.803921i $$0.702744\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ − 6.00000i − 0.393073i −0.980497 0.196537i $$-0.937031\pi$$
0.980497 0.196537i $$-0.0629694\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 8.00000i 0.519656i
$$238$$ 0 0
$$239$$ −8.00000 −0.517477 −0.258738 0.965947i $$-0.583307\pi$$
−0.258738 + 0.965947i $$0.583307\pi$$
$$240$$ 0 0
$$241$$ 2.00000 0.128831 0.0644157 0.997923i $$-0.479482\pi$$
0.0644157 + 0.997923i $$0.479482\pi$$
$$242$$ 0 0
$$243$$ − 1.00000i − 0.0641500i
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ − 16.0000i − 1.01806i
$$248$$ 0 0
$$249$$ 4.00000 0.253490
$$250$$ 0 0
$$251$$ 12.0000 0.757433 0.378717 0.925513i $$-0.376365\pi$$
0.378717 + 0.925513i $$0.376365\pi$$
$$252$$ 0 0
$$253$$ 16.0000i 1.00591i
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 6.00000i 0.374270i 0.982334 + 0.187135i $$0.0599201\pi$$
−0.982334 + 0.187135i $$0.940080\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 6.00000 0.371391
$$262$$ 0 0
$$263$$ 20.0000i 1.23325i 0.787256 + 0.616626i $$0.211501\pi$$
−0.787256 + 0.616626i $$0.788499\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ 2.00000i 0.122398i
$$268$$ 0 0
$$269$$ 10.0000 0.609711 0.304855 0.952399i $$-0.401392\pi$$
0.304855 + 0.952399i $$0.401392\pi$$
$$270$$ 0 0
$$271$$ −8.00000 −0.485965 −0.242983 0.970031i $$-0.578126\pi$$
−0.242983 + 0.970031i $$0.578126\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 30.0000i 1.80253i 0.433273 + 0.901263i $$0.357359\pi$$
−0.433273 + 0.901263i $$0.642641\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 2.00000 0.119310 0.0596550 0.998219i $$-0.481000\pi$$
0.0596550 + 0.998219i $$0.481000\pi$$
$$282$$ 0 0
$$283$$ 4.00000i 0.237775i 0.992908 + 0.118888i $$0.0379328\pi$$
−0.992908 + 0.118888i $$0.962067\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ 13.0000 0.764706
$$290$$ 0 0
$$291$$ −14.0000 −0.820695
$$292$$ 0 0
$$293$$ 26.0000i 1.51894i 0.650545 + 0.759468i $$0.274541\pi$$
−0.650545 + 0.759468i $$0.725459\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 4.00000i 0.232104i
$$298$$ 0 0
$$299$$ −8.00000 −0.462652
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ − 14.0000i − 0.804279i
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ 28.0000i 1.59804i 0.601302 + 0.799022i $$0.294649\pi$$
−0.601302 + 0.799022i $$0.705351\pi$$
$$308$$ 0 0
$$309$$ 8.00000 0.455104
$$310$$ 0 0
$$311$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$312$$ 0 0
$$313$$ 14.0000i 0.791327i 0.918396 + 0.395663i $$0.129485\pi$$
−0.918396 + 0.395663i $$0.870515\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ − 18.0000i − 1.01098i −0.862832 0.505490i $$-0.831312\pi$$
0.862832 0.505490i $$-0.168688\pi$$
$$318$$ 0 0
$$319$$ −24.0000 −1.34374
$$320$$ 0 0
$$321$$ −12.0000 −0.669775
$$322$$ 0 0
$$323$$ 16.0000i 0.890264i
$$324$$ 0 0
$$325$$ 0 0
$$326$$ 0 0
$$327$$ − 14.0000i − 0.774202i
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$332$$ 0 0
$$333$$ 2.00000i 0.109599i
