Properties

Label 4800.2.a.l.1.1
Level $4800$
Weight $2$
Character 4800.1
Self dual yes
Analytic conductor $38.328$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 4800 = 2^{6} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4800.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(38.3281929702\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 4800.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{3} -2.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{3} -2.00000 q^{7} +1.00000 q^{9} -2.00000 q^{11} +6.00000 q^{13} -2.00000 q^{17} +2.00000 q^{21} +4.00000 q^{23} -1.00000 q^{27} -8.00000 q^{31} +2.00000 q^{33} +2.00000 q^{37} -6.00000 q^{39} +2.00000 q^{41} -4.00000 q^{43} +8.00000 q^{47} -3.00000 q^{49} +2.00000 q^{51} +6.00000 q^{53} -10.0000 q^{59} -2.00000 q^{61} -2.00000 q^{63} -8.00000 q^{67} -4.00000 q^{69} +12.0000 q^{71} +4.00000 q^{73} +4.00000 q^{77} +1.00000 q^{81} -4.00000 q^{83} -10.0000 q^{89} -12.0000 q^{91} +8.00000 q^{93} +8.00000 q^{97} -2.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 6.00000 1.66410 0.832050 0.554700i \(-0.187167\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 0 0
\(33\) 2.00000 0.348155
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) −6.00000 −0.960769
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 2.00000 0.280056
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −10.0000 −1.30189 −0.650945 0.759125i \(-0.725627\pi\)
−0.650945 + 0.759125i \(0.725627\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0 0
\(63\) −2.00000 −0.251976
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) 0 0
\(69\) −4.00000 −0.481543
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.00000 0.455842
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) −12.0000 −1.25794
\(92\) 0 0
\(93\) 8.00000 0.829561
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 8.00000 0.812277 0.406138 0.913812i \(-0.366875\pi\)
0.406138 + 0.913812i \(0.366875\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) 8.00000 0.796030 0.398015 0.917379i \(-0.369699\pi\)
0.398015 + 0.917379i \(0.369699\pi\)
\(102\) 0 0
\(103\) 14.0000 1.37946 0.689730 0.724066i \(-0.257729\pi\)
0.689730 + 0.724066i \(0.257729\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) −2.00000 −0.189832
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 6.00000 0.554700
\(118\) 0 0
\(119\) 4.00000 0.366679
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) −2.00000 −0.180334
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −2.00000 −0.177471 −0.0887357 0.996055i \(-0.528283\pi\)
−0.0887357 + 0.996055i \(0.528283\pi\)
\(128\) 0 0
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) 18.0000 1.57267 0.786334 0.617802i \(-0.211977\pi\)
0.786334 + 0.617802i \(0.211977\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 18.0000 1.53784 0.768922 0.639343i \(-0.220793\pi\)
0.768922 + 0.639343i \(0.220793\pi\)
\(138\) 0 0
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) 0 0
\(141\) −8.00000 −0.673722
\(142\) 0 0
\(143\) −12.0000 −1.00349
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 3.00000 0.247436
\(148\) 0 0
\(149\) 20.0000 1.63846 0.819232 0.573462i \(-0.194400\pi\)
0.819232 + 0.573462i \(0.194400\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) 0 0
\(153\) −2.00000 −0.161690
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 22.0000 1.75579 0.877896 0.478852i \(-0.158947\pi\)
