Properties

Label 4800.2.a.ct.1.1
Level $4800$
Weight $2$
Character 4800.1
Self dual yes
Analytic conductor $38.328$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 4800 = 2^{6} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4800.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(38.3281929702\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 600)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 4800.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{3} +5.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} +5.00000 q^{7} +1.00000 q^{9} +6.00000 q^{11} -3.00000 q^{13} +2.00000 q^{17} -1.00000 q^{19} +5.00000 q^{21} +2.00000 q^{23} +1.00000 q^{27} -6.00000 q^{29} +3.00000 q^{31} +6.00000 q^{33} -6.00000 q^{37} -3.00000 q^{39} +4.00000 q^{41} +11.0000 q^{43} +10.0000 q^{47} +18.0000 q^{49} +2.00000 q^{51} -8.00000 q^{53} -1.00000 q^{57} +6.00000 q^{59} -3.00000 q^{61} +5.00000 q^{63} -1.00000 q^{67} +2.00000 q^{69} -12.0000 q^{71} -10.0000 q^{73} +30.0000 q^{77} -8.00000 q^{79} +1.00000 q^{81} -6.00000 q^{83} -6.00000 q^{87} -16.0000 q^{89} -15.0000 q^{91} +3.00000 q^{93} +7.00000 q^{97} +6.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 5.00000 1.88982 0.944911 0.327327i \(-0.106148\pi\)
0.944911 + 0.327327i \(0.106148\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 6.00000 1.80907 0.904534 0.426401i \(-0.140219\pi\)
0.904534 + 0.426401i \(0.140219\pi\)
\(12\) 0 0
\(13\) −3.00000 −0.832050 −0.416025 0.909353i \(-0.636577\pi\)
−0.416025 + 0.909353i \(0.636577\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416 −0.114708 0.993399i \(-0.536593\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 0 0
\(21\) 5.00000 1.09109
\(22\) 0 0
\(23\) 2.00000 0.417029 0.208514 0.978019i \(-0.433137\pi\)
0.208514 + 0.978019i \(0.433137\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 3.00000 0.538816 0.269408 0.963026i \(-0.413172\pi\)
0.269408 + 0.963026i \(0.413172\pi\)
\(32\) 0 0
\(33\) 6.00000 1.04447
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) −3.00000 −0.480384
\(40\) 0 0
\(41\) 4.00000 0.624695 0.312348 0.949968i \(-0.398885\pi\)
0.312348 + 0.949968i \(0.398885\pi\)
\(42\) 0 0
\(43\) 11.0000 1.67748 0.838742 0.544529i \(-0.183292\pi\)
0.838742 + 0.544529i \(0.183292\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.0000 1.45865 0.729325 0.684167i \(-0.239834\pi\)
0.729325 + 0.684167i \(0.239834\pi\)
\(48\) 0 0
\(49\) 18.0000 2.57143
\(50\) 0 0
\(51\) 2.00000 0.280056
\(52\) 0 0
\(53\) −8.00000 −1.09888 −0.549442 0.835532i \(-0.685160\pi\)
−0.549442 + 0.835532i \(0.685160\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −1.00000 −0.132453
\(58\) 0 0
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) −3.00000 −0.384111 −0.192055 0.981384i \(-0.561515\pi\)
−0.192055 + 0.981384i \(0.561515\pi\)
\(62\) 0 0
\(63\) 5.00000 0.629941
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −1.00000 −0.122169 −0.0610847 0.998133i \(-0.519456\pi\)
−0.0610847 + 0.998133i \(0.519456\pi\)
\(68\) 0 0
\(69\) 2.00000 0.240772
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 30.0000 3.41882
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −6.00000 −0.643268
\(88\) 0 0
\(89\) −16.0000 −1.69600 −0.847998 0.529999i \(-0.822192\pi\)
−0.847998 + 0.529999i \(0.822192\pi\)
\(90\) 0 0
\(91\) −15.0000 −1.57243
\(92\) 0 0
\(93\) 3.00000 0.311086
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 7.00000 0.710742 0.355371 0.934725i \(-0.384354\pi\)
0.355371 + 0.934725i \(0.384354\pi\)
\(98\) 0 0
\(99\) 6.00000 0.603023
\(100\) 0 0
\(101\) 8.00000 0.796030 0.398015 0.917379i \(-0.369699\pi\)
0.398015 + 0.917379i \(0.369699\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −8.00000 −0.773389 −0.386695 0.922208i \(-0.626383\pi\)
−0.386695 + 0.922208i \(0.626383\pi\)
\(108\) 0 0
\(109\) 7.00000 0.670478 0.335239 0.942133i \(-0.391183\pi\)