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 0 0
$$337$$ − 22.0000i − 1.19842i −0.800593 0.599208i $$-0.795482\pi$$
0.800593 0.599208i $$-0.204518\pi$$
$$338$$ 0 0
$$339$$ −6.00000 −0.325875
$$340$$ 0 0
$$341$$ 0 0
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ − 4.00000i − 0.214731i −0.994220 0.107366i $$-0.965758\pi$$
0.994220 0.107366i $$-0.0342415\pi$$
$$348$$ 0 0
$$349$$ −2.00000 −0.107058 −0.0535288 0.998566i $$-0.517047\pi$$
−0.0535288 + 0.998566i $$0.517047\pi$$
$$350$$ 0 0
$$351$$ −2.00000 −0.106752
$$352$$ 0 0
$$353$$ − 14.0000i − 0.745145i −0.928003 0.372572i $$-0.878476\pi$$
0.928003 0.372572i $$-0.121524\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ −16.0000 −0.844448 −0.422224 0.906492i $$-0.638750\pi$$
−0.422224 + 0.906492i $$0.638750\pi$$
$$360$$ 0 0
$$361$$ 45.0000 2.36842
$$362$$ 0 0
$$363$$ − 5.00000i − 0.262432i
$$364$$ 0 0
$$365$$ 0 0
$$366$$ 0 0
$$367$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$368$$ 0 0
$$369$$ 6.00000 0.312348
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ − 22.0000i − 1.13912i −0.821951 0.569558i $$-0.807114\pi$$
0.821951 0.569558i $$-0.192886\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ − 12.0000i − 0.618031i
$$378$$ 0 0
$$379$$ 16.0000 0.821865 0.410932 0.911666i $$-0.365203\pi$$
0.410932 + 0.911666i $$0.365203\pi$$
$$380$$ 0 0
$$381$$ 16.0000 0.819705
$$382$$ 0 0
$$383$$ − 20.0000i − 1.02195i −0.859595 0.510976i $$-0.829284\pi$$
0.859595 0.510976i $$-0.170716\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 4.00000i 0.203331i
$$388$$ 0 0
$$389$$ −6.00000 −0.304212 −0.152106 0.988364i $$-0.548606\pi$$
−0.152106 + 0.988364i $$0.548606\pi$$
$$390$$ 0 0
$$391$$ 8.00000 0.404577
$$392$$ 0 0
$$393$$ 20.0000i 1.00887i
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ 6.00000i 0.301131i 0.988600 + 0.150566i $$0.0481095\pi$$
−0.988600 + 0.150566i $$0.951890\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 10.0000 0.499376 0.249688 0.968326i $$-0.419672\pi$$
0.249688 + 0.968326i $$0.419672\pi$$
$$402$$ 0 0
$$403$$ 0 0
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ − 8.00000i − 0.396545i
$$408$$ 0 0
$$409$$ 22.0000 1.08783 0.543915 0.839140i $$-0.316941\pi$$
0.543915 + 0.839140i $$0.316941\pi$$
$$410$$ 0 0
$$411$$ −2.00000 −0.0986527
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 16.0000i 0.783523i
$$418$$ 0 0
$$419$$ 12.0000 0.586238 0.293119 0.956076i $$-0.405307\pi$$
0.293119 + 0.956076i $$0.405307\pi$$
$$420$$ 0 0
$$421$$ 2.00000 0.0974740 0.0487370 0.998812i $$-0.484480\pi$$
0.0487370 + 0.998812i $$0.484480\pi$$
$$422$$ 0 0
$$423$$ − 12.0000i − 0.583460i
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ 8.00000 0.386244
$$430$$ 0 0
$$431$$ 8.00000 0.385346 0.192673 0.981263i $$-0.438284\pi$$
0.192673 + 0.981263i $$0.438284\pi$$
$$432$$ 0 0
$$433$$ − 26.0000i − 1.24948i −0.780833 0.624740i $$-0.785205\pi$$
0.780833 0.624740i $$-0.214795\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ − 32.0000i − 1.53077i
$$438$$ 0 0
$$439$$ −32.0000 −1.52728 −0.763638 0.645644i $$-0.776589\pi$$