0.877896 + 0.478852i \(0.158947\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) −8.00000 −0.630488
\(162\) 0 0
\(163\) 16.0000 1.25322 0.626608 0.779334i \(-0.284443\pi\)
0.626608 + 0.779334i \(0.284443\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −14.0000 −1.06440 −0.532200 0.846619i \(-0.678635\pi\)
−0.532200 + 0.846619i \(0.678635\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 10.0000 0.751646
\(178\) 0 0
\(179\) −10.0000 −0.747435 −0.373718 0.927543i \(-0.621917\pi\)
−0.373718 + 0.927543i \(0.621917\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 4.00000 0.292509
\(188\) 0 0
\(189\) 2.00000 0.145479
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0 0
\(193\) 4.00000 0.287926 0.143963 0.989583i \(-0.454015\pi\)
0.143963 + 0.989583i \(0.454015\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 22.0000 1.56744 0.783718 0.621117i \(-0.213321\pi\)
0.783718 + 0.621117i \(0.213321\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 8.00000 0.564276
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 4.00000 0.278019
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 0 0
\(213\) −12.0000 −0.822226
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 16.0000 1.08615
\(218\) 0 0
\(219\) −4.00000 −0.270295
\(220\) 0 0
\(221\) −12.0000 −0.807207
\(222\) 0 0
\(223\) −26.0000 −1.74109 −0.870544 0.492090i \(-0.836233\pi\)
−0.870544 + 0.492090i \(0.836233\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −28.0000 −1.85843 −0.929213 0.369546i \(-0.879513\pi\)
−0.929213 + 0.369546i \(0.879513\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) −4.00000 −0.263181
\(232\) 0 0
\(233\) 14.0000 0.917170 0.458585 0.888650i \(-0.348356\pi\)
0.458585 + 0.888650i \(0.348356\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 20.0000 1.29369 0.646846 0.762620i \(-0.276088\pi\)
0.646846 + 0.762620i \(0.276088\pi\)
\(240\) 0 0
\(241\) 22.0000 1.41714 0.708572 0.705638i \(-0.249340\pi\)
0.708572 + 0.705638i \(0.249340\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 4.00000 0.253490
\(250\) 0 0
\(251\) 18.0000 1.13615 0.568075 0.822977i \(-0.307688\pi\)
0.568075 + 0.822977i \(0.307688\pi\)
\(252\) 0 0
\(253\) −8.00000 −0.502956
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) −4.00000 −0.248548
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.00000 0.246651 0.123325 0.992366i \(-0.460644\pi\)
0.123325 + 0.992366i \(0.460644\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 10.0000 0.611990
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 0 0
\(273\) 12.0000 0.726273
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) 0 0
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) 16.0000 0.951101 0.475551 0.879688i \(-0.342249\pi\)
0.475551 + 0.879688i \(0.342249\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4.00000 −0.236113
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) −8.00000 −0.468968
\(292\) 0 0
\(293\) 6.00000 0.350524 0.175262 0.984522i \(-0.443923\pi\)
0.175262 + 0.984522i \(0.443923\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 2.00000 0.116052
\(298\) 0 0
\(299\) 24.0000 1.38796
\(300\) 0 0
\(301\) 8.00000 0.461112
\(302\) 0 0
\(303\) −8.00000 −0.459588
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 0 0
\(309\) −14.0000 −0.796432
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) 4.00000 0.226093 0.113047 0.993590i \(-0.463939\pi\)