0.335239 + 0.942133i \(0.391183\pi\)
\(110\) 0 0
\(111\) −6.00000 −0.569495
\(112\) 0 0
\(113\) −12.0000 −1.12887 −0.564433 0.825479i \(-0.690905\pi\)
−0.564433 + 0.825479i \(0.690905\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −3.00000 −0.277350
\(118\) 0 0
\(119\) 10.0000 0.916698
\(120\) 0 0
\(121\) 25.0000 2.27273
\(122\) 0 0
\(123\) 4.00000 0.360668
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) 0 0
\(129\) 11.0000 0.968496
\(130\) 0 0
\(131\) −16.0000 −1.39793 −0.698963 0.715158i \(-0.746355\pi\)
−0.698963 + 0.715158i \(0.746355\pi\)
\(132\) 0 0
\(133\) −5.00000 −0.433555
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −6.00000 −0.512615 −0.256307 0.966595i \(-0.582506\pi\)
−0.256307 + 0.966595i \(0.582506\pi\)
\(138\) 0 0
\(139\) 12.0000 1.01783 0.508913 0.860818i \(-0.330047\pi\)
0.508913 + 0.860818i \(0.330047\pi\)
\(140\) 0 0
\(141\) 10.0000 0.842152
\(142\) 0 0
\(143\) −18.0000 −1.50524
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 18.0000 1.48461
\(148\) 0 0
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 9.00000 0.732410 0.366205 0.930534i \(-0.380657\pi\)
0.366205 + 0.930534i \(0.380657\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) 0 0
\(159\) −8.00000 −0.634441
\(160\) 0 0
\(161\) 10.0000 0.788110
\(162\) 0 0
\(163\) −7.00000 −0.548282 −0.274141 0.961689i \(-0.588394\pi\)
−0.274141 + 0.961689i \(0.588394\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −16.0000 −1.23812 −0.619059 0.785345i \(-0.712486\pi\)
−0.619059 + 0.785345i \(0.712486\pi\)
\(168\) 0 0
\(169\) −4.00000 −0.307692
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) 0 0
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 6.00000 0.450988
\(178\) 0 0
\(179\) −2.00000 −0.149487 −0.0747435 0.997203i \(-0.523814\pi\)
−0.0747435 + 0.997203i \(0.523814\pi\)
\(180\) 0 0
\(181\) 19.0000 1.41226 0.706129 0.708083i \(-0.250440\pi\)
0.706129 + 0.708083i \(0.250440\pi\)
\(182\) 0 0
\(183\) −3.00000 −0.221766
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 12.0000 0.877527
\(188\) 0 0
\(189\) 5.00000 0.363696
\(190\) 0 0
\(191\) −10.0000 −0.723575 −0.361787 0.932261i \(-0.617833\pi\)
−0.361787 + 0.932261i \(0.617833\pi\)
\(192\) 0 0
\(193\) −3.00000 −0.215945 −0.107972 0.994154i \(-0.534436\pi\)
−0.107972 + 0.994154i \(0.534436\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 0 0
\(199\) 21.0000 1.48865 0.744325 0.667817i \(-0.232771\pi\)
0.744325 + 0.667817i \(0.232771\pi\)
\(200\) 0 0
\(201\) −1.00000 −0.0705346
\(202\) 0 0
\(203\) −30.0000 −2.10559
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 2.00000 0.139010
\(208\) 0 0
\(209\) −6.00000 −0.415029
\(210\) 0 0
\(211\) 15.0000 1.03264 0.516321 0.856395i \(-0.327301\pi\)
0.516321 + 0.856395i \(0.327301\pi\)
\(212\) 0 0
\(213\) −12.0000 −0.822226
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 15.0000 1.01827
\(218\) 0 0
\(219\) −10.0000 −0.675737
\(220\) 0 0
\(221\) −6.00000 −0.403604
\(222\) 0 0
\(223\) −3.00000 −0.200895 −0.100447 0.994942i \(-0.532027\pi\)
−0.100447 + 0.994942i \(0.532027\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 0 0
\(229\) 3.00000 0.198246 0.0991228 0.995075i \(-0.468396\pi\)
0.0991228 + 0.995075i \(0.468396\pi\)
\(230\) 0 0
\(231\) 30.0000 1.97386
\(232\) 0 0
\(233\) −20.0000 −1.31024 −0.655122 0.755523i \(-0.727383\pi\)
−0.655122 + 0.755523i \(0.727383\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −8.00000 −0.519656
\(238\) 0 0
\(239\) 24.0000 1.55243 0.776215 0.630468i \(-0.217137\pi\)
0.776215 + 0.630468i \(0.217137\pi\)
\(240\) 0 0
\(241\) −7.00000 −0.450910 −0.225455 0.974254i \(-0.572387\pi\)
−0.225455 + 0.974254i \(0.572387\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.00000 0.190885
\(248\) 0 0
\(249\) −6.00000 −0.380235
\(250\) 0 0
\(251\) 20.0000 1.26239 0.631194 0.775625i \(-0.282565\pi\)