−0.763638 + 0.645644i $$0.776589\pi$$
$$440$$ 0 0
$$441$$ −7.00000 −0.333333
$$442$$ 0 0
$$443$$ 28.0000i 1.33032i 0.746701 + 0.665160i $$0.231637\pi$$
−0.746701 + 0.665160i $$0.768363\pi$$
$$444$$ 0 0
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 6.00000i 0.283790i
$$448$$ 0 0
$$449$$ −10.0000 −0.471929 −0.235965 0.971762i $$-0.575825\pi$$
−0.235965 + 0.971762i $$0.575825\pi$$
$$450$$ 0 0
$$451$$ −24.0000 −1.13012
$$452$$ 0 0
$$453$$ 8.00000i 0.375873i
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 26.0000i 1.21623i 0.793849 + 0.608114i $$0.208074\pi$$
−0.793849 + 0.608114i $$0.791926\pi$$
$$458$$ 0 0
$$459$$ 2.00000 0.0933520
$$460$$ 0 0
$$461$$ 14.0000 0.652045 0.326023 0.945362i $$-0.394291\pi$$
0.326023 + 0.945362i $$0.394291\pi$$
$$462$$ 0 0
$$463$$ − 32.0000i − 1.48717i −0.668644 0.743583i $$-0.733125\pi$$
0.668644 0.743583i $$-0.266875\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 36.0000i 1.66588i 0.553362 + 0.832941i $$0.313345\pi$$
−0.553362 + 0.832941i $$0.686655\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 14.0000 0.645086
$$472$$ 0 0
$$473$$ − 16.0000i − 0.735681i
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 6.00000i 0.274721i
$$478$$ 0 0
$$479$$ −40.0000 −1.82765 −0.913823 0.406112i $$-0.866884\pi$$
−0.913823 + 0.406112i $$0.866884\pi$$
$$480$$ 0 0
$$481$$ 4.00000 0.182384
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 0 0
$$486$$ 0 0
$$487$$ − 8.00000i − 0.362515i −0.983436 0.181257i $$-0.941983\pi$$
0.983436 0.181257i $$-0.0580167\pi$$
$$488$$ 0 0
$$489$$ 20.0000 0.904431
$$490$$ 0 0
$$491$$ 12.0000 0.541552 0.270776 0.962642i $$-0.412720\pi$$
0.270776 + 0.962642i $$0.412720\pi$$
$$492$$ 0 0
$$493$$ 12.0000i 0.540453i
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ −8.00000 −0.358129 −0.179065 0.983837i $$-0.557307\pi$$
−0.179065 + 0.983837i $$0.557307\pi$$
$$500$$ 0 0
$$501$$ −12.0000 −0.536120
$$502$$ 0 0
$$503$$ − 4.00000i − 0.178351i −0.996016 0.0891756i $$-0.971577\pi$$
0.996016 0.0891756i $$-0.0284232\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ − 9.00000i − 0.399704i
$$508$$ 0 0
$$509$$ −38.0000 −1.68432 −0.842160 0.539227i $$-0.818716\pi$$
−0.842160 + 0.539227i $$0.818716\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0 0
$$513$$ − 8.00000i − 0.353209i
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 0 0
$$517$$ 48.0000i 2.11104i
$$518$$ 0 0
$$519$$ −14.0000 −0.614532
$$520$$ 0 0
$$521$$ −30.0000 −1.31432 −0.657162 0.753749i $$-0.728243\pi$$
−0.657162 + 0.753749i $$0.728243\pi$$
$$522$$ 0 0
$$523$$ 4.00000i 0.174908i 0.996169 + 0.0874539i $$0.0278730\pi$$
−0.996169 + 0.0874539i $$0.972127\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 0 0
$$528$$ 0 0
$$529$$ 7.00000 0.304348
$$530$$ 0 0
$$531$$ 12.0000 0.520756
$$532$$ 0 0
$$533$$ − 12.0000i − 0.519778i
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 12.0000i 0.517838i
$$538$$ 0 0
$$539$$ 28.0000 1.20605
$$540$$ 0 0
$$541$$ −30.0000 −1.28980 −0.644900 0.764267i $$-0.723101\pi$$