0.113047 + 0.993590i \(0.463939\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.00000 0.112331 0.0561656 0.998421i \(-0.482113\pi\)
0.0561656 + 0.998421i \(0.482113\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 10.0000 0.553001
\(328\) 0 0
\(329\) −16.0000 −0.882109
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 0 0
\(333\) 2.00000 0.109599
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 28.0000 1.52526 0.762629 0.646837i \(-0.223908\pi\)
0.762629 + 0.646837i \(0.223908\pi\)
\(338\) 0 0
\(339\) 6.00000 0.325875
\(340\) 0 0
\(341\) 16.0000 0.866449
\(342\) 0 0
\(343\) 20.0000 1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) −6.00000 −0.320256
\(352\) 0 0
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −4.00000 −0.211702
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 7.00000 0.367405
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −2.00000 −0.104399 −0.0521996 0.998637i \(-0.516623\pi\)
−0.0521996 + 0.998637i \(0.516623\pi\)
\(368\) 0 0
\(369\) 2.00000 0.104116
\(370\) 0 0
\(371\) −12.0000 −0.623009
\(372\) 0 0
\(373\) 6.00000 0.310668 0.155334 0.987862i \(-0.450355\pi\)
0.155334 + 0.987862i \(0.450355\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) 2.00000 0.102463
\(382\) 0 0
\(383\) −16.0000 −0.817562 −0.408781 0.912633i \(-0.634046\pi\)
−0.408781 + 0.912633i \(0.634046\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −4.00000 −0.203331
\(388\) 0 0
\(389\) −20.0000 −1.01404 −0.507020 0.861934i \(-0.669253\pi\)
−0.507020 + 0.861934i \(0.669253\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) 0 0
\(393\) −18.0000 −0.907980
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 22.0000 1.09863 0.549314 0.835616i \(-0.314889\pi\)
0.549314 + 0.835616i \(0.314889\pi\)
\(402\) 0 0
\(403\) −48.0000 −2.39105
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.00000 −0.198273
\(408\) 0 0
\(409\) −10.0000 −0.494468 −0.247234 0.968956i \(-0.579522\pi\)
−0.247234 + 0.968956i \(0.579522\pi\)
\(410\) 0 0
\(411\) −18.0000 −0.887875
\(412\) 0 0
\(413\) 20.0000 0.984136
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −20.0000 −0.979404
\(418\) 0 0
\(419\) 10.0000 0.488532 0.244266 0.969708i \(-0.421453\pi\)
0.244266 + 0.969708i \(0.421453\pi\)
\(420\) 0 0
\(421\) −22.0000 −1.07221 −0.536107 0.844150i \(-0.680106\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(422\) 0 0
\(423\) 8.00000 0.388973
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 4.00000 0.193574
\(428\) 0 0
\(429\) 12.0000 0.579365
\(430\) 0 0
\(431\) 32.0000 1.54139 0.770693 0.637207i \(-0.219910\pi\)
0.770693 + 0.637207i \(0.219910\pi\)
\(432\) 0 0
\(433\) 4.00000 0.192228 0.0961139 0.995370i \(-0.469359\pi\)
0.0961139 + 0.995370i \(0.469359\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 36.0000 1.71041 0.855206 0.518289i \(-0.173431\pi\)
0.855206 + 0.518289i \(0.173431\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −20.0000 −0.945968
\(448\) 0 0
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) −4.00000 −0.188353
\(452\) 0 0
\(453\) 8.00000 0.375873
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −32.0000 −1.49690 −0.748448 0.663193i \(-0.769201\pi\)
−0.748448 + 0.663193i \(0.769201\pi\)
\(458\) 0 0
\(459\) 2.00000 0.0933520
\(460\) 0 0
\(461\) −12.0000 −0.558896 −0.279448 0.960161i \(-0.590151\pi\)
−0.279448 + 0.960161i \(0.590151\pi\)
\(462\) 0 0
\(463\) −6.00000 −0.278844 −0.139422 0.990233i \(-0.544524\pi\)