0.631194 + 0.775625i \(0.282565\pi\)
\(252\) 0 0
\(253\) 12.0000 0.754434
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 12.0000 0.748539 0.374270 0.927320i \(-0.377893\pi\)
0.374270 + 0.927320i \(0.377893\pi\)
\(258\) 0 0
\(259\) −30.0000 −1.86411
\(260\) 0 0
\(261\) −6.00000 −0.371391
\(262\) 0 0
\(263\) 12.0000 0.739952 0.369976 0.929041i \(-0.379366\pi\)
0.369976 + 0.929041i \(0.379366\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −16.0000 −0.979184
\(268\) 0 0
\(269\) 30.0000 1.82913 0.914566 0.404436i \(-0.132532\pi\)
0.914566 + 0.404436i \(0.132532\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) −15.0000 −0.907841
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1.00000 0.0600842 0.0300421 0.999549i \(-0.490436\pi\)
0.0300421 + 0.999549i \(0.490436\pi\)
\(278\) 0 0
\(279\) 3.00000 0.179605
\(280\) 0 0
\(281\) 26.0000 1.55103 0.775515 0.631329i \(-0.217490\pi\)
0.775515 + 0.631329i \(0.217490\pi\)
\(282\) 0 0
\(283\) 13.0000 0.772770 0.386385 0.922338i \(-0.373724\pi\)
0.386385 + 0.922338i \(0.373724\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 20.0000 1.18056
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 7.00000 0.410347
\(292\) 0 0
\(293\) −2.00000 −0.116841 −0.0584206 0.998292i \(-0.518606\pi\)
−0.0584206 + 0.998292i \(0.518606\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 6.00000 0.348155
\(298\) 0 0
\(299\) −6.00000 −0.346989
\(300\) 0 0
\(301\) 55.0000 3.17015
\(302\) 0 0
\(303\) 8.00000 0.459588
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 13.0000 0.741949 0.370975 0.928643i \(-0.379024\pi\)
0.370975 + 0.928643i \(0.379024\pi\)
\(308\) 0 0
\(309\) −4.00000 −0.227552
\(310\) 0 0
\(311\) −14.0000 −0.793867 −0.396934 0.917847i \(-0.629926\pi\)
−0.396934 + 0.917847i \(0.629926\pi\)
\(312\) 0 0
\(313\) 29.0000 1.63918 0.819588 0.572953i \(-0.194202\pi\)
0.819588 + 0.572953i \(0.194202\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −16.0000 −0.898650 −0.449325 0.893368i \(-0.648335\pi\)
−0.449325 + 0.893368i \(0.648335\pi\)
\(318\) 0 0
\(319\) −36.0000 −2.01561
\(320\) 0 0
\(321\) −8.00000 −0.446516
\(322\) 0 0
\(323\) −2.00000 −0.111283
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 7.00000 0.387101
\(328\) 0 0
\(329\) 50.0000 2.75659
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 0 0
\(333\) −6.00000 −0.328798
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 23.0000 1.25289 0.626445 0.779466i \(-0.284509\pi\)
0.626445 + 0.779466i \(0.284509\pi\)
\(338\) 0 0
\(339\) −12.0000 −0.651751
\(340\) 0 0
\(341\) 18.0000 0.974755
\(342\) 0 0
\(343\) 55.0000 2.96972
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −18.0000 −0.966291 −0.483145 0.875540i \(-0.660506\pi\)
−0.483145 + 0.875540i \(0.660506\pi\)
\(348\) 0 0
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) −3.00000 −0.160128
\(352\) 0 0
\(353\) −18.0000 −0.958043 −0.479022 0.877803i \(-0.659008\pi\)
−0.479022 + 0.877803i \(0.659008\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 10.0000 0.529256
\(358\) 0 0
\(359\) −4.00000 −0.211112 −0.105556 0.994413i \(-0.533662\pi\)
−0.105556 + 0.994413i \(0.533662\pi\)
\(360\) 0 0
\(361\) −18.0000 −0.947368
\(362\) 0 0
\(363\) 25.0000 1.31216
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −13.0000 −0.678594 −0.339297 0.940679i \(-0.610189\pi\)
−0.339297 + 0.940679i \(0.610189\pi\)
\(368\) 0 0
\(369\) 4.00000 0.208232
\(370\) 0 0
\(371\) −40.0000 −2.07670
\(372\) 0 0
\(373\) −25.0000 −1.29445 −0.647225 0.762299i \(-0.724071\pi\)
−0.647225 + 0.762299i \(0.724071\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 18.0000 0.927047
\(378\) 0 0
\(379\) 5.00000 0.256833 0.128416 0.991720i \(-0.459011\pi\)
0.128416 + 0.991720i \(0.459011\pi\)
\(380\) 0 0
\(381\) −8.00000 −0.409852
\(382\) 0 0
\(383\) −20.0000 −1.02195 −0.510976 0.859595i \(-0.670716\pi\)