−0.644900 + 0.764267i $$0.723101\pi$$
$$542$$ 0 0
$$543$$ 22.0000i 0.944110i
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ 28.0000i 1.19719i 0.801050 + 0.598597i $$0.204275\pi$$
−0.801050 + 0.598597i $$0.795725\pi$$
$$548$$ 0 0
$$549$$ 14.0000 0.597505
$$550$$ 0 0
$$551$$ 48.0000 2.04487
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ − 18.0000i − 0.762684i −0.924434 0.381342i $$-0.875462\pi$$
0.924434 0.381342i $$-0.124538\pi$$
$$558$$ 0 0
$$559$$ 8.00000 0.338364
$$560$$ 0 0
$$561$$ −8.00000 −0.337760
$$562$$ 0 0
$$563$$ − 36.0000i − 1.51722i −0.651546 0.758610i $$-0.725879\pi$$
0.651546 0.758610i $$-0.274121\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ −34.0000 −1.42535 −0.712677 0.701492i $$-0.752517\pi$$
−0.712677 + 0.701492i $$0.752517\pi$$
$$570$$ 0 0
$$571$$ 32.0000 1.33916 0.669579 0.742741i $$-0.266474\pi$$
0.669579 + 0.742741i $$0.266474\pi$$
$$572$$ 0 0
$$573$$ 16.0000i 0.668410i
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ 2.00000i 0.0832611i 0.999133 + 0.0416305i $$0.0132552\pi$$
−0.999133 + 0.0416305i $$0.986745\pi$$
$$578$$ 0 0
$$579$$ 22.0000 0.914289
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ − 24.0000i − 0.993978i
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 36.0000i 1.48588i 0.669359 + 0.742940i $$0.266569\pi$$
−0.669359 + 0.742940i $$0.733431\pi$$
$$588$$ 0 0
$$589$$ 0 0
$$590$$ 0 0
$$591$$ −26.0000 −1.06950
$$592$$ 0 0
$$593$$ 42.0000i 1.72473i 0.506284 + 0.862367i $$0.331019\pi$$
−0.506284 + 0.862367i $$0.668981\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ − 16.0000i − 0.654836i
$$598$$ 0 0
$$599$$ 16.0000 0.653742 0.326871 0.945069i $$-0.394006\pi$$
0.326871 + 0.945069i $$0.394006\pi$$
$$600$$ 0 0
$$601$$ 10.0000 0.407909 0.203954 0.978980i $$-0.434621\pi$$
0.203954 + 0.978980i $$0.434621\pi$$
$$602$$ 0 0
$$603$$ 12.0000i 0.488678i
$$604$$ 0 0
$$605$$ 0 0
$$606$$ 0 0
$$607$$ − 8.00000i − 0.324710i −0.986732 0.162355i $$-0.948091\pi$$
0.986732 0.162355i $$-0.0519090\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ −24.0000 −0.970936
$$612$$ 0 0
$$613$$ − 14.0000i − 0.565455i −0.959200 0.282727i $$-0.908761\pi$$
0.959200 0.282727i $$-0.0912392\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ − 42.0000i − 1.69086i −0.534089 0.845428i $$-0.679345\pi$$
0.534089 0.845428i $$-0.320655\pi$$
$$618$$ 0 0
$$619$$ 16.0000 0.643094 0.321547 0.946894i $$-0.395797\pi$$
0.321547 + 0.946894i $$0.395797\pi$$
$$620$$ 0 0
$$621$$ −4.00000 −0.160514
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ 0 0
$$626$$ 0 0
$$627$$ 32.0000i 1.27796i
$$628$$ 0 0
$$629$$ −4.00000 −0.159490
$$630$$ 0 0
$$631$$ 32.0000 1.27390 0.636950 0.770905i $$-0.280196\pi$$
0.636950 + 0.770905i $$0.280196\pi$$
$$632$$ 0 0
$$633$$ 8.00000i 0.317971i
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ 14.0000i 0.554700i
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ 2.00000 0.0789953 0.0394976 0.999220i $$-0.487424\pi$$
0.0394976 + 0.999220i $$0.487424\pi$$
$$642$$ 0 0