−0.139422 + 0.990233i \(0.544524\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 0 0
\(469\) 16.0000 0.738811
\(470\) 0 0
\(471\) −22.0000 −1.01371
\(472\) 0 0
\(473\) 8.00000 0.367840
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 6.00000 0.274721
\(478\) 0 0
\(479\) 20.0000 0.913823 0.456912 0.889512i \(-0.348956\pi\)
0.456912 + 0.889512i \(0.348956\pi\)
\(480\) 0 0
\(481\) 12.0000 0.547153
\(482\) 0 0
\(483\) 8.00000 0.364013
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 18.0000 0.815658 0.407829 0.913058i \(-0.366286\pi\)
0.407829 + 0.913058i \(0.366286\pi\)
\(488\) 0 0
\(489\) −16.0000 −0.723545
\(490\) 0 0
\(491\) 18.0000 0.812329 0.406164 0.913800i \(-0.366866\pi\)
0.406164 + 0.913800i \(0.366866\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −24.0000 −1.07655
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 12.0000 0.536120
\(502\) 0 0
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −23.0000 −1.02147
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) −8.00000 −0.353899
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −16.0000 −0.703679
\(518\) 0 0
\(519\) 14.0000 0.614532
\(520\) 0 0
\(521\) 22.0000 0.963837 0.481919 0.876216i \(-0.339940\pi\)
0.481919 + 0.876216i \(0.339940\pi\)
\(522\) 0 0
\(523\) 16.0000 0.699631 0.349816 0.936819i \(-0.386244\pi\)
0.349816 + 0.936819i \(0.386244\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 16.0000 0.696971
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) −10.0000 −0.433963
\(532\) 0 0
\(533\) 12.0000 0.519778
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 10.0000 0.431532
\(538\) 0 0
\(539\) 6.00000 0.258438
\(540\) 0 0
\(541\) 38.0000 1.63375 0.816874 0.576816i \(-0.195705\pi\)
0.816874 + 0.576816i \(0.195705\pi\)
\(542\) 0 0
\(543\) 2.00000 0.0858282
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) 0 0
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −18.0000 −0.762684 −0.381342 0.924434i \(-0.624538\pi\)
−0.381342 + 0.924434i \(0.624538\pi\)
\(558\) 0 0
\(559\) −24.0000 −1.01509
\(560\) 0 0
\(561\) −4.00000 −0.168880
\(562\) 0 0
\(563\) −44.0000 −1.85438 −0.927189 0.374593i \(-0.877783\pi\)
−0.927189 + 0.374593i \(0.877783\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −2.00000 −0.0839921
\(568\) 0 0
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) 0 0
\(571\) 8.00000 0.334790 0.167395 0.985890i \(-0.446465\pi\)
0.167395 + 0.985890i \(0.446465\pi\)
\(572\) 0 0
\(573\) −12.0000 −0.501307
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −32.0000 −1.33218 −0.666089 0.745873i \(-0.732033\pi\)
−0.666089 + 0.745873i \(0.732033\pi\)
\(578\) 0 0
\(579\) −4.00000 −0.166234
\(580\) 0 0
\(581\) 8.00000 0.331896
\(582\) 0 0
\(583\) −12.0000 −0.496989
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −22.0000 −0.904959
\(592\) 0 0
\(593\) −6.00000 −0.246390 −0.123195 0.992382i \(-0.539314\pi\)
−0.123195 + 0.992382i \(0.539314\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 0 0
\(603\) −8.00000 −0.325785
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −22.0000 −0.892952 −0.446476 0.894795i \(-0.647321\pi\)
−0.446476 + 0.894795i \(0.647321\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 48.0000 1.94187
\(612\) 0 0
\(613\) 26.0000 1.05013 0.525065 0.851062i \(-0.324041\pi\)
0.525065 + 0.851062i \(0.324041\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −2.00000 −0.0805170 −0.0402585 0.999189i \(-0.512818\pi\)
