Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4800,2,Mod(1,4800)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4800, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4800.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 4800 = 2^{6} \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4800.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(38.3281929702\) |
Analytic rank: | \(1\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 24) |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 4800.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | −1.00000 | −0.577350 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 1.00000 | 0.333333 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −4.00000 | −1.20605 | −0.603023 | − | 0.797724i | \(-0.706037\pi\) | ||||
−0.603023 | + | 0.797724i | \(0.706037\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −2.00000 | −0.554700 | −0.277350 | − | 0.960769i | \(-0.589456\pi\) | ||||
−0.277350 | + | 0.960769i | \(0.589456\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −2.00000 | −0.485071 | −0.242536 | − | 0.970143i | \(-0.577979\pi\) | ||||
−0.242536 | + | 0.970143i | \(0.577979\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 4.00000 | 0.917663 | 0.458831 | − | 0.888523i | \(-0.348268\pi\) | ||||
0.458831 | + | 0.888523i | \(0.348268\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 8.00000 | 1.66812 | 0.834058 | − | 0.551677i | \(-0.186012\pi\) | ||||
0.834058 | + | 0.551677i | \(0.186012\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | −1.00000 | −0.192450 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −6.00000 | −1.11417 | −0.557086 | − | 0.830455i | \(-0.688081\pi\) | ||||
−0.557086 | + | 0.830455i | \(0.688081\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 8.00000 | 1.43684 | 0.718421 | − | 0.695608i | \(-0.244865\pi\) | ||||
0.718421 | + | 0.695608i | \(0.244865\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 4.00000 | 0.696311 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 6.00000 | 0.986394 | 0.493197 | − | 0.869918i | \(-0.335828\pi\) | ||||
0.493197 | + | 0.869918i | \(0.335828\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 2.00000 | 0.320256 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −6.00000 | −0.937043 | −0.468521 | − | 0.883452i | \(-0.655213\pi\) | ||||
−0.468521 | + | 0.883452i | \(0.655213\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 4.00000 | 0.609994 | 0.304997 | − | 0.952353i | \(-0.401344\pi\) | ||||
0.304997 | + | 0.952353i | \(0.401344\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −7.00000 | −1.00000 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 2.00000 | 0.280056 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | −2.00000 | −0.274721 | −0.137361 | − | 0.990521i | \(-0.543862\pi\) | ||||
−0.137361 | + | 0.990521i | \(0.543862\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | −4.00000 | −0.529813 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −4.00000 | −0.520756 | −0.260378 | − | 0.965507i | \(-0.583847\pi\) | ||||
−0.260378 | + | 0.965507i | \(0.583847\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 2.00000 | 0.256074 | 0.128037 | − | 0.991769i | \(-0.459132\pi\) | ||||
0.128037 | + | 0.991769i | \(0.459132\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −4.00000 | −0.488678 | −0.244339 | − | 0.969690i | \(-0.578571\pi\) | ||||
−0.244339 | + | 0.969690i | \(0.578571\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | −8.00000 | −0.963087 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 8.00000 | 0.949425 | 0.474713 | − | 0.880141i | \(-0.342552\pi\) | ||||
0.474713 | + | 0.880141i | \(0.342552\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | −10.0000 | −1.17041 | −0.585206 | − | 0.810885i | \(-0.698986\pi\) | ||||
−0.585206 | + | 0.810885i | \(0.698986\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −8.00000 | −0.900070 | −0.450035 | − | 0.893011i | \(-0.648589\pi\) | ||||
−0.450035 | + | 0.893011i | \(0.648589\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 1.00000 | 0.111111 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −4.00000 | −0.439057 | −0.219529 | − | 0.975606i | \(-0.570452\pi\) | ||||
−0.219529 | + | 0.975606i | \(0.570452\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 6.00000 | 0.643268 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −6.00000 | −0.635999 | −0.317999 | − | 0.948091i | \(-0.603011\pi\) | ||||
−0.317999 | + | 0.948091i | \(0.603011\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | −8.00000 | −0.829561 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | −2.00000 | −0.203069 | −0.101535 | − | 0.994832i | \(-0.532375\pi\) | ||||
−0.101535 | + | 0.994832i | \(0.532375\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | −4.00000 | −0.402015 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 18.0000 | 1.79107 | 0.895533 | − | 0.444994i | \(-0.146794\pi\) | ||||
0.895533 | + | 0.444994i | \(0.146794\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | −16.0000 | −1.57653 | −0.788263 | − | 0.615338i | \(-0.789020\pi\) | ||||