$$643$$ − 12.0000i − 0.473234i −0.971603 0.236617i $$-0.923961\pi$$
0.971603 0.236617i $$-0.0760386\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ − 20.0000i − 0.786281i −0.919478 0.393141i $$-0.871389\pi$$
0.919478 0.393141i $$-0.128611\pi$$
$$648$$ 0 0
$$649$$ −48.0000 −1.88416
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ − 14.0000i − 0.547862i −0.961749 0.273931i $$-0.911676\pi$$
0.961749 0.273931i $$-0.0883240\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ 2.00000i 0.0780274i
$$658$$ 0 0
$$659$$ −20.0000 −0.779089 −0.389545 0.921008i $$-0.627368\pi$$
−0.389545 + 0.921008i $$0.627368\pi$$
$$660$$ 0 0
$$661$$ 26.0000 1.01128 0.505641 0.862744i $$-0.331256\pi$$
0.505641 + 0.862744i $$0.331256\pi$$
$$662$$ 0 0
$$663$$ − 4.00000i − 0.155347i
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ − 24.0000i − 0.929284i
$$668$$ 0 0
$$669$$ 24.0000 0.927894
$$670$$ 0 0
$$671$$ −56.0000 −2.16186
$$672$$ 0 0
$$673$$ 6.00000i 0.231283i 0.993291 + 0.115642i $$0.0368924\pi$$
−0.993291 + 0.115642i $$0.963108\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ 6.00000i 0.230599i 0.993331 + 0.115299i $$0.0367827\pi$$
−0.993331 + 0.115299i $$0.963217\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ −4.00000 −0.153280
$$682$$ 0 0
$$683$$ − 12.0000i − 0.459167i −0.973289 0.229584i $$-0.926264\pi$$
0.973289 0.229584i $$-0.0737364\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 18.0000i 0.686743i
$$688$$ 0 0
$$689$$ 12.0000 0.457164
$$690$$ 0 0
$$691$$ 16.0000 0.608669 0.304334 0.952565i $$-0.401566\pi$$
0.304334 + 0.952565i $$0.401566\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ 12.0000i 0.454532i
$$698$$ 0 0
$$699$$ −6.00000 −0.226941
$$700$$ 0 0
$$701$$ −10.0000 −0.377695 −0.188847 0.982006i $$-0.560475\pi$$
−0.188847 + 0.982006i $$0.560475\pi$$
$$702$$ 0 0
$$703$$ 16.0000i 0.603451i
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ −2.00000 −0.0751116 −0.0375558 0.999295i $$-0.511957\pi$$
−0.0375558 + 0.999295i $$0.511957\pi$$
$$710$$ 0 0
$$711$$ 8.00000 0.300023
$$712$$ 0 0
$$713$$ 0 0
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 8.00000i 0.298765i
$$718$$ 0 0
$$719$$ 32.0000 1.19340 0.596699 0.802465i $$-0.296479\pi$$
0.596699 + 0.802465i $$0.296479\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 0 0
$$723$$ − 2.00000i − 0.0743808i
$$724$$ 0 0
$$725$$ 0 0
$$726$$ 0 0
$$727$$ − 40.0000i − 1.48352i −0.670667 0.741759i $$-0.733992\pi$$
0.670667 0.741759i $$-0.266008\pi$$
$$728$$ 0 0
$$729$$ −1.00000 −0.0370370
$$730$$ 0 0
$$731$$ −8.00000 −0.295891
$$732$$ 0 0
$$733$$ 10.0000i 0.369358i 0.982799 + 0.184679i $$0.0591246\pi$$
−0.982799 + 0.184679i $$0.940875\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ − 48.0000i − 1.76810i
$$738$$ 0 0
$$739$$ 8.00000 0.294285 0.147142 0.989115i $$-0.452992\pi$$
0.147142 + 0.989115i $$0.452992\pi$$
$$740$$ 0 0
$$741$$ −16.0000 −0.587775
$$742$$ 0 0
$$743$$ − 36.0000i − 1.32071i −0.750953 0.660356i $$-0.770405\pi$$
0.750953 0.660356i $$-0.229595\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ − 4.00000i − 0.146352i