−0.0402585 + 0.999189i \(0.512818\pi\)
\(618\) 0 0
\(619\) −20.0000 −0.803868 −0.401934 0.915669i \(-0.631662\pi\)
−0.401934 + 0.915669i \(0.631662\pi\)
\(620\) 0 0
\(621\) −4.00000 −0.160514
\(622\) 0 0
\(623\) 20.0000 0.801283
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) 0 0
\(633\) 12.0000 0.476957
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −18.0000 −0.713186
\(638\) 0 0
\(639\) 12.0000 0.474713
\(640\) 0 0
\(641\) 2.00000 0.0789953 0.0394976 0.999220i \(-0.487424\pi\)
0.0394976 + 0.999220i \(0.487424\pi\)
\(642\) 0 0
\(643\) −24.0000 −0.946468 −0.473234 0.880937i \(-0.656913\pi\)
−0.473234 + 0.880937i \(0.656913\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 48.0000 1.88707 0.943537 0.331266i \(-0.107476\pi\)
0.943537 + 0.331266i \(0.107476\pi\)
\(648\) 0 0
\(649\) 20.0000 0.785069
\(650\) 0 0
\(651\) −16.0000 −0.627089
\(652\) 0 0
\(653\) 26.0000 1.01746 0.508729 0.860927i \(-0.330115\pi\)
0.508729 + 0.860927i \(0.330115\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 4.00000 0.156055
\(658\) 0 0
\(659\) 50.0000 1.94772 0.973862 0.227142i \(-0.0729380\pi\)
0.973862 + 0.227142i \(0.0729380\pi\)
\(660\) 0 0
\(661\) −2.00000 −0.0777910 −0.0388955 0.999243i \(-0.512384\pi\)
−0.0388955 + 0.999243i \(0.512384\pi\)
\(662\) 0 0
\(663\) 12.0000 0.466041
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 26.0000 1.00522
\(670\) 0 0
\(671\) 4.00000 0.154418
\(672\) 0 0
\(673\) −36.0000 −1.38770 −0.693849 0.720121i \(-0.744086\pi\)
−0.693849 + 0.720121i \(0.744086\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 2.00000 0.0768662 0.0384331 0.999261i \(-0.487763\pi\)
0.0384331 + 0.999261i \(0.487763\pi\)
\(678\) 0 0
\(679\) −16.0000 −0.614024
\(680\) 0 0
\(681\) 28.0000 1.07296
\(682\) 0 0
\(683\) −4.00000 −0.153056 −0.0765279 0.997067i \(-0.524383\pi\)
−0.0765279 + 0.997067i \(0.524383\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −10.0000 −0.381524
\(688\) 0 0
\(689\) 36.0000 1.37149
\(690\) 0 0
\(691\) 8.00000 0.304334 0.152167 0.988355i \(-0.451375\pi\)
0.152167 + 0.988355i \(0.451375\pi\)
\(692\) 0 0
\(693\) 4.00000 0.151947
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −4.00000 −0.151511
\(698\) 0 0
\(699\) −14.0000 −0.529529
\(700\) 0 0
\(701\) −32.0000 −1.20862 −0.604312 0.796748i \(-0.706552\pi\)
−0.604312 + 0.796748i \(0.706552\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −16.0000 −0.601742
\(708\) 0 0
\(709\) −30.0000 −1.12667 −0.563337 0.826227i \(-0.690483\pi\)
−0.563337 + 0.826227i \(0.690483\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −32.0000 −1.19841
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −20.0000 −0.746914
\(718\) 0 0
\(719\) −40.0000 −1.49175 −0.745874 0.666087i \(-0.767968\pi\)
−0.745874 + 0.666087i \(0.767968\pi\)
\(720\) 0 0
\(721\) −28.0000 −1.04277
\(722\) 0 0
\(723\) −22.0000 −0.818189
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 18.0000 0.667583 0.333792 0.942647i \(-0.391672\pi\)
0.333792 + 0.942647i \(0.391672\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 8.00000 0.295891
\(732\) 0 0
\(733\) −14.0000 −0.517102 −0.258551 0.965998i \(-0.583245\pi\)
−0.258551 + 0.965998i \(0.583245\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 16.0000 0.589368
\(738\) 0 0
\(739\) −40.0000 −1.47142 −0.735712 0.677295i \(-0.763152\pi\)
−0.735712 + 0.677295i \(0.763152\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −4.00000 −0.146352
\(748\) 0 0