−0.788263 | + | 0.615338i | \(0.789020\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | −12.0000 | −1.16008 | −0.580042 | − | 0.814587i | \(-0.696964\pi\) | ||||
−0.580042 | + | 0.814587i | \(0.696964\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 2.00000 | 0.191565 | 0.0957826 | − | 0.995402i | \(-0.469465\pi\) | ||||
0.0957826 | + | 0.995402i | \(0.469465\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | −6.00000 | −0.569495 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −18.0000 | −1.69330 | −0.846649 | − | 0.532152i | \(-0.821383\pi\) | ||||
−0.846649 | + | 0.532152i | \(0.821383\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | −2.00000 | −0.184900 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 5.00000 | 0.454545 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 6.00000 | 0.541002 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 8.00000 | 0.709885 | 0.354943 | − | 0.934888i | \(-0.384500\pi\) | ||||
0.354943 | + | 0.934888i | \(0.384500\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | −4.00000 | −0.352180 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 4.00000 | 0.349482 | 0.174741 | − | 0.984614i | \(-0.444091\pi\) | ||||
0.174741 | + | 0.984614i | \(0.444091\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 6.00000 | 0.512615 | 0.256307 | − | 0.966595i | \(-0.417494\pi\) | ||||
0.256307 | + | 0.966595i | \(0.417494\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 12.0000 | 1.01783 | 0.508913 | − | 0.860818i | \(-0.330047\pi\) | ||||
0.508913 | + | 0.860818i | \(0.330047\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 8.00000 | 0.668994 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 7.00000 | 0.577350 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −14.0000 | −1.14692 | −0.573462 | − | 0.819232i | \(-0.694400\pi\) | ||||
−0.573462 | + | 0.819232i | \(0.694400\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −16.0000 | −1.30206 | −0.651031 | − | 0.759051i | \(-0.725663\pi\) | ||||
−0.651031 | + | 0.759051i | \(0.725663\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | −2.00000 | −0.161690 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | −2.00000 | −0.159617 | −0.0798087 | − | 0.996810i | \(-0.525431\pi\) | ||||
−0.0798087 | + | 0.996810i | \(0.525431\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 2.00000 | 0.158610 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 12.0000 | 0.939913 | 0.469956 | − | 0.882690i | \(-0.344270\pi\) | ||||
0.469956 | + | 0.882690i | \(0.344270\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −24.0000 | −1.85718 | −0.928588 | − | 0.371113i | \(-0.878976\pi\) | ||||
−0.928588 | + | 0.371113i | \(0.878976\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −9.00000 | −0.692308 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 4.00000 | 0.305888 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 6.00000 | 0.456172 | 0.228086 | − | 0.973641i | \(-0.426753\pi\) | ||||
0.228086 | + | 0.973641i | \(0.426753\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 4.00000 | 0.300658 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −12.0000 | −0.896922 | −0.448461 | − | 0.893802i | \(-0.648028\pi\) | ||||
−0.448461 | + | 0.893802i | \(0.648028\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −6.00000 | −0.445976 | −0.222988 | − | 0.974821i | \(-0.571581\pi\) | ||||
−0.222988 | + | 0.974821i | \(0.571581\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | −2.00000 | −0.147844 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 8.00000 | 0.585018 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | −2.00000 | −0.143963 | −0.0719816 | − | 0.997406i | \(-0.522932\pi\) | ||||
−0.0719816 | + | 0.997406i | \(0.522932\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | −18.0000 | −1.28245 | −0.641223 | − | 0.767354i | \(-0.721573\pi\) | ||||
−0.641223 | + | 0.767354i | \(0.721573\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 16.0000 | 1.13421 | 0.567105 | − | 0.823646i | \(-0.308063\pi\) | ||||
0.567105 | + | 0.823646i | \(0.308063\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 4.00000 | 0.282138 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 8.00000 | 0.556038 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −16.0000 | −1.10674 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 20.0000 | 1.37686 | 0.688428 | − | 0.725304i | \(-0.258301\pi\) | ||||
0.688428 | + | 0.725304i | \(0.258301\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | −8.00000 | −0.548151 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 10.0000 | 0.675737 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 4.00000 | 0.269069 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 8.00000 | 0.535720 | 0.267860 | − | 0.963458i | \(-0.413684\pi\) | ||||
0.267860 | + | 0.963458i | \(0.413684\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 12.0000 | 0.796468 | 0.398234 | − | 0.917284i | \(-0.369623\pi\) | ||||