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ −32.0000 −1.16770 −0.583848 0.811863i $$-0.698454\pi$$
−0.583848 + 0.811863i $$0.698454\pi$$
$$752$$ 0 0
$$753$$ − 12.0000i − 0.437304i
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ − 34.0000i − 1.23575i −0.786276 0.617876i $$-0.787994\pi$$
0.786276 0.617876i $$-0.212006\pi$$
$$758$$ 0 0
$$759$$ 16.0000 0.580763
$$760$$ 0 0
$$761$$ −30.0000 −1.08750 −0.543750 0.839248i $$-0.682996\pi$$
−0.543750 + 0.839248i $$0.682996\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ − 24.0000i − 0.866590i
$$768$$ 0 0
$$769$$ 14.0000 0.504853 0.252426 0.967616i $$-0.418771\pi$$
0.252426 + 0.967616i $$0.418771\pi$$
$$770$$ 0 0
$$771$$ 6.00000 0.216085
$$772$$ 0 0
$$773$$ 10.0000i 0.359675i 0.983696 + 0.179838i $$0.0575572\pi$$
−0.983696 + 0.179838i $$0.942443\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 48.0000 1.71978
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ − 6.00000i − 0.214423i
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ 20.0000i 0.712923i 0.934310 + 0.356462i $$0.116017\pi$$
−0.934310 + 0.356462i $$0.883983\pi$$
$$788$$ 0 0
$$789$$ 20.0000 0.712019
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ − 28.0000i − 0.994309i
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ − 34.0000i − 1.20434i −0.798367 0.602171i $$-0.794303\pi$$
0.798367 0.602171i $$-0.205697\pi$$
$$798$$ 0 0
$$799$$ 24.0000 0.849059
$$800$$ 0 0
$$801$$ 2.00000 0.0706665
$$802$$ 0 0
$$803$$ − 8.00000i − 0.282314i
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ − 10.0000i − 0.352017i
$$808$$ 0 0
$$809$$ 22.0000 0.773479 0.386739 0.922189i $$-0.373601\pi$$
0.386739 + 0.922189i $$0.373601\pi$$
$$810$$ 0 0
$$811$$ 24.0000 0.842754 0.421377 0.906886i $$-0.361547\pi$$
0.421377 + 0.906886i $$0.361547\pi$$
$$812$$ 0 0
$$813$$ 8.00000i 0.280572i
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ 32.0000i 1.11954i
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ 30.0000 1.04701 0.523504 0.852023i $$-0.324625\pi$$
0.523504 + 0.852023i $$0.324625\pi$$
$$822$$ 0 0
$$823$$ 16.0000i 0.557725i 0.960331 + 0.278862i $$0.0899574\pi$$
−0.960331 + 0.278862i $$0.910043\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ − 36.0000i − 1.25184i −0.779886 0.625921i $$-0.784723\pi$$
0.779886 0.625921i $$-0.215277\pi$$
$$828$$ 0 0
$$829$$ 30.0000 1.04194 0.520972 0.853574i $$-0.325570\pi$$
0.520972 + 0.853574i $$0.325570\pi$$
$$830$$ 0 0
$$831$$ 30.0000 1.04069
$$832$$ 0 0
$$833$$ − 14.0000i − 0.485071i
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ 48.0000 1.65714 0.828572 0.559883i $$-0.189154\pi$$
0.828572 + 0.559883i $$0.189154\pi$$
$$840$$ 0 0
$$841$$ 7.00000 0.241379
$$842$$ 0 0
$$843$$ − 2.00000i − 0.0688837i
$$844$$ 0 0
$$845$$ 0 0
$$846$$ 0 0
$$847$$ 0 0
$$848$$ 0 0
$$849$$ 4.00000 0.137280
$$850$$ 0 0
$$851$$ 8.00000 0.274236
$$852$$ 0 0
$$853$$ − 30.0000i − 1.02718i −0.858036 0.513590i $$-0.828315\pi$$