\(749\) −24.0000 −0.876941
\(750\) 0 0
\(751\) 32.0000 1.16770 0.583848 0.811863i \(-0.301546\pi\)
0.583848 + 0.811863i \(0.301546\pi\)
\(752\) 0 0
\(753\) −18.0000 −0.655956
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 0 0
\(759\) 8.00000 0.290382
\(760\) 0 0
\(761\) −18.0000 −0.652499 −0.326250 0.945284i \(-0.605785\pi\)
−0.326250 + 0.945284i \(0.605785\pi\)
\(762\) 0 0
\(763\) 20.0000 0.724049
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −60.0000 −2.16647
\(768\) 0 0
\(769\) −30.0000 −1.08183 −0.540914 0.841078i \(-0.681921\pi\)
−0.540914 + 0.841078i \(0.681921\pi\)
\(770\) 0 0
\(771\) −18.0000 −0.648254
\(772\) 0 0
\(773\) −54.0000 −1.94225 −0.971123 0.238581i \(-0.923318\pi\)
−0.971123 + 0.238581i \(0.923318\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 4.00000 0.143499
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −24.0000 −0.858788
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 32.0000 1.14068 0.570338 0.821410i \(-0.306812\pi\)
0.570338 + 0.821410i \(0.306812\pi\)
\(788\) 0 0
\(789\) −4.00000 −0.142404
\(790\) 0 0
\(791\) 12.0000 0.426671
\(792\) 0 0
\(793\) −12.0000 −0.426132
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.00000 0.0708436 0.0354218 0.999372i \(-0.488723\pi\)
0.0354218 + 0.999372i \(0.488723\pi\)
\(798\) 0 0
\(799\) −16.0000 −0.566039
\(800\) 0 0
\(801\) −10.0000 −0.353333
\(802\) 0 0
\(803\) −8.00000 −0.282314
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) 0 0
\(811\) −52.0000 −1.82597 −0.912983 0.407997i \(-0.866228\pi\)
−0.912983 + 0.407997i \(0.866228\pi\)
\(812\) 0 0
\(813\) 8.00000 0.280572
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −12.0000 −0.419314
\(820\) 0 0
\(821\) 8.00000 0.279202 0.139601 0.990208i \(-0.455418\pi\)
0.139601 + 0.990208i \(0.455418\pi\)
\(822\) 0 0
\(823\) −6.00000 −0.209147 −0.104573 0.994517i \(-0.533348\pi\)
−0.104573 + 0.994517i \(0.533348\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −28.0000 −0.973655 −0.486828 0.873498i \(-0.661846\pi\)
−0.486828 + 0.873498i \(0.661846\pi\)
\(828\) 0 0
\(829\) 30.0000 1.04194 0.520972 0.853574i \(-0.325570\pi\)
0.520972 + 0.853574i \(0.325570\pi\)
\(830\) 0 0
\(831\) −2.00000 −0.0693792
\(832\) 0 0
\(833\) 6.00000 0.207888
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 8.00000 0.276520
\(838\) 0 0
\(839\) 40.0000 1.38095 0.690477 0.723355i \(-0.257401\pi\)
0.690477 + 0.723355i \(0.257401\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 18.0000 0.619953
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 14.0000 0.481046
\(848\) 0 0
\(849\) −16.0000 −0.549119
\(850\) 0 0
\(851\) 8.00000 0.274236
\(852\) 0 0
\(853\) −14.0000 −0.479351 −0.239675 0.970853i \(-0.577041\pi\)
−0.239675 + 0.970853i \(0.577041\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −42.0000 −1.43469 −0.717346 0.696717i \(-0.754643\pi\)
−0.717346 + 0.696717i \(0.754643\pi\)
\(858\) 0 0
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) 0 0
\(861\) 4.00000 0.136320
\(862\) 0 0
\(863\) −36.0000 −1.22545 −0.612727 0.790295i \(-0.709928\pi\)
−0.612727 + 0.790295i \(0.709928\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 13.0000 0.441503
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −48.0000 −1.62642
\(872\) 0 0
\(873\) 8.00000 0.270759
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 22.0000 0.742887 0.371444 0.928456i \(-0.378863\pi\)
0.371444 + 0.928456i \(0.378863\pi\)
\(878\) 0 0