0.398234 | + | 0.917284i | \(0.369623\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −22.0000 | −1.45380 | −0.726900 | − | 0.686743i | \(-0.759040\pi\) | ||||
−0.726900 | + | 0.686743i | \(0.759040\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −10.0000 | −0.655122 | −0.327561 | − | 0.944830i | \(-0.606227\pi\) | ||||
−0.327561 | + | 0.944830i | \(0.606227\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 8.00000 | 0.519656 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −16.0000 | −1.03495 | −0.517477 | − | 0.855697i | \(-0.673129\pi\) | ||||
−0.517477 | + | 0.855697i | \(0.673129\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 18.0000 | 1.15948 | 0.579741 | − | 0.814801i | \(-0.303154\pi\) | ||||
0.579741 | + | 0.814801i | \(0.303154\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | −1.00000 | −0.0641500 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | −8.00000 | −0.509028 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 4.00000 | 0.253490 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −20.0000 | −1.26239 | −0.631194 | − | 0.775625i | \(-0.717435\pi\) | ||||
−0.631194 | + | 0.775625i | \(0.717435\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | −32.0000 | −2.01182 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −2.00000 | −0.124757 | −0.0623783 | − | 0.998053i | \(-0.519869\pi\) | ||||
−0.0623783 | + | 0.998053i | \(0.519869\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | −6.00000 | −0.371391 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 8.00000 | 0.493301 | 0.246651 | − | 0.969104i | \(-0.420670\pi\) | ||||
0.246651 | + | 0.969104i | \(0.420670\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 6.00000 | 0.367194 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 10.0000 | 0.609711 | 0.304855 | − | 0.952399i | \(-0.401392\pi\) | ||||
0.304855 | + | 0.952399i | \(0.401392\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 8.00000 | 0.485965 | 0.242983 | − | 0.970031i | \(-0.421874\pi\) | ||||
0.242983 | + | 0.970031i | \(0.421874\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −26.0000 | −1.56219 | −0.781094 | − | 0.624413i | \(-0.785338\pi\) | ||||
−0.781094 | + | 0.624413i | \(0.785338\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 8.00000 | 0.478947 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 26.0000 | 1.55103 | 0.775515 | − | 0.631329i | \(-0.217490\pi\) | ||||
0.775515 | + | 0.631329i | \(0.217490\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | −28.0000 | −1.66443 | −0.832214 | − | 0.554455i | \(-0.812927\pi\) | ||||
−0.832214 | + | 0.554455i | \(0.812927\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −13.0000 | −0.764706 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 2.00000 | 0.117242 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −18.0000 | −1.05157 | −0.525786 | − | 0.850617i | \(-0.676229\pi\) | ||||
−0.525786 | + | 0.850617i | \(0.676229\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 4.00000 | 0.232104 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −16.0000 | −0.925304 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | −18.0000 | −1.03407 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 12.0000 | 0.684876 | 0.342438 | − | 0.939540i | \(-0.388747\pi\) | ||||
0.342438 | + | 0.939540i | \(0.388747\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 16.0000 | 0.910208 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −24.0000 | −1.36092 | −0.680458 | − | 0.732787i | \(-0.738219\pi\) | ||||
−0.680458 | + | 0.732787i | \(0.738219\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 6.00000 | 0.339140 | 0.169570 | − | 0.985518i | \(-0.445762\pi\) | ||||
0.169570 | + | 0.985518i | \(0.445762\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 6.00000 | 0.336994 | 0.168497 | − | 0.985702i | \(-0.446109\pi\) | ||||
0.168497 | + | 0.985702i | \(0.446109\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 24.0000 | 1.34374 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 12.0000 | 0.669775 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | −8.00000 | −0.445132 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | −2.00000 | −0.110600 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −20.0000 | −1.09930 | −0.549650 | − | 0.835395i | \(-0.685239\pi\) | ||||
−0.549650 | + | 0.835395i | \(0.685239\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 6.00000 | 0.328798 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −18.0000 | −0.980522 | −0.490261 | − | 0.871576i | \(-0.663099\pi\) | ||||
−0.490261 | + | 0.871576i | \(0.663099\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 18.0000 | 0.977626 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −32.0000 | −1.73290 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −12.0000 | −0.644194 | −0.322097 | − | 0.946707i | \(-0.604388\pi\) | ||||
−0.322097 | + | 0.946707i | \(0.604388\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −30.0000 | −1.60586 | −0.802932 | − | 0.596071i | \(-0.796728\pi\) | ||||
