# Properties

 Label 4800.2.a.n Level $4800$ Weight $2$ Character orbit 4800.a Self dual yes Analytic conductor $38.328$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$4800 = 2^{6} \cdot 3 \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4800.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$38.3281929702$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 120) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q - q^{3} - 2 q^{7} + q^{9}+O(q^{10})$$ q - q^3 - 2 * q^7 + q^9 $$q - q^{3} - 2 q^{7} + q^{9} + 2 q^{11} + 2 q^{13} - 6 q^{17} + 8 q^{19} + 2 q^{21} - 4 q^{23} - q^{27} - 8 q^{29} - 2 q^{33} - 10 q^{37} - 2 q^{39} + 2 q^{41} + 12 q^{43} - 3 q^{49} + 6 q^{51} + 10 q^{53} - 8 q^{57} - 6 q^{59} - 2 q^{61} - 2 q^{63} + 8 q^{67} + 4 q^{69} + 4 q^{71} - 4 q^{73} - 4 q^{77} + 8 q^{79} + q^{81} - 4 q^{83} + 8 q^{87} + 6 q^{89} - 4 q^{91} - 8 q^{97} + 2 q^{99}+O(q^{100})$$ q - q^3 - 2 * q^7 + q^9 + 2 * q^11 + 2 * q^13 - 6 * q^17 + 8 * q^19 + 2 * q^21 - 4 * q^23 - q^27 - 8 * q^29 - 2 * q^33 - 10 * q^37 - 2 * q^39 + 2 * q^41 + 12 * q^43 - 3 * q^49 + 6 * q^51 + 10 * q^53 - 8 * q^57 - 6 * q^59 - 2 * q^61 - 2 * q^63 + 8 * q^67 + 4 * q^69 + 4 * q^71 - 4 * q^73 - 4 * q^77 + 8 * q^79 + q^81 - 4 * q^83 + 8 * q^87 + 6 * q^89 - 4 * q^91 - 8 * q^97 + 2 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 −1.00000 0 0 0 −2.00000 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$1$$
$$5$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4800.2.a.n 1
4.b odd 2 1 4800.2.a.ch 1
5.b even 2 1 4800.2.a.ci 1
5.c odd 4 2 960.2.f.b 2
8.b even 2 1 1200.2.a.l 1
8.d odd 2 1 600.2.a.d 1
15.e even 4 2 2880.2.f.r 2
20.d odd 2 1 4800.2.a.k 1
20.e even 4 2 960.2.f.a 2
24.f even 2 1 1800.2.a.q 1
24.h odd 2 1 3600.2.a.n 1
40.e odd 2 1 600.2.a.g 1
40.f even 2 1 1200.2.a.h 1
40.i odd 4 2 240.2.f.c 2
40.k even 4 2 120.2.f.a 2
60.l odd 4 2 2880.2.f.t 2
80.i odd 4 2 3840.2.d.v 2
80.j even 4 2 3840.2.d.ba 2
80.s even 4 2 3840.2.d.d 2
80.t odd 4 2 3840.2.d.m 2
120.i odd 2 1 3600.2.a.bi 1
120.m even 2 1 1800.2.a.g 1
120.q odd 4 2 360.2.f.a 2
120.w even 4 2 720.2.f.b 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.2.f.a 2 40.k even 4 2
240.2.f.c 2 40.i odd 4 2
360.2.f.a 2 120.q odd 4 2
600.2.a.d 1 8.d odd 2 1
600.2.a.g 1 40.e odd 2 1
720.2.f.b 2 120.w even 4 2
960.2.f.a 2 20.e even 4 2
960.2.f.b 2 5.c odd 4 2
1200.2.a.h 1 40.f even 2 1
1200.2.a.l 1 8.b even 2 1
1800.2.a.g 1 120.m even 2 1
1800.2.a.q 1 24.f even 2 1
2880.2.f.r 2 15.e even 4 2
2880.2.f.t 2 60.l odd 4 2
3600.2.a.n 1 24.h odd 2 1
3600.2.a.bi 1 120.i odd 2 1
3840.2.d.d 2 80.s even 4 2
3840.2.d.m 2 80.t odd 4 2
3840.2.d.v 2 80.i odd 4 2
3840.2.d.ba 2 80.j even 4 2
4800.2.a.k 1 20.d odd 2 1
4800.2.a.n 1 1.a even 1 1 trivial
4800.2.a.ch 1 4.b odd 2 1
4800.2.a.ci 1 5.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(4800))$$:

 $$T_{7} + 2$$ T7 + 2 $$T_{11} - 2$$ T11 - 2 $$T_{13} - 2$$ T13 - 2 $$T_{19} - 8$$ T19 - 8 $$T_{23} + 4$$ T23 + 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T + 1$$
$5$ $$T$$
$7$ $$T + 2$$
$11$ $$T - 2$$
$13$ $$T - 2$$
$17$ $$T + 6$$
$19$ $$T - 8$$
$23$ $$T + 4$$
$29$ $$T + 8$$
$31$ $$T$$
$37$ $$T + 10$$
$41$ $$T - 2$$
$43$ $$T - 12$$
$47$ $$T$$
$53$ $$T - 10$$
$59$ $$T + 6$$
$61$ $$T + 2$$
$67$ $$T - 8$$
$71$ $$T - 4$$
$73$ $$T + 4$$
$79$ $$T - 8$$
$83$ $$T + 4$$
$89$ $$T - 6$$
$97$ $$T + 8$$