\(879\) −6.00000 −0.202375
\(880\) 0 0
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 0 0
\(883\) −24.0000 −0.807664 −0.403832 0.914833i \(-0.632322\pi\)
−0.403832 + 0.914833i \(0.632322\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −12.0000 −0.402921 −0.201460 0.979497i \(-0.564569\pi\)
−0.201460 + 0.979497i \(0.564569\pi\)
\(888\) 0 0
\(889\) 4.00000 0.134156
\(890\) 0 0
\(891\) −2.00000 −0.0670025
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −24.0000 −0.801337
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) −8.00000 −0.266223
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 12.0000 0.398453 0.199227 0.979953i \(-0.436157\pi\)
0.199227 + 0.979953i \(0.436157\pi\)
\(908\) 0 0
\(909\) 8.00000 0.265343
\(910\) 0 0
\(911\) −48.0000 −1.59031 −0.795155 0.606406i \(-0.792611\pi\)
−0.795155 + 0.606406i \(0.792611\pi\)
\(912\) 0 0
\(913\) 8.00000 0.264761
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −36.0000 −1.18882
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) −12.0000 −0.395413
\(922\) 0 0
\(923\) 72.0000 2.36991
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 14.0000 0.459820
\(928\) 0 0
\(929\) 30.0000 0.984268 0.492134 0.870519i \(-0.336217\pi\)
0.492134 + 0.870519i \(0.336217\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −12.0000 −0.392862
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 8.00000 0.261349 0.130674 0.991425i \(-0.458286\pi\)
0.130674 + 0.991425i \(0.458286\pi\)
\(938\) 0 0
\(939\) −4.00000 −0.130535
\(940\) 0 0
\(941\) 28.0000 0.912774 0.456387 0.889781i \(-0.349143\pi\)
0.456387 + 0.889781i \(0.349143\pi\)
\(942\) 0 0
\(943\) 8.00000 0.260516
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 12.0000 0.389948 0.194974 0.980808i \(-0.437538\pi\)
0.194974 + 0.980808i \(0.437538\pi\)
\(948\) 0 0
\(949\) 24.0000 0.779073
\(950\) 0 0
\(951\) −2.00000 −0.0648544
\(952\) 0 0
\(953\) −46.0000 −1.49009 −0.745043 0.667016i \(-0.767571\pi\)
−0.745043 + 0.667016i \(0.767571\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −36.0000 −1.16250
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 12.0000 0.386695
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 38.0000 1.22200 0.610999 0.791632i \(-0.290768\pi\)
0.610999 + 0.791632i \(0.290768\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 18.0000 0.577647 0.288824 0.957382i \(-0.406736\pi\)
0.288824 + 0.957382i \(0.406736\pi\)
\(972\) 0 0
\(973\) −40.0000 −1.28234
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −42.0000 −1.34370 −0.671850 0.740688i \(-0.734500\pi\)
−0.671850 + 0.740688i \(0.734500\pi\)
\(978\) 0 0
\(979\) 20.0000 0.639203
\(980\) 0 0
\(981\) −10.0000 −0.319275
\(982\) 0 0
\(983\) −16.0000 −0.510321 −0.255160 0.966899i \(-0.582128\pi\)
−0.255160 + 0.966899i \(0.582128\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 16.0000 0.509286
\(988\) 0 0
\(989\) −16.0000 −0.508770
\(990\) 0 0
\(991\) −8.00000 −0.254128 −0.127064 0.991894i \(-0.540555\pi\)
−0.127064 + 0.991894i \(0.540555\pi\)
\(992\) 0 0
\(993\) −8.00000 −0.253872
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −18.0000 −0.570066 −0.285033 0.958518i \(-0.592005\pi\)
−0.285033 + 0.958518i \(0.592005\pi\)
\(998\) 0 0
\(999\) −2.00000 −0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4800.2.a.l.1.1 1
4.3 odd 2 4800.2.a.cj.1.1 1
5.2 odd 4 960.2.f.h.769.2 2
5.3 odd 4 960.2.f.h.769.1 2
5.4 even 2 4800.2.a.cg.1.1 1