−0.802932 | + | 0.596071i | \(0.796728\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 2.00000 | 0.106752 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −2.00000 | −0.106449 | −0.0532246 | − | 0.998583i | \(-0.516950\pi\) | ||||
−0.0532246 | + | 0.998583i | \(0.516950\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −24.0000 | −1.26667 | −0.633336 | − | 0.773877i | \(-0.718315\pi\) | ||||
−0.633336 | + | 0.773877i | \(0.718315\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −3.00000 | −0.157895 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | −5.00000 | −0.262432 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 8.00000 | 0.417597 | 0.208798 | − | 0.977959i | \(-0.433045\pi\) | ||||
0.208798 | + | 0.977959i | \(0.433045\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | −6.00000 | −0.312348 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | −10.0000 | −0.517780 | −0.258890 | − | 0.965907i | \(-0.583357\pi\) | ||||
−0.258890 | + | 0.965907i | \(0.583357\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 12.0000 | 0.618031 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −20.0000 | −1.02733 | −0.513665 | − | 0.857991i | \(-0.671713\pi\) | ||||
−0.513665 | + | 0.857991i | \(0.671713\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | −8.00000 | −0.409852 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 4.00000 | 0.203331 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 2.00000 | 0.101404 | 0.0507020 | − | 0.998714i | \(-0.483854\pi\) | ||||
0.0507020 | + | 0.998714i | \(0.483854\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −16.0000 | −0.809155 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | −4.00000 | −0.201773 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 14.0000 | 0.702640 | 0.351320 | − | 0.936255i | \(-0.385733\pi\) | ||||
0.351320 | + | 0.936255i | \(0.385733\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −30.0000 | −1.49813 | −0.749064 | − | 0.662497i | \(-0.769497\pi\) | ||||
−0.749064 | + | 0.662497i | \(0.769497\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | −16.0000 | −0.797017 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −24.0000 | −1.18964 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −6.00000 | −0.296681 | −0.148340 | − | 0.988936i | \(-0.547393\pi\) | ||||
−0.148340 | + | 0.988936i | \(0.547393\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | −6.00000 | −0.295958 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | −12.0000 | −0.587643 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −12.0000 | −0.586238 | −0.293119 | − | 0.956076i | \(-0.594693\pi\) | ||||
−0.293119 | + | 0.956076i | \(0.594693\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 10.0000 | 0.487370 | 0.243685 | − | 0.969854i | \(-0.421644\pi\) | ||||
0.243685 | + | 0.969854i | \(0.421644\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | −8.00000 | −0.386244 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 32.0000 | 1.54139 | 0.770693 | − | 0.637207i | \(-0.219910\pi\) | ||||
0.770693 | + | 0.637207i | \(0.219910\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 14.0000 | 0.672797 | 0.336399 | − | 0.941720i | \(-0.390791\pi\) | ||||
0.336399 | + | 0.941720i | \(0.390791\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 32.0000 | 1.53077 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | −7.00000 | −0.333333 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 20.0000 | 0.950229 | 0.475114 | − | 0.879924i | \(-0.342407\pi\) | ||||
0.475114 | + | 0.879924i | \(0.342407\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 14.0000 | 0.662177 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −14.0000 | −0.660701 | −0.330350 | − | 0.943858i | \(-0.607167\pi\) | ||||
−0.330350 | + | 0.943858i | \(0.607167\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 24.0000 | 1.13012 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 16.0000 | 0.751746 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 22.0000 | 1.02912 | 0.514558 | − | 0.857455i | \(-0.327956\pi\) | ||||
0.514558 | + | 0.857455i | \(0.327956\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 2.00000 | 0.0933520 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 26.0000 | 1.21094 | 0.605470 | − | 0.795868i | \(-0.292985\pi\) | ||||
0.605470 | + | 0.795868i | \(0.292985\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −8.00000 | −0.371792 | −0.185896 | − | 0.982569i | \(-0.559519\pi\) | ||||
−0.185896 | + | 0.982569i | \(0.559519\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −36.0000 | −1.66588 | −0.832941 | − | 0.553362i | \(-0.813345\pi\) | ||||
−0.832941 | + | 0.553362i | \(0.813345\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 2.00000 | 0.0921551 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | −16.0000 | −0.735681 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | −2.00000 | −0.0915737 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −16.0000 | −0.731059 | −0.365529 | − | 0.930800i | \(-0.619112\pi\) | ||||