0.858036 0.513590i $$-0.171685\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ − 10.0000i − 0.341593i −0.985306 0.170797i $$-0.945366\pi$$
0.985306 0.170797i $$-0.0546341\pi$$
$$858$$ 0 0
$$859$$ 32.0000 1.09183 0.545913 0.837842i $$-0.316183\pi$$
0.545913 + 0.837842i $$0.316183\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ 4.00000i 0.136162i 0.997680 + 0.0680808i $$0.0216876\pi$$
−0.997680 + 0.0680808i $$0.978312\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ − 13.0000i − 0.441503i
$$868$$ 0 0
$$869$$ −32.0000 −1.08553
$$870$$ 0 0
$$871$$ 24.0000 0.813209
$$872$$ 0 0
$$873$$ 14.0000i 0.473828i
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ 14.0000i 0.472746i 0.971662 + 0.236373i $$0.0759588\pi$$
−0.971662 + 0.236373i $$0.924041\pi$$
$$878$$ 0 0
$$879$$ 26.0000 0.876958
$$880$$ 0 0
$$881$$ −6.00000 −0.202145 −0.101073 0.994879i $$-0.532227\pi$$
−0.101073 + 0.994879i $$0.532227\pi$$
$$882$$ 0 0
$$883$$ − 44.0000i − 1.48072i −0.672212 0.740359i $$-0.734656\pi$$
0.672212 0.740359i $$-0.265344\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 20.0000i 0.671534i 0.941945 + 0.335767i $$0.108996\pi$$
−0.941945 + 0.335767i $$0.891004\pi$$
$$888$$ 0 0
$$889$$ 0 0
$$890$$ 0 0
$$891$$ 4.00000 0.134005
$$892$$ 0 0
$$893$$ − 96.0000i − 3.21252i
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ 8.00000i 0.267112i
$$898$$ 0 0
$$899$$ 0 0
$$900$$ 0 0
$$901$$ −12.0000 −0.399778
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ − 36.0000i − 1.19536i −0.801735 0.597680i $$-0.796089\pi$$
0.801735 0.597680i $$-0.203911\pi$$
$$908$$ 0 0
$$909$$ −14.0000 −0.464351
$$910$$ 0 0
$$911$$ 8.00000 0.265052 0.132526 0.991180i $$-0.457691\pi$$
0.132526 + 0.991180i $$0.457691\pi$$
$$912$$ 0 0
$$913$$ 16.0000i 0.529523i
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 0 0
$$918$$ 0 0
$$919$$ −8.00000 −0.263896 −0.131948 0.991257i $$-0.542123\pi$$
−0.131948 + 0.991257i $$0.542123\pi$$
$$920$$ 0 0
$$921$$ 28.0000 0.922631
$$922$$ 0 0
$$923$$ 0 0
$$924$$ 0 0
$$925$$ 0 0
$$926$$ 0 0
$$927$$ − 8.00000i − 0.262754i
$$928$$ 0 0
$$929$$ −42.0000 −1.37798 −0.688988 0.724773i $$-0.741945\pi$$
−0.688988 + 0.724773i $$0.741945\pi$$
$$930$$ 0 0
$$931$$ −56.0000 −1.83533
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ 42.0000i 1.37208i 0.727564 + 0.686040i $$0.240653\pi$$
−0.727564 + 0.686040i $$0.759347\pi$$
$$938$$ 0 0
$$939$$ 14.0000 0.456873
$$940$$ 0 0
$$941$$ −34.0000 −1.10837 −0.554184 0.832394i $$-0.686970\pi$$
−0.554184 + 0.832394i $$0.686970\pi$$
$$942$$ 0 0
$$943$$ − 24.0000i − 0.781548i
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ − 4.00000i − 0.129983i −0.997886 0.0649913i $$-0.979298\pi$$
0.997886 0.0649913i $$-0.0207020\pi$$
$$948$$ 0 0
$$949$$ 4.00000 0.129845
$$950$$ 0 0
$$951$$ −18.0000 −0.583690
$$952$$ 0 0
$$953$$ − 30.0000i − 0.971795i −0.874016 0.485898i $$-0.838493\pi$$
0.874016 0.485898i $$-0.161507\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 24.0000i 0.775810i
$$958$$ 0 0
$$959$$ 0 0
$$960$$ 0 0
$$961$$ −31.0000 −1.00000
$$962$$ 0 0