−0.510976 + 0.859595i \(0.670716\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 11.0000 0.559161
\(388\) 0 0
\(389\) 12.0000 0.608424 0.304212 0.952604i \(-0.401607\pi\)
0.304212 + 0.952604i \(0.401607\pi\)
\(390\) 0 0
\(391\) 4.00000 0.202289
\(392\) 0 0
\(393\) −16.0000 −0.807093
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 11.0000 0.552074 0.276037 0.961147i \(-0.410979\pi\)
0.276037 + 0.961147i \(0.410979\pi\)
\(398\) 0 0
\(399\) −5.00000 −0.250313
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) −9.00000 −0.448322
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −36.0000 −1.78445
\(408\) 0 0
\(409\) −11.0000 −0.543915 −0.271957 0.962309i \(-0.587671\pi\)
−0.271957 + 0.962309i \(0.587671\pi\)
\(410\) 0 0
\(411\) −6.00000 −0.295958
\(412\) 0 0
\(413\) 30.0000 1.47620
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 12.0000 0.587643
\(418\) 0 0
\(419\) −32.0000 −1.56330 −0.781651 0.623716i \(-0.785622\pi\)
−0.781651 + 0.623716i \(0.785622\pi\)
\(420\) 0 0
\(421\) −30.0000 −1.46211 −0.731055 0.682318i \(-0.760972\pi\)
−0.731055 + 0.682318i \(0.760972\pi\)
\(422\) 0 0
\(423\) 10.0000 0.486217
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −15.0000 −0.725901
\(428\) 0 0
\(429\) −18.0000 −0.869048
\(430\) 0 0
\(431\) 22.0000 1.05970 0.529851 0.848091i \(-0.322248\pi\)
0.529851 + 0.848091i \(0.322248\pi\)
\(432\) 0 0
\(433\) −19.0000 −0.913082 −0.456541 0.889702i \(-0.650912\pi\)
−0.456541 + 0.889702i \(0.650912\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.00000 −0.0956730
\(438\) 0 0
\(439\) −5.00000 −0.238637 −0.119318 0.992856i \(-0.538071\pi\)
−0.119318 + 0.992856i \(0.538071\pi\)
\(440\) 0 0
\(441\) 18.0000 0.857143
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 6.00000 0.283790
\(448\) 0 0
\(449\) −4.00000 −0.188772 −0.0943858 0.995536i \(-0.530089\pi\)
−0.0943858 + 0.995536i \(0.530089\pi\)
\(450\) 0 0
\(451\) 24.0000 1.13012
\(452\) 0 0
\(453\) 9.00000 0.422857
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −22.0000 −1.02912 −0.514558 0.857455i \(-0.672044\pi\)
−0.514558 + 0.857455i \(0.672044\pi\)
\(458\) 0 0
\(459\) 2.00000 0.0933520
\(460\) 0 0
\(461\) 16.0000 0.745194 0.372597 0.927993i \(-0.378467\pi\)
0.372597 + 0.927993i \(0.378467\pi\)
\(462\) 0 0
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −14.0000 −0.647843 −0.323921 0.946084i \(-0.605001\pi\)
−0.323921 + 0.946084i \(0.605001\pi\)
\(468\) 0 0
\(469\) −5.00000 −0.230879
\(470\) 0 0
\(471\) 7.00000 0.322543
\(472\) 0 0
\(473\) 66.0000 3.03468
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −8.00000 −0.366295
\(478\) 0 0
\(479\) −6.00000 −0.274147 −0.137073 0.990561i \(-0.543770\pi\)
−0.137073 + 0.990561i \(0.543770\pi\)
\(480\) 0 0
\(481\) 18.0000 0.820729
\(482\) 0 0
\(483\) 10.0000 0.455016
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 3.00000 0.135943 0.0679715 0.997687i \(-0.478347\pi\)
0.0679715 + 0.997687i \(0.478347\pi\)
\(488\) 0 0
\(489\) −7.00000 −0.316551
\(490\) 0 0
\(491\) −8.00000 −0.361035 −0.180517 0.983572i \(-0.557777\pi\)
−0.180517 + 0.983572i \(0.557777\pi\)
\(492\) 0 0
\(493\) −12.0000 −0.540453
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −60.0000 −2.69137
\(498\) 0 0
\(499\) −17.0000 −0.761025 −0.380512 0.924776i \(-0.624252\pi\)
−0.380512 + 0.924776i \(0.624252\pi\)
\(500\) 0 0
\(501\) −16.0000 −0.714827
\(502\) 0 0
\(503\) −36.0000 −1.60516 −0.802580 0.596544i \(-0.796540\pi\)
−0.802580 + 0.596544i \(0.796540\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −4.00000 −0.177646
\(508\) 0 0
\(509\) −6.00000 −0.265945 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(510\) 0 0
\(511\) −50.0000 −2.21187
\(512\) 0 0
\(513\) −1.00000 −0.0441511
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 60.0000 2.63880
\(518\) 0 0
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) −14.0000 −0.613351 −0.306676 0.951814i \(-0.599217\pi\)