−0.365529 | + | 0.930800i | \(0.619112\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −12.0000 | −0.547153 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 32.0000 | 1.45006 | 0.725029 | − | 0.688718i | \(-0.241826\pi\) | ||||
0.725029 | + | 0.688718i | \(0.241826\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | −12.0000 | −0.542659 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 12.0000 | 0.541552 | 0.270776 | − | 0.962642i | \(-0.412720\pi\) | ||||
0.270776 | + | 0.962642i | \(0.412720\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 12.0000 | 0.540453 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −12.0000 | −0.537194 | −0.268597 | − | 0.963253i | \(-0.586560\pi\) | ||||
−0.268597 | + | 0.963253i | \(0.586560\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 24.0000 | 1.07224 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −24.0000 | −1.07011 | −0.535054 | − | 0.844818i | \(-0.679709\pi\) | ||||
−0.535054 | + | 0.844818i | \(0.679709\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 9.00000 | 0.399704 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −6.00000 | −0.265945 | −0.132973 | − | 0.991120i | \(-0.542452\pi\) | ||||
−0.132973 | + | 0.991120i | \(0.542452\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | −4.00000 | −0.176604 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | −6.00000 | −0.263371 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 26.0000 | 1.13908 | 0.569540 | − | 0.821963i | \(-0.307121\pi\) | ||||
0.569540 | + | 0.821963i | \(0.307121\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 4.00000 | 0.174908 | 0.0874539 | − | 0.996169i | \(-0.472127\pi\) | ||||
0.0874539 | + | 0.996169i | \(0.472127\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | −16.0000 | −0.696971 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 41.0000 | 1.78261 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | −4.00000 | −0.173585 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 12.0000 | 0.519778 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 12.0000 | 0.517838 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 28.0000 | 1.20605 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 18.0000 | 0.773880 | 0.386940 | − | 0.922105i | \(-0.373532\pi\) | ||||
0.386940 | + | 0.922105i | \(0.373532\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 6.00000 | 0.257485 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 44.0000 | 1.88130 | 0.940652 | − | 0.339372i | \(-0.110215\pi\) | ||||
0.940652 | + | 0.339372i | \(0.110215\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 2.00000 | 0.0853579 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −24.0000 | −1.02243 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | −26.0000 | −1.10166 | −0.550828 | − | 0.834619i | \(-0.685688\pi\) | ||||
−0.550828 | + | 0.834619i | \(0.685688\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −8.00000 | −0.338364 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | −8.00000 | −0.337760 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 28.0000 | 1.18006 | 0.590030 | − | 0.807382i | \(-0.299116\pi\) | ||||
0.590030 | + | 0.807382i | \(0.299116\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 10.0000 | 0.419222 | 0.209611 | − | 0.977785i | \(-0.432780\pi\) | ||||
0.209611 | + | 0.977785i | \(0.432780\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −36.0000 | −1.50655 | −0.753277 | − | 0.657704i | \(-0.771528\pi\) | ||||
−0.753277 | + | 0.657704i | \(0.771528\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −2.00000 | −0.0832611 | −0.0416305 | − | 0.999133i | \(-0.513255\pi\) | ||||
−0.0416305 | + | 0.999133i | \(0.513255\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 2.00000 | 0.0831172 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 8.00000 | 0.331326 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −44.0000 | −1.81607 | −0.908037 | − | 0.418890i | \(-0.862419\pi\) | ||||
−0.908037 | + | 0.418890i | \(0.862419\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 32.0000 | 1.31854 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 18.0000 | 0.740421 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 14.0000 | 0.574911 | 0.287456 | − | 0.957794i | \(-0.407191\pi\) | ||||
0.287456 | + | 0.957794i | \(0.407191\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | −16.0000 | −0.654836 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 24.0000 | 0.980613 | 0.490307 | − | 0.871550i | \(-0.336885\pi\) | ||||
0.490307 | + | 0.871550i | \(0.336885\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −38.0000 | −1.55005 | −0.775026 | − | 0.631929i | \(-0.782263\pi\) | ||||
−0.775026 | + | 0.631929i | \(0.782263\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | −4.00000 | −0.162893 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 40.0000 | 1.62355 | 0.811775 | − | 0.583970i | \(-0.198502\pi\) | ||||
0.811775 | + | 0.583970i | \(0.198502\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 38.0000 | 1.53481 | 0.767403 | − | 0.641165i | \(-0.221549\pi\) | ||||
