# Properties

 Label 4800.2.a.bk Level $4800$ Weight $2$ Character orbit 4800.a Self dual yes Analytic conductor $38.328$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$4800 = 2^{6} \cdot 3 \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4800.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$38.3281929702$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 60) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q + q^{3} - 4q^{7} + q^{9} + O(q^{10})$$ $$q + q^{3} - 4q^{7} + q^{9} - 4q^{11} + 4q^{17} - 4q^{21} - 4q^{23} + q^{27} + 6q^{29} - 4q^{31} - 4q^{33} + 8q^{37} - 10q^{41} + 4q^{43} + 4q^{47} + 9q^{49} + 4q^{51} + 12q^{53} + 4q^{59} - 2q^{61} - 4q^{63} - 4q^{67} - 4q^{69} - 8q^{73} + 16q^{77} + 12q^{79} + q^{81} + 4q^{83} + 6q^{87} - 10q^{89} - 4q^{93} + 8q^{97} - 4q^{99} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 1.00000 0 0 0 −4.00000 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4800.2.a.bk 1
4.b odd 2 1 4800.2.a.bj 1
5.b even 2 1 4800.2.a.bf 1
5.c odd 4 2 960.2.f.c 2
8.b even 2 1 1200.2.a.a 1
8.d odd 2 1 300.2.a.d 1
15.e even 4 2 2880.2.f.p 2
20.d odd 2 1 4800.2.a.bn 1
20.e even 4 2 960.2.f.f 2
24.f even 2 1 900.2.a.h 1
24.h odd 2 1 3600.2.a.d 1
40.e odd 2 1 300.2.a.a 1
40.f even 2 1 1200.2.a.s 1
40.i odd 4 2 240.2.f.b 2
40.k even 4 2 60.2.d.a 2
60.l odd 4 2 2880.2.f.l 2
80.i odd 4 2 3840.2.d.b 2
80.j even 4 2 3840.2.d.o 2
80.s even 4 2 3840.2.d.r 2
80.t odd 4 2 3840.2.d.be 2
120.i odd 2 1 3600.2.a.bm 1
120.m even 2 1 900.2.a.a 1
120.q odd 4 2 180.2.d.a 2
120.w even 4 2 720.2.f.c 2
280.y odd 4 2 2940.2.k.c 2
280.bp odd 12 4 2940.2.bb.e 4
280.br even 12 4 2940.2.bb.d 4
360.bo even 12 4 1620.2.r.c 4
360.bt odd 12 4 1620.2.r.d 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
60.2.d.a 2 40.k even 4 2
180.2.d.a 2 120.q odd 4 2
240.2.f.b 2 40.i odd 4 2
300.2.a.a 1 40.e odd 2 1
300.2.a.d 1 8.d odd 2 1
720.2.f.c 2 120.w even 4 2
900.2.a.a 1 120.m even 2 1
900.2.a.h 1 24.f even 2 1
960.2.f.c 2 5.c odd 4 2
960.2.f.f 2 20.e even 4 2
1200.2.a.a 1 8.b even 2 1
1200.2.a.s 1 40.f even 2 1
1620.2.r.c 4 360.bo even 12 4
1620.2.r.d 4 360.bt odd 12 4
2880.2.f.l 2 60.l odd 4 2
2880.2.f.p 2 15.e even 4 2
2940.2.k.c 2 280.y odd 4 2
2940.2.bb.d 4 280.br even 12 4
2940.2.bb.e 4 280.bp odd 12 4
3600.2.a.d 1 24.h odd 2 1
3600.2.a.bm 1 120.i odd 2 1
3840.2.d.b 2 80.i odd 4 2
3840.2.d.o 2 80.j even 4 2
3840.2.d.r 2 80.s even 4 2
3840.2.d.be 2 80.t odd 4 2
4800.2.a.bf 1 5.b even 2 1
4800.2.a.bj 1 4.b odd 2 1
4800.2.a.bk 1 1.a even 1 1 trivial
4800.2.a.bn 1 20.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(4800))$$:

 $$T_{7} + 4$$ $$T_{11} + 4$$ $$T_{13}$$ $$T_{19}$$ $$T_{23} + 4$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$-1 + T$$
$5$ $$T$$
$7$ $$4 + T$$
$11$ $$4 + T$$
$13$ $$T$$
$17$ $$-4 + T$$
$19$ $$T$$
$23$ $$4 + T$$
$29$ $$-6 + T$$
$31$ $$4 + T$$
$37$ $$-8 + T$$
$41$ $$10 + T$$
$43$ $$-4 + T$$
$47$ $$-4 + T$$
$53$ $$-12 + T$$
$59$ $$-4 + T$$
$61$ $$2 + T$$
$67$ $$4 + T$$
$71$ $$T$$
$73$ $$8 + T$$
$79$ $$-12 + T$$
$83$ $$-4 + T$$
$89$ $$10 + T$$
$97$ $$-8 + T$$