−0.306676 + 0.951814i \(0.599217\pi\)
\(522\) 0 0
\(523\) 21.0000 0.918266 0.459133 0.888368i \(-0.348160\pi\)
0.459133 + 0.888368i \(0.348160\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.00000 0.261364
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) 6.00000 0.260378
\(532\) 0 0
\(533\) −12.0000 −0.519778
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −2.00000 −0.0863064
\(538\) 0 0
\(539\) 108.000 4.65189
\(540\) 0 0
\(541\) −17.0000 −0.730887 −0.365444 0.930834i \(-0.619083\pi\)
−0.365444 + 0.930834i \(0.619083\pi\)
\(542\) 0 0
\(543\) 19.0000 0.815368
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 16.0000 0.684111 0.342055 0.939680i \(-0.388877\pi\)
0.342055 + 0.939680i \(0.388877\pi\)
\(548\) 0 0
\(549\) −3.00000 −0.128037
\(550\) 0 0
\(551\) 6.00000 0.255609
\(552\) 0 0
\(553\) −40.0000 −1.70097
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −14.0000 −0.593199 −0.296600 0.955002i \(-0.595853\pi\)
−0.296600 + 0.955002i \(0.595853\pi\)
\(558\) 0 0
\(559\) −33.0000 −1.39575
\(560\) 0 0
\(561\) 12.0000 0.506640
\(562\) 0 0
\(563\) −18.0000 −0.758610 −0.379305 0.925272i \(-0.623837\pi\)
−0.379305 + 0.925272i \(0.623837\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 5.00000 0.209980
\(568\) 0 0
\(569\) 10.0000 0.419222 0.209611 0.977785i \(-0.432780\pi\)
0.209611 + 0.977785i \(0.432780\pi\)
\(570\) 0 0
\(571\) −1.00000 −0.0418487 −0.0209243 0.999781i \(-0.506661\pi\)
−0.0209243 + 0.999781i \(0.506661\pi\)
\(572\) 0 0
\(573\) −10.0000 −0.417756
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −43.0000 −1.79011 −0.895057 0.445952i \(-0.852865\pi\)
−0.895057 + 0.445952i \(0.852865\pi\)
\(578\) 0 0
\(579\) −3.00000 −0.124676
\(580\) 0 0
\(581\) −30.0000 −1.24461
\(582\) 0 0
\(583\) −48.0000 −1.98796
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 24.0000 0.990586 0.495293 0.868726i \(-0.335061\pi\)
0.495293 + 0.868726i \(0.335061\pi\)
\(588\) 0 0
\(589\) −3.00000 −0.123613
\(590\) 0 0
\(591\) −2.00000 −0.0822690
\(592\) 0 0
\(593\) −4.00000 −0.164260 −0.0821302 0.996622i \(-0.526172\pi\)
−0.0821302 + 0.996622i \(0.526172\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 21.0000 0.859473
\(598\) 0 0
\(599\) 44.0000 1.79779 0.898896 0.438163i \(-0.144371\pi\)
0.898896 + 0.438163i \(0.144371\pi\)
\(600\) 0 0
\(601\) −13.0000 −0.530281 −0.265141 0.964210i \(-0.585418\pi\)
−0.265141 + 0.964210i \(0.585418\pi\)
\(602\) 0 0
\(603\) −1.00000 −0.0407231
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) −30.0000 −1.21566
\(610\) 0 0
\(611\) −30.0000 −1.21367
\(612\) 0 0
\(613\) 2.00000 0.0807792 0.0403896 0.999184i \(-0.487140\pi\)
0.0403896 + 0.999184i \(0.487140\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 32.0000 1.28827 0.644136 0.764911i \(-0.277217\pi\)
0.644136 + 0.764911i \(0.277217\pi\)
\(618\) 0 0
\(619\) 19.0000 0.763674 0.381837 0.924230i \(-0.375291\pi\)
0.381837 + 0.924230i \(0.375291\pi\)
\(620\) 0 0
\(621\) 2.00000 0.0802572
\(622\) 0 0
\(623\) −80.0000 −3.20513
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −6.00000 −0.239617
\(628\) 0 0
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) 31.0000 1.23409 0.617045 0.786928i \(-0.288330\pi\)
0.617045 + 0.786928i \(0.288330\pi\)
\(632\) 0 0
\(633\) 15.0000 0.596196
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −54.0000 −2.13956
\(638\) 0 0
\(639\) −12.0000 −0.474713
\(640\) 0 0
\(641\) 36.0000 1.42191 0.710957 0.703235i \(-0.248262\pi\)
0.710957 + 0.703235i \(0.248262\pi\)
\(642\) 0 0
\(643\) −12.0000 −0.473234 −0.236617 0.971603i \(-0.576039\pi\)
−0.236617 + 0.971603i \(0.576039\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −12.0000 −0.471769 −0.235884 0.971781i \(-0.575799\pi\)
−0.235884 + 0.971781i \(0.575799\pi\)
\(648\) 0 0
\(649\) 36.0000 1.41312
\(650\) 0 0
\(651\) 15.0000 0.587896
\(652\) 0 0