0.767403 | + | 0.641165i | \(0.221549\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | −42.0000 | −1.69086 | −0.845428 | − | 0.534089i | \(-0.820655\pi\) | ||||
−0.845428 | + | 0.534089i | \(0.820655\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 44.0000 | 1.76851 | 0.884255 | − | 0.467005i | \(-0.154667\pi\) | ||||
0.884255 | + | 0.467005i | \(0.154667\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | −8.00000 | −0.321029 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 16.0000 | 0.638978 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −12.0000 | −0.478471 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 16.0000 | 0.636950 | 0.318475 | − | 0.947931i | \(-0.396829\pi\) | ||||
0.318475 | + | 0.947931i | \(0.396829\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | −20.0000 | −0.794929 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 14.0000 | 0.554700 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 8.00000 | 0.316475 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −14.0000 | −0.552967 | −0.276483 | − | 0.961019i | \(-0.589169\pi\) | ||||
−0.276483 | + | 0.961019i | \(0.589169\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 12.0000 | 0.473234 | 0.236617 | − | 0.971603i | \(-0.423961\pi\) | ||||
0.236617 | + | 0.971603i | \(0.423961\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −8.00000 | −0.314512 | −0.157256 | − | 0.987558i | \(-0.550265\pi\) | ||||
−0.157256 | + | 0.987558i | \(0.550265\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 16.0000 | 0.628055 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 6.00000 | 0.234798 | 0.117399 | − | 0.993085i | \(-0.462544\pi\) | ||||
0.117399 | + | 0.993085i | \(0.462544\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | −10.0000 | −0.390137 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −12.0000 | −0.467454 | −0.233727 | − | 0.972302i | \(-0.575092\pi\) | ||||
−0.233727 | + | 0.972302i | \(0.575092\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 10.0000 | 0.388955 | 0.194477 | − | 0.980907i | \(-0.437699\pi\) | ||||
0.194477 | + | 0.980907i | \(0.437699\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | −4.00000 | −0.155347 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | −48.0000 | −1.85857 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | −8.00000 | −0.309298 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −8.00000 | −0.308837 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −34.0000 | −1.31060 | −0.655302 | − | 0.755367i | \(-0.727459\pi\) | ||||
−0.655302 | + | 0.755367i | \(0.727459\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −2.00000 | −0.0768662 | −0.0384331 | − | 0.999261i | \(-0.512237\pi\) | ||||
−0.0384331 | + | 0.999261i | \(0.512237\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | −12.0000 | −0.459841 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 4.00000 | 0.153056 | 0.0765279 | − | 0.997067i | \(-0.475617\pi\) | ||||
0.0765279 | + | 0.997067i | \(0.475617\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 22.0000 | 0.839352 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 4.00000 | 0.152388 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 4.00000 | 0.152167 | 0.0760836 | − | 0.997101i | \(-0.475758\pi\) | ||||
0.0760836 | + | 0.997101i | \(0.475758\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 12.0000 | 0.454532 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 10.0000 | 0.378235 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −6.00000 | −0.226617 | −0.113308 | − | 0.993560i | \(-0.536145\pi\) | ||||
−0.113308 | + | 0.993560i | \(0.536145\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 24.0000 | 0.905177 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 10.0000 | 0.375558 | 0.187779 | − | 0.982211i | \(-0.439871\pi\) | ||||
0.187779 | + | 0.982211i | \(0.439871\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | −8.00000 | −0.300023 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 64.0000 | 2.39682 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 16.0000 | 0.597531 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −32.0000 | −1.19340 | −0.596699 | − | 0.802465i | \(-0.703521\pi\) | ||||
−0.596699 | + | 0.802465i | \(0.703521\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | −18.0000 | −0.669427 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −48.0000 | −1.78022 | −0.890111 | − | 0.455744i | \(-0.849373\pi\) | ||||
−0.890111 | + | 0.455744i | \(0.849373\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 1.00000 | 0.0370370 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −8.00000 | −0.295891 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 14.0000 | 0.517102 | 0.258551 | − | 0.965998i | \(-0.416755\pi\) | ||||
0.258551 | + | 0.965998i | \(0.416755\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 16.0000 | 0.589368 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 4.00000 | 0.147142 | 0.0735712 | − | 0.997290i | \(-0.476560\pi\) | ||||
