# Properties

 Label 4800.2.f.ba Level $4800$ Weight $2$ Character orbit 4800.f Analytic conductor $38.328$ Analytic rank $1$ Dimension $2$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [4800,2,Mod(3649,4800)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(4800, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("4800.3649");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$4800 = 2^{6} \cdot 3 \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4800.f (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$38.3281929702$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 480) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - i q^{3} - q^{9} +O(q^{10})$$ q - i * q^3 - q^9 $$q - i q^{3} - q^{9} + 4 q^{11} + 2 i q^{13} - 2 i q^{17} - 8 q^{19} + 4 i q^{23} + i q^{27} - 6 q^{29} - 4 i q^{33} - 2 i q^{37} + 2 q^{39} - 6 q^{41} - 4 i q^{43} + 12 i q^{47} + 7 q^{49} - 2 q^{51} - 6 i q^{53} + 8 i q^{57} - 12 q^{59} - 14 q^{61} - 12 i q^{67} + 4 q^{69} - 2 i q^{73} - 8 q^{79} + q^{81} + 4 i q^{83} + 6 i q^{87} - 2 q^{89} - 14 i q^{97} - 4 q^{99} +O(q^{100})$$ q - i * q^3 - q^9 + 4 * q^11 + 2*i * q^13 - 2*i * q^17 - 8 * q^19 + 4*i * q^23 + i * q^27 - 6 * q^29 - 4*i * q^33 - 2*i * q^37 + 2 * q^39 - 6 * q^41 - 4*i * q^43 + 12*i * q^47 + 7 * q^49 - 2 * q^51 - 6*i * q^53 + 8*i * q^57 - 12 * q^59 - 14 * q^61 - 12*i * q^67 + 4 * q^69 - 2*i * q^73 - 8 * q^79 + q^81 + 4*i * q^83 + 6*i * q^87 - 2 * q^89 - 14*i * q^97 - 4 * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{9}+O(q^{10})$$ 2 * q - 2 * q^9 $$2 q - 2 q^{9} + 8 q^{11} - 16 q^{19} - 12 q^{29} + 4 q^{39} - 12 q^{41} + 14 q^{49} - 4 q^{51} - 24 q^{59} - 28 q^{61} + 8 q^{69} - 16 q^{79} + 2 q^{81} - 4 q^{89} - 8 q^{99}+O(q^{100})$$ 2 * q - 2 * q^9 + 8 * q^11 - 16 * q^19 - 12 * q^29 + 4 * q^39 - 12 * q^41 + 14 * q^49 - 4 * q^51 - 24 * q^59 - 28 * q^61 + 8 * q^69 - 16 * q^79 + 2 * q^81 - 4 * q^89 - 8 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/4800\mathbb{Z}\right)^\times$$.

 $$n$$ $$577$$ $$901$$ $$1601$$ $$4351$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
3649.1
 1.00000i − 1.00000i
0 1.00000i 0 0 0 0 0 −1.00000 0
3649.2 0 1.00000i 0 0 0 0 0 −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4800.2.f.ba 2
4.b odd 2 1 4800.2.f.j 2
5.b even 2 1 inner 4800.2.f.ba 2
5.c odd 4 1 960.2.a.o 1
5.c odd 4 1 4800.2.a.u 1
8.b even 2 1 2400.2.f.e 2
8.d odd 2 1 2400.2.f.n 2
15.e even 4 1 2880.2.a.i 1
20.d odd 2 1 4800.2.f.j 2
20.e even 4 1 960.2.a.f 1
20.e even 4 1 4800.2.a.ca 1
24.f even 2 1 7200.2.f.b 2
24.h odd 2 1 7200.2.f.bb 2
40.e odd 2 1 2400.2.f.n 2
40.f even 2 1 2400.2.f.e 2
40.i odd 4 1 480.2.a.b 1
40.i odd 4 1 2400.2.a.y 1
40.k even 4 1 480.2.a.e yes 1
40.k even 4 1 2400.2.a.j 1
60.l odd 4 1 2880.2.a.j 1
80.i odd 4 1 3840.2.k.p 2
80.j even 4 1 3840.2.k.k 2
80.s even 4 1 3840.2.k.k 2
80.t odd 4 1 3840.2.k.p 2
120.i odd 2 1 7200.2.f.bb 2
120.m even 2 1 7200.2.f.b 2
120.q odd 4 1 1440.2.a.j 1
120.q odd 4 1 7200.2.a.u 1
120.w even 4 1 1440.2.a.k 1
120.w even 4 1 7200.2.a.bg 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
480.2.a.b 1 40.i odd 4 1
480.2.a.e yes 1 40.k even 4 1
960.2.a.f 1 20.e even 4 1
960.2.a.o 1 5.c odd 4 1
1440.2.a.j 1 120.q odd 4 1
1440.2.a.k 1 120.w even 4 1
2400.2.a.j 1 40.k even 4 1
2400.2.a.y 1 40.i odd 4 1
2400.2.f.e 2 8.b even 2 1
2400.2.f.e 2 40.f even 2 1
2400.2.f.n 2 8.d odd 2 1
2400.2.f.n 2 40.e odd 2 1
2880.2.a.i 1 15.e even 4 1
2880.2.a.j 1 60.l odd 4 1
3840.2.k.k 2 80.j even 4 1
3840.2.k.k 2 80.s even 4 1
3840.2.k.p 2 80.i odd 4 1
3840.2.k.p 2 80.t odd 4 1
4800.2.a.u 1 5.c odd 4 1
4800.2.a.ca 1 20.e even 4 1
4800.2.f.j 2 4.b odd 2 1
4800.2.f.j 2 20.d odd 2 1
4800.2.f.ba 2 1.a even 1 1 trivial
4800.2.f.ba 2 5.b even 2 1 inner
7200.2.a.u 1 120.q odd 4 1
7200.2.a.bg 1 120.w even 4 1
7200.2.f.b 2 24.f even 2 1
7200.2.f.b 2 120.m even 2 1
7200.2.f.bb 2 24.h odd 2 1
7200.2.f.bb 2 120.i odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(4800, [\chi])$$:

 $$T_{7}$$ T7 $$T_{11} - 4$$ T11 - 4 $$T_{13}^{2} + 4$$ T13^2 + 4 $$T_{19} + 8$$ T19 + 8 $$T_{23}^{2} + 16$$ T23^2 + 16 $$T_{31}$$ T31

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2} + 1$$
$5$ $$T^{2}$$
$7$ $$T^{2}$$
$11$ $$(T - 4)^{2}$$
$13$ $$T^{2} + 4$$
$17$ $$T^{2} + 4$$
$19$ $$(T + 8)^{2}$$
$23$ $$T^{2} + 16$$
$29$ $$(T + 6)^{2}$$
$31$ $$T^{2}$$
$37$ $$T^{2} + 4$$
$41$ $$(T + 6)^{2}$$
$43$ $$T^{2} + 16$$
$47$ $$T^{2} + 144$$
$53$ $$T^{2} + 36$$
$59$ $$(T + 12)^{2}$$
$61$ $$(T + 14)^{2}$$
$67$ $$T^{2} + 144$$
$71$ $$T^{2}$$
$73$ $$T^{2} + 4$$
$79$ $$(T + 8)^{2}$$
$83$ $$T^{2} + 16$$
$89$ $$(T + 2)^{2}$$
$97$ $$T^{2} + 196$$