\(653\) −6.00000 −0.234798 −0.117399 0.993085i \(-0.537456\pi\)
−0.117399 + 0.993085i \(0.537456\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −10.0000 −0.390137
\(658\) 0 0
\(659\) 28.0000 1.09073 0.545363 0.838200i \(-0.316392\pi\)
0.545363 + 0.838200i \(0.316392\pi\)
\(660\) 0 0
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) 0 0
\(663\) −6.00000 −0.233021
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −12.0000 −0.464642
\(668\) 0 0
\(669\) −3.00000 −0.115987
\(670\) 0 0
\(671\) −18.0000 −0.694882
\(672\) 0 0
\(673\) 34.0000 1.31060 0.655302 0.755367i \(-0.272541\pi\)
0.655302 + 0.755367i \(0.272541\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −18.0000 −0.691796 −0.345898 0.938272i \(-0.612426\pi\)
−0.345898 + 0.938272i \(0.612426\pi\)
\(678\) 0 0
\(679\) 35.0000 1.34318
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) −24.0000 −0.918334 −0.459167 0.888350i \(-0.651852\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 3.00000 0.114457
\(688\) 0 0
\(689\) 24.0000 0.914327
\(690\) 0 0
\(691\) −16.0000 −0.608669 −0.304334 0.952565i \(-0.598434\pi\)
−0.304334 + 0.952565i \(0.598434\pi\)
\(692\) 0 0
\(693\) 30.0000 1.13961
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 8.00000 0.303022
\(698\) 0 0
\(699\) −20.0000 −0.756469
\(700\) 0 0
\(701\) 14.0000 0.528773 0.264386 0.964417i \(-0.414831\pi\)
0.264386 + 0.964417i \(0.414831\pi\)
\(702\) 0 0
\(703\) 6.00000 0.226294
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 40.0000 1.50435
\(708\) 0 0
\(709\) 35.0000 1.31445 0.657226 0.753693i \(-0.271730\pi\)
0.657226 + 0.753693i \(0.271730\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) 0 0
\(713\) 6.00000 0.224702
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 24.0000 0.896296
\(718\) 0 0
\(719\) −42.0000 −1.56634 −0.783168 0.621810i \(-0.786397\pi\)
−0.783168 + 0.621810i \(0.786397\pi\)
\(720\) 0 0
\(721\) −20.0000 −0.744839
\(722\) 0 0
\(723\) −7.00000 −0.260333
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 13.0000 0.482143 0.241072 0.970507i \(-0.422501\pi\)
0.241072 + 0.970507i \(0.422501\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 22.0000 0.813699
\(732\) 0 0
\(733\) −34.0000 −1.25582 −0.627909 0.778287i \(-0.716089\pi\)
−0.627909 + 0.778287i \(0.716089\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.00000 −0.221013
\(738\) 0 0
\(739\) 44.0000 1.61857 0.809283 0.587419i \(-0.199856\pi\)
0.809283 + 0.587419i \(0.199856\pi\)
\(740\) 0 0
\(741\) 3.00000 0.110208
\(742\) 0 0
\(743\) 12.0000 0.440237 0.220119 0.975473i \(-0.429356\pi\)
0.220119 + 0.975473i \(0.429356\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −6.00000 −0.219529
\(748\) 0 0
\(749\) −40.0000 −1.46157
\(750\) 0 0
\(751\) 24.0000 0.875772 0.437886 0.899030i \(-0.355727\pi\)
0.437886 + 0.899030i \(0.355727\pi\)
\(752\) 0 0
\(753\) 20.0000 0.728841
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −3.00000 −0.109037 −0.0545184 0.998513i \(-0.517362\pi\)
−0.0545184 + 0.998513i \(0.517362\pi\)
\(758\) 0 0
\(759\) 12.0000 0.435572
\(760\) 0 0
\(761\) −52.0000 −1.88500 −0.942499 0.334208i \(-0.891531\pi\)
−0.942499 + 0.334208i \(0.891531\pi\)
\(762\) 0 0
\(763\) 35.0000 1.26709
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −18.0000 −0.649942
\(768\) 0 0
\(769\) 27.0000 0.973645 0.486822 0.873501i \(-0.338156\pi\)
0.486822 + 0.873501i \(0.338156\pi\)
\(770\) 0 0
\(771\) 12.0000 0.432169
\(772\) 0 0
\(773\) 28.0000 1.00709 0.503545 0.863969i \(-0.332029\pi\)
0.503545 + 0.863969i \(0.332029\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −30.0000 −1.07624
\(778\) 0 0
\(779\) −4.00000 −0.143315
\(780\) 0 0
\(781\) −72.0000 −2.57636
\(782\) 0 0
\(783\) −6.00000 −0.214423
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −3.00000 −0.106938 −0.0534692 0.998569i \(-0.517028\pi\)
−0.0534692 + 0.998569i \(0.517028\pi\)