0.0735712 | + | 0.997290i | \(0.476560\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 8.00000 | 0.293887 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 8.00000 | 0.293492 | 0.146746 | − | 0.989174i | \(-0.453120\pi\) | ||||
0.146746 | + | 0.989174i | \(0.453120\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | −4.00000 | −0.146352 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 24.0000 | 0.875772 | 0.437886 | − | 0.899030i | \(-0.355727\pi\) | ||||
0.437886 | + | 0.899030i | \(0.355727\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 20.0000 | 0.728841 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 38.0000 | 1.38113 | 0.690567 | − | 0.723269i | \(-0.257361\pi\) | ||||
0.690567 | + | 0.723269i | \(0.257361\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 32.0000 | 1.16153 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −22.0000 | −0.797499 | −0.398750 | − | 0.917060i | \(-0.630556\pi\) | ||||
−0.398750 | + | 0.917060i | \(0.630556\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 8.00000 | 0.288863 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 2.00000 | 0.0721218 | 0.0360609 | − | 0.999350i | \(-0.488519\pi\) | ||||
0.0360609 | + | 0.999350i | \(0.488519\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 2.00000 | 0.0720282 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −18.0000 | −0.647415 | −0.323708 | − | 0.946157i | \(-0.604929\pi\) | ||||
−0.323708 | + | 0.946157i | \(0.604929\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −24.0000 | −0.859889 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | −32.0000 | −1.14505 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 6.00000 | 0.214423 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 28.0000 | 0.998092 | 0.499046 | − | 0.866575i | \(-0.333684\pi\) | ||||
0.499046 | + | 0.866575i | \(0.333684\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | −8.00000 | −0.284808 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −4.00000 | −0.142044 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 22.0000 | 0.779280 | 0.389640 | − | 0.920967i | \(-0.372599\pi\) | ||||
0.389640 | + | 0.920967i | \(0.372599\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | −6.00000 | −0.212000 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 40.0000 | 1.41157 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | −10.0000 | −0.352017 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 26.0000 | 0.914111 | 0.457056 | − | 0.889438i | \(-0.348904\pi\) | ||||
0.457056 | + | 0.889438i | \(0.348904\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −4.00000 | −0.140459 | −0.0702295 | − | 0.997531i | \(-0.522373\pi\) | ||||
−0.0702295 | + | 0.997531i | \(0.522373\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | −8.00000 | −0.280572 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 16.0000 | 0.559769 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −30.0000 | −1.04701 | −0.523504 | − | 0.852023i | \(-0.675375\pi\) | ||||
−0.523504 | + | 0.852023i | \(0.675375\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 16.0000 | 0.557725 | 0.278862 | − | 0.960331i | \(-0.410043\pi\) | ||||
0.278862 | + | 0.960331i | \(0.410043\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −28.0000 | −0.973655 | −0.486828 | − | 0.873498i | \(-0.661846\pi\) | ||||
−0.486828 | + | 0.873498i | \(0.661846\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 50.0000 | 1.73657 | 0.868286 | − | 0.496064i | \(-0.165222\pi\) | ||||
0.868286 | + | 0.496064i | \(0.165222\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 26.0000 | 0.901930 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 14.0000 | 0.485071 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | −8.00000 | −0.276520 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −24.0000 | −0.828572 | −0.414286 | − | 0.910147i | \(-0.635969\pi\) | ||||
−0.414286 | + | 0.910147i | \(0.635969\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 7.00000 | 0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | −26.0000 | −0.895488 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 28.0000 | 0.960958 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 48.0000 | 1.64542 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | −10.0000 | −0.342393 | −0.171197 | − | 0.985237i | \(-0.554763\pi\) | ||||
−0.171197 | + | 0.985237i | \(0.554763\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −42.0000 | −1.43469 | −0.717346 | − | 0.696717i | \(-0.754643\pi\) | ||||
−0.717346 | + | 0.696717i | \(0.754643\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 12.0000 | 0.409435 | 0.204717 | − | 0.978821i | \(-0.434372\pi\) | ||||
0.204717 | + | 0.978821i | \(0.434372\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 32.0000 | 1.08929 | 0.544646 | − | 0.838666i | \(-0.316664\pi\) | ||||