8.3 odd 2 1200.2.a.g.1.1 1
8.5 even 2 150.2.a.c.1.1 1
15.2 even 4 2880.2.f.e.1729.2 2
15.8 even 4 2880.2.f.e.1729.1 2
20.3 even 4 960.2.f.i.769.2 2
20.7 even 4 960.2.f.i.769.1 2
20.19 odd 2 4800.2.a.m.1.1 1
24.5 odd 2 450.2.a.b.1.1 1
24.11 even 2 3600.2.a.bg.1.1 1
40.3 even 4 240.2.f.a.49.1 2
40.13 odd 4 30.2.c.a.19.1 2
40.19 odd 2 1200.2.a.m.1.1 1
40.27 even 4 240.2.f.a.49.2 2
40.29 even 2 150.2.a.a.1.1 1
40.37 odd 4 30.2.c.a.19.2 yes 2
56.13 odd 2 7350.2.a.cc.1.1 1
60.23 odd 4 2880.2.f.c.1729.1 2
60.47 odd 4 2880.2.f.c.1729.2 2
80.3 even 4 3840.2.d.j.2689.1 2
80.13 odd 4 3840.2.d.y.2689.1 2
80.27 even 4 3840.2.d.j.2689.2 2
80.37 odd 4 3840.2.d.y.2689.2 2
80.43 even 4 3840.2.d.x.2689.2 2
80.53 odd 4 3840.2.d.g.2689.2 2
80.67 even 4 3840.2.d.x.2689.1 2
80.77 odd 4 3840.2.d.g.2689.1 2
120.29 odd 2 450.2.a.f.1.1 1
120.53 even 4 90.2.c.a.19.2 2
120.59 even 2 3600.2.a.o.1.1 1
120.77 even 4 90.2.c.a.19.1 2
120.83 odd 4 720.2.f.f.289.2 2
120.107 odd 4 720.2.f.f.289.1 2
280.13 even 4 1470.2.g.g.589.1 2
280.37 odd 12 1470.2.n.h.949.2 4
280.53 odd 12 1470.2.n.h.79.2 4
280.69 odd 2 7350.2.a.bg.1.1 1
280.93 odd 12 1470.2.n.h.949.1 4
280.117 even 12 1470.2.n.a.949.2 4
280.157 even 12 1470.2.n.a.79.1 4
280.173 even 12 1470.2.n.a.949.1 4
280.213 even 12 1470.2.n.a.79.2 4
280.237 even 4 1470.2.g.g.589.2 2
280.277 odd 12 1470.2.n.h.79.1 4
360.13 odd 12 810.2.i.e.379.2 4
360.77 even 12 810.2.i.b.379.2 4
360.133 odd 12 810.2.i.e.109.1 4
360.157 odd 12 810.2.i.e.379.1 4
360.173 even 12 810.2.i.b.109.2 4
360.277 odd 12 810.2.i.e.109.2 4
360.293 even 12 810.2.i.b.379.1 4
360.317 even 12 810.2.i.b.109.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.2.c.a.19.1 2 40.13 odd 4
30.2.c.a.19.2 yes 2 40.37 odd 4
90.2.c.a.19.1 2 120.77 even 4
90.2.c.a.19.2 2 120.53 even 4
150.2.a.a.1.1 1 40.29 even 2
150.2.a.c.1.1 1 8.5 even 2
240.2.f.a.49.1 2 40.3 even 4
240.2.f.a.49.2 2 40.27 even 4
450.2.a.b.1.1 1 24.5 odd 2
450.2.a.f.1.1 1 120.29 odd 2
720.2.f.f.289.1 2 120.107 odd 4
720.2.f.f.289.2 2 120.83 odd 4
810.2.i.b.109.1 4 360.317 even 12
810.2.i.b.109.2 4 360.173 even 12
810.2.i.b.379.1 4 360.293 even 12
810.2.i.b.379.2 4 360.77 even 12
810.2.i.e.109.1 4 360.133 odd 12
810.2.i.e.109.2 4 360.277 odd 12
810.2.i.e.379.1 4 360.157 odd 12
810.2.i.e.379.2 4 360.13 odd 12
960.2.f.h.769.1 2 5.3 odd 4
960.2.f.h.769.2 2 5.2 odd 4
960.2.f.i.769.1 2 20.7 even 4
960.2.f.i.769.2 2 20.3 even 4
1200.2.a.g.1.1 1 8.3 odd 2
1200.2.a.m.1.1 1 40.19 odd 2
1470.2.g.g.589.1 2 280.13 even 4
1470.2.g.g.589.2 2 280.237 even 4
1470.2.n.a.79.1 4 280.157 even 12
1470.2.n.a.79.2 4 280.213 even 12
1470.2.n.a.949.1 4 280.173 even 12
1470.2.n.a.949.2 4 280.117 even 12
1470.2.n.h.79.1 4 280.277 odd 12
1470.2.n.h.79.2 4 280.53 odd 12
1470.2.n.h.949.1 4 280.93 odd 12
1470.2.n.h.949.2 4 280.37 odd 12
2880.2.f.c.1729.1 2 60.23 odd 4
2880.2.f.c.1729.2 2 60.47 odd 4
2880.2.f.e.1729.1 2 15.8 even 4
2880.2.f.e.1729.2 2 15.2 even 4
3600.2.a.o.1.1 1 120.59 even 2
3600.2.a.bg.1.1 1 24.11 even 2
3840.2.d.g.2689.1 2 80.77 odd 4
3840.2.d.g.2689.2 2 80.53 odd 4
3840.2.d.j.2689.1 2 80.3 even 4
3840.2.d.j.2689.2 2 80.27 even 4
3840.2.d.x.2689.1 2 80.67 even 4
3840.2.d.x.2689.2 2 80.43 even 4
3840.2.d.y.2689.1 2 80.13 odd 4
3840.2.d.y.2689.2 2 80.37 odd 4
4800.2.a.l.1.1 1 1.1 even 1 trivial
4800.2.a.m.1.1 1 20.19 odd 2
4800.2.a.cg.1.1 1 5.4 even 2
4800.2.a.cj.1.1 1 4.3 odd 2
7350.2.a.bg.1.1 1 280.69 odd 2
7350.2.a.cc.1.1 1 56.13 odd 2