\(788\) 0 0
\(789\) 12.0000 0.427211
\(790\) 0 0
\(791\) −60.0000 −2.13335
\(792\) 0 0
\(793\) 9.00000 0.319599
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 28.0000 0.991811 0.495905 0.868377i \(-0.334836\pi\)
0.495905 + 0.868377i \(0.334836\pi\)
\(798\) 0 0
\(799\) 20.0000 0.707549
\(800\) 0 0
\(801\) −16.0000 −0.565332
\(802\) 0 0
\(803\) −60.0000 −2.11735
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 30.0000 1.05605
\(808\) 0 0
\(809\) −24.0000 −0.843795 −0.421898 0.906644i \(-0.638636\pi\)
−0.421898 + 0.906644i \(0.638636\pi\)
\(810\) 0 0
\(811\) −9.00000 −0.316033 −0.158016 0.987436i \(-0.550510\pi\)
−0.158016 + 0.987436i \(0.550510\pi\)
\(812\) 0 0
\(813\) 8.00000 0.280572
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −11.0000 −0.384841
\(818\) 0 0
\(819\) −15.0000 −0.524142
\(820\) 0 0
\(821\) 10.0000 0.349002 0.174501 0.984657i \(-0.444169\pi\)
0.174501 + 0.984657i \(0.444169\pi\)
\(822\) 0 0
\(823\) 49.0000 1.70803 0.854016 0.520246i \(-0.174160\pi\)
0.854016 + 0.520246i \(0.174160\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −32.0000 −1.11275 −0.556375 0.830932i \(-0.687808\pi\)
−0.556375 + 0.830932i \(0.687808\pi\)
\(828\) 0 0
\(829\) −50.0000 −1.73657 −0.868286 0.496064i \(-0.834778\pi\)
−0.868286 + 0.496064i \(0.834778\pi\)
\(830\) 0 0
\(831\) 1.00000 0.0346896
\(832\) 0 0
\(833\) 36.0000 1.24733
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 3.00000 0.103695
\(838\) 0 0
\(839\) 26.0000 0.897620 0.448810 0.893627i \(-0.351848\pi\)
0.448810 + 0.893627i \(0.351848\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 26.0000 0.895488
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 125.000 4.29505
\(848\) 0 0
\(849\) 13.0000 0.446159
\(850\) 0 0
\(851\) −12.0000 −0.411355
\(852\) 0 0
\(853\) 55.0000 1.88316 0.941582 0.336784i \(-0.109339\pi\)
0.941582 + 0.336784i \(0.109339\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 52.0000 1.77629 0.888143 0.459567i \(-0.151995\pi\)
0.888143 + 0.459567i \(0.151995\pi\)
\(858\) 0 0
\(859\) −48.0000 −1.63774 −0.818869 0.573980i \(-0.805399\pi\)
−0.818869 + 0.573980i \(0.805399\pi\)
\(860\) 0 0
\(861\) 20.0000 0.681598
\(862\) 0 0
\(863\) 8.00000 0.272323 0.136162 0.990687i \(-0.456523\pi\)
0.136162 + 0.990687i \(0.456523\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −13.0000 −0.441503
\(868\) 0 0
\(869\) −48.0000 −1.62829
\(870\) 0 0
\(871\) 3.00000 0.101651
\(872\) 0 0
\(873\) 7.00000 0.236914
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −17.0000 −0.574049 −0.287025 0.957923i \(-0.592666\pi\)
−0.287025 + 0.957923i \(0.592666\pi\)
\(878\) 0 0
\(879\) −2.00000 −0.0674583
\(880\) 0 0
\(881\) −40.0000 −1.34763 −0.673817 0.738898i \(-0.735346\pi\)
−0.673817 + 0.738898i \(0.735346\pi\)
\(882\) 0 0
\(883\) 19.0000 0.639401 0.319700 0.947519i \(-0.396418\pi\)
0.319700 + 0.947519i \(0.396418\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −42.0000 −1.41022 −0.705111 0.709097i \(-0.749103\pi\)
−0.705111 + 0.709097i \(0.749103\pi\)
\(888\) 0 0
\(889\) −40.0000 −1.34156
\(890\) 0 0
\(891\) 6.00000 0.201008
\(892\) 0 0
\(893\) −10.0000 −0.334637
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −6.00000 −0.200334
\(898\) 0 0
\(899\) −18.0000 −0.600334
\(900\) 0 0
\(901\) −16.0000 −0.533037
\(902\) 0 0
\(903\) 55.0000 1.83029
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −44.0000 −1.46100 −0.730498 0.682915i \(-0.760712\pi\)
−0.730498 + 0.682915i \(0.760712\pi\)
\(908\) 0 0
\(909\) 8.00000 0.265343
\(910\) 0 0
\(911\) −14.0000 −0.463841 −0.231920 0.972735i \(-0.574501\pi\)
−0.231920 + 0.972735i \(0.574501\pi\)
\(912\) 0 0
\(913\) −36.0000 −1.19143
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −80.0000 −2.64183
\(918\) 0 0
\(919\) 1.00000 0.0329870 0.0164935 0.999864i \(-0.494750\pi\)
0.0164935 + 0.999864i \(0.494750\pi\)
\(920\) 0 0