0.544646 | + | 0.838666i | \(0.316664\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 13.0000 | 0.441503 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 32.0000 | 1.08553 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 8.00000 | 0.271070 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | −2.00000 | −0.0676897 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −18.0000 | −0.607817 | −0.303908 | − | 0.952701i | \(-0.598292\pi\) | ||||
−0.303908 | + | 0.952701i | \(0.598292\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 18.0000 | 0.607125 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 50.0000 | 1.68454 | 0.842271 | − | 0.539054i | \(-0.181218\pi\) | ||||
0.842271 | + | 0.539054i | \(0.181218\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −4.00000 | −0.134611 | −0.0673054 | − | 0.997732i | \(-0.521440\pi\) | ||||
−0.0673054 | + | 0.997732i | \(0.521440\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −8.00000 | −0.268614 | −0.134307 | − | 0.990940i | \(-0.542881\pi\) | ||||
−0.134307 | + | 0.990940i | \(0.542881\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | −4.00000 | −0.134005 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 16.0000 | 0.534224 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −48.0000 | −1.60089 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 4.00000 | 0.133259 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 4.00000 | 0.132818 | 0.0664089 | − | 0.997792i | \(-0.478846\pi\) | ||||
0.0664089 | + | 0.997792i | \(0.478846\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 18.0000 | 0.597022 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 16.0000 | 0.530104 | 0.265052 | − | 0.964234i | \(-0.414611\pi\) | ||||
0.265052 | + | 0.964234i | \(0.414611\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 16.0000 | 0.529523 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 16.0000 | 0.527791 | 0.263896 | − | 0.964551i | \(-0.414993\pi\) | ||||
0.263896 | + | 0.964551i | \(0.414993\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | −12.0000 | −0.395413 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −16.0000 | −0.526646 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | −16.0000 | −0.525509 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 50.0000 | 1.64045 | 0.820223 | − | 0.572043i | \(-0.193849\pi\) | ||||
0.820223 | + | 0.572043i | \(0.193849\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −28.0000 | −0.917663 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 24.0000 | 0.785725 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | −42.0000 | −1.37208 | −0.686040 | − | 0.727564i | \(-0.740653\pi\) | ||||
−0.686040 | + | 0.727564i | \(0.740653\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | −6.00000 | −0.195803 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −6.00000 | −0.195594 | −0.0977972 | − | 0.995206i | \(-0.531180\pi\) | ||||
−0.0977972 | + | 0.995206i | \(0.531180\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | −48.0000 | −1.56310 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 12.0000 | 0.389948 | 0.194974 | − | 0.980808i | \(-0.437538\pi\) | ||||
0.194974 | + | 0.980808i | \(0.437538\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 20.0000 | 0.649227 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | −6.00000 | −0.194563 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 54.0000 | 1.74923 | 0.874616 | − | 0.484817i | \(-0.161114\pi\) | ||||
0.874616 | + | 0.484817i | \(0.161114\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | −24.0000 | −0.775810 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 33.0000 | 1.06452 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | −12.0000 | −0.386695 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 16.0000 | 0.514525 | 0.257263 | − | 0.966342i | \(-0.417179\pi\) | ||||
0.257263 | + | 0.966342i | \(0.417179\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 8.00000 | 0.256997 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −36.0000 | −1.15529 | −0.577647 | − | 0.816286i | \(-0.696029\pi\) | ||||
−0.577647 | + | 0.816286i | \(0.696029\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 30.0000 | 0.959785 | 0.479893 | − | 0.877327i | \(-0.340676\pi\) | ||||
0.479893 | + | 0.877327i | \(0.340676\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 24.0000 | 0.767043 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 2.00000 | 0.0638551 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 24.0000 | 0.765481 | 0.382741 | − | 0.923856i | \(-0.374980\pi\) | ||||
0.382741 | + | 0.923856i | \(0.374980\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 32.0000 | 1.01754 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 40.0000 | 1.27064 | 0.635321 | − | 0.772248i | \(-0.280868\pi\) | ||||
0.635321 | + | 0.772248i | \(0.280868\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 20.0000 | 0.634681 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | −26.0000 | −0.823428 | −0.411714 | − | 0.911313i | \(-0.635070\pi\) | ||||
−0.411714 | + | 0.911313i | \(0.635070\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | −6.00000 | −0.189832 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))