Defining parameters
| Level: | \( N \) | \(=\) | \( 4800 = 2^{6} \cdot 3 \cdot 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 4800.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 74 \) | ||
| Sturm bound: | \(1920\) | ||
| Trace bound: | \(13\) | ||
| Distinguishing \(T_p\): | \(7\), \(11\), \(13\), \(19\), \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4800))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1032 | 76 | 956 |
| Cusp forms | 889 | 76 | 813 |
| Eisenstein series | 143 | 0 | 143 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(126\) | \(8\) | \(118\) | \(109\) | \(8\) | \(101\) | \(17\) | \(0\) | \(17\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(132\) | \(10\) | \(122\) | \(114\) | \(10\) | \(104\) | \(18\) | \(0\) | \(18\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(132\) | \(11\) | \(121\) | \(114\) | \(11\) | \(103\) | \(18\) | \(0\) | \(18\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(126\) | \(8\) | \(118\) | \(108\) | \(8\) | \(100\) | \(18\) | \(0\) | \(18\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(132\) | \(10\) | \(122\) | \(114\) | \(10\) | \(104\) | \(18\) | \(0\) | \(18\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(126\) | \(10\) | \(116\) | \(108\) | \(10\) | \(98\) | \(18\) | \(0\) | \(18\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(126\) | \(7\) | \(119\) | \(108\) | \(7\) | \(101\) | \(18\) | \(0\) | \(18\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(132\) | \(12\) | \(120\) | \(114\) | \(12\) | \(102\) | \(18\) | \(0\) | \(18\) | |||
| Plus space | \(+\) | \(504\) | \(33\) | \(471\) | \(433\) | \(33\) | \(400\) | \(71\) | \(0\) | \(71\) | |||||
| Minus space | \(-\) | \(528\) | \(43\) | \(485\) | \(456\) | \(43\) | \(413\) | \(72\) | \(0\) | \(72\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4800))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4800))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4800)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(80))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(96))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(160))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(192))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(200))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(240))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(300))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(320))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(400))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(480))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(600))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(800))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(960))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1200))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1600))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2400))\)\(^{\oplus 2}\)