$$963$$ 12.0000i 0.386695i
$$964$$ 0 0
$$965$$ 0 0
$$966$$ 0 0
$$967$$ 32.0000i 1.02905i 0.857475 + 0.514525i $$0.172032\pi$$
−0.857475 + 0.514525i $$0.827968\pi$$
$$968$$ 0 0
$$969$$ 16.0000 0.513994
$$970$$ 0 0
$$971$$ 28.0000 0.898563 0.449281 0.893390i $$-0.351680\pi$$
0.449281 + 0.893390i $$0.351680\pi$$
$$972$$ 0 0
$$973$$ 0 0
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ − 18.0000i − 0.575871i −0.957650 0.287936i $$-0.907031\pi$$
0.957650 0.287936i $$-0.0929689\pi$$
$$978$$ 0 0
$$979$$ −8.00000 −0.255681
$$980$$ 0 0
$$981$$ −14.0000 −0.446986
$$982$$ 0 0
$$983$$ − 4.00000i − 0.127580i −0.997963 0.0637901i $$-0.979681\pi$$
0.997963 0.0637901i $$-0.0203188\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ 16.0000 0.508770
$$990$$ 0 0
$$991$$ −40.0000 −1.27064 −0.635321 0.772248i $$-0.719132\pi$$
−0.635321 + 0.772248i $$0.719132\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ 6.00000i 0.190022i 0.995476 + 0.0950110i $$0.0302886\pi$$
−0.995476 + 0.0950110i $$0.969711\pi$$
$$998$$ 0 0
$$999$$ 2.00000 0.0632772
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4800.2.f.ba.3649.1 2
4.3 odd 2 4800.2.f.j.3649.2 2
5.2 odd 4 4800.2.a.u.1.1 1
5.3 odd 4 960.2.a.o.1.1 1
5.4 even 2 inner 4800.2.f.ba.3649.2 2
8.3 odd 2 2400.2.f.n.1249.1 2
8.5 even 2 2400.2.f.e.1249.2 2
15.8 even 4 2880.2.a.i.1.1 1
20.3 even 4 960.2.a.f.1.1 1
20.7 even 4 4800.2.a.ca.1.1 1
20.19 odd 2 4800.2.f.j.3649.1 2
24.5 odd 2 7200.2.f.bb.6049.1 2
24.11 even 2 7200.2.f.b.6049.1 2
40.3 even 4 480.2.a.e.1.1 yes 1
40.13 odd 4 480.2.a.b.1.1 1
40.19 odd 2 2400.2.f.n.1249.2 2
40.27 even 4 2400.2.a.j.1.1 1
40.29 even 2 2400.2.f.e.1249.1 2
40.37 odd 4 2400.2.a.y.1.1 1
60.23 odd 4 2880.2.a.j.1.1 1
80.3 even 4 3840.2.k.k.1921.1 2
80.13 odd 4 3840.2.k.p.1921.2 2
80.43 even 4 3840.2.k.k.1921.2 2
80.53 odd 4 3840.2.k.p.1921.1 2
120.29 odd 2 7200.2.f.bb.6049.2 2
120.53 even 4 1440.2.a.k.1.1 1
120.59 even 2 7200.2.f.b.6049.2 2
120.77 even 4 7200.2.a.bg.1.1 1
120.83 odd 4 1440.2.a.j.1.1 1
120.107 odd 4 7200.2.a.u.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
480.2.a.b.1.1 1 40.13 odd 4
480.2.a.e.1.1 yes 1 40.3 even 4
960.2.a.f.1.1 1 20.3 even 4
960.2.a.o.1.1 1 5.3 odd 4
1440.2.a.j.1.1 1 120.83 odd 4
1440.2.a.k.1.1 1 120.53 even 4
2400.2.a.j.1.1 1 40.27 even 4
2400.2.a.y.1.1 1 40.37 odd 4
2400.2.f.e.1249.1 2 40.29 even 2
2400.2.f.e.1249.2 2 8.5 even 2
2400.2.f.n.1249.1 2 8.3 odd 2
2400.2.f.n.1249.2 2 40.19 odd 2
2880.2.a.i.1.1 1 15.8 even 4
2880.2.a.j.1.1 1 60.23 odd 4
3840.2.k.k.1921.1 2 80.3 even 4
3840.2.k.k.1921.2 2 80.43 even 4
3840.2.k.p.1921.1 2 80.53 odd 4
3840.2.k.p.1921.2 2 80.13 odd 4
4800.2.a.u.1.1 1 5.2 odd 4
4800.2.a.ca.1.1 1 20.7 even 4
4800.2.f.j.3649.1 2 20.19 odd 2
4800.2.f.j.3649.2 2 4.3 odd 2
4800.2.f.ba.3649.1 2 1.1 even 1 trivial
4800.2.f.ba.3649.2 2 5.4 even 2 inner
7200.2.a.u.1.1 1 120.107 odd 4
7200.2.a.bg.1.1 1 120.77 even 4
7200.2.f.b.6049.1 2 24.11 even 2
7200.2.f.b.6049.2 2 120.59 even 2
7200.2.f.bb.6049.1 2 24.5 odd 2
7200.2.f.bb.6049.2 2 120.29 odd 2