\(921\) 13.0000 0.428365
\(922\) 0 0
\(923\) 36.0000 1.18495
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −4.00000 −0.131377
\(928\) 0 0
\(929\) −30.0000 −0.984268 −0.492134 0.870519i \(-0.663783\pi\)
−0.492134 + 0.870519i \(0.663783\pi\)
\(930\) 0 0
\(931\) −18.0000 −0.589926
\(932\) 0 0
\(933\) −14.0000 −0.458339
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −23.0000 −0.751377 −0.375689 0.926746i \(-0.622594\pi\)
−0.375689 + 0.926746i \(0.622594\pi\)
\(938\) 0 0
\(939\) 29.0000 0.946379
\(940\) 0 0
\(941\) −46.0000 −1.49956 −0.749779 0.661689i \(-0.769840\pi\)
−0.749779 + 0.661689i \(0.769840\pi\)
\(942\) 0 0
\(943\) 8.00000 0.260516
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −2.00000 −0.0649913 −0.0324956 0.999472i \(-0.510346\pi\)
−0.0324956 + 0.999472i \(0.510346\pi\)
\(948\) 0 0
\(949\) 30.0000 0.973841
\(950\) 0 0
\(951\) −16.0000 −0.518836
\(952\) 0 0
\(953\) −24.0000 −0.777436 −0.388718 0.921357i \(-0.627082\pi\)
−0.388718 + 0.921357i \(0.627082\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −36.0000 −1.16371
\(958\) 0 0
\(959\) −30.0000 −0.968751
\(960\) 0 0
\(961\) −22.0000 −0.709677
\(962\) 0 0
\(963\) −8.00000 −0.257796
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −56.0000 −1.80084 −0.900419 0.435023i \(-0.856740\pi\)
−0.900419 + 0.435023i \(0.856740\pi\)
\(968\) 0 0
\(969\) −2.00000 −0.0642493
\(970\) 0 0
\(971\) −46.0000 −1.47621 −0.738105 0.674686i \(-0.764279\pi\)
−0.738105 + 0.674686i \(0.764279\pi\)
\(972\) 0 0
\(973\) 60.0000 1.92351
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −10.0000 −0.319928 −0.159964 0.987123i \(-0.551138\pi\)
−0.159964 + 0.987123i \(0.551138\pi\)
\(978\) 0 0
\(979\) −96.0000 −3.06817
\(980\) 0 0
\(981\) 7.00000 0.223493
\(982\) 0 0
\(983\) 36.0000 1.14822 0.574111 0.818778i \(-0.305348\pi\)
0.574111 + 0.818778i \(0.305348\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 50.0000 1.59152
\(988\) 0 0
\(989\) 22.0000 0.699559
\(990\) 0 0
\(991\) −25.0000 −0.794151 −0.397076 0.917786i \(-0.629975\pi\)
−0.397076 + 0.917786i \(0.629975\pi\)
\(992\) 0 0
\(993\) 20.0000 0.634681
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −54.0000 −1.71020 −0.855099 0.518465i \(-0.826503\pi\)
−0.855099 + 0.518465i \(0.826503\pi\)
\(998\) 0 0
\(999\) −6.00000 −0.189832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4800.2.a.ct.1.1 1
4.3 odd 2 4800.2.a.a.1.1 1
5.2 odd 4 4800.2.f.bj.3649.1 2
5.3 odd 4 4800.2.f.bj.3649.2 2
5.4 even 2 4800.2.a.b.1.1 1
8.3 odd 2 1200.2.a.j.1.1 1
8.5 even 2 600.2.a.e.1.1 1
20.3 even 4 4800.2.f.a.3649.1 2
20.7 even 4 4800.2.f.a.3649.2 2
20.19 odd 2 4800.2.a.cs.1.1 1
24.5 odd 2 1800.2.a.x.1.1 1
24.11 even 2 3600.2.a.a.1.1 1
40.3 even 4 1200.2.f.i.49.2 2
40.13 odd 4 600.2.f.a.49.1 2
40.19 odd 2 1200.2.a.i.1.1 1
40.27 even 4 1200.2.f.i.49.1 2
40.29 even 2 600.2.a.f.1.1 yes 1
40.37 odd 4 600.2.f.a.49.2 2
120.29 odd 2 1800.2.a.a.1.1 1
120.53 even 4 1800.2.f.k.649.1 2
120.59 even 2 3600.2.a.bq.1.1 1
120.77 even 4 1800.2.f.k.649.2 2
120.83 odd 4 3600.2.f.b.2449.2 2
120.107 odd 4 3600.2.f.b.2449.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
600.2.a.e.1.1 1 8.5 even 2
600.2.a.f.1.1 yes 1 40.29 even 2
600.2.f.a.49.1 2 40.13 odd 4
600.2.f.a.49.2 2 40.37 odd 4
1200.2.a.i.1.1 1 40.19 odd 2
1200.2.a.j.1.1 1 8.3 odd 2
1200.2.f.i.49.1 2 40.27 even 4
1200.2.f.i.49.2 2 40.3 even 4
1800.2.a.a.1.1 1 120.29 odd 2
1800.2.a.x.1.1 1 24.5 odd 2
1800.2.f.k.649.1 2 120.53 even 4
1800.2.f.k.649.2 2 120.77 even 4
3600.2.a.a.1.1 1 24.11 even 2
3600.2.a.bq.1.1 1 120.59 even 2
3600.2.f.b.2449.1 2 120.107 odd 4
3600.2.f.b.2449.2 2 120.83 odd 4
4800.2.a.a.1.1 1 4.3 odd 2
4800.2.a.b.1.1 1 5.4 even 2
4800.2.a.cs.1.1 1 20.19 odd 2
4800.2.a.ct.1.1 1 1.1 even 1 trivial
4800.2.f.a.3649.1 2 20.3 even 4
4800.2.f.a.3649.2 2 20.7 even 4
4800.2.f.bj.3649.1 2 5.2 odd 4
4800.2.f.bj.3649.2 2 5.3 odd 4