Properties

Label 480.4.a.o.1.1
Level $480$
Weight $4$
Character 480.1
Self dual yes
Analytic conductor $28.321$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [480,4,Mod(1,480)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("480.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(480, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 480 = 2^{5} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 480.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-6,0,10,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.3209168028\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{89}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 22 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(5.21699\) of defining polynomial
Character \(\chi\) \(=\) 480.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +5.00000 q^{5} -24.8680 q^{7} +9.00000 q^{9} +25.7359 q^{11} +60.6039 q^{13} -15.0000 q^{15} -28.6039 q^{17} -86.6039 q^{19} +74.6039 q^{21} +52.3398 q^{23} +25.0000 q^{25} -27.0000 q^{27} +6.00000 q^{29} -84.8680 q^{31} -77.2078 q^{33} -124.340 q^{35} -448.227 q^{37} -181.812 q^{39} +183.208 q^{41} -252.000 q^{43} +45.0000 q^{45} -41.9243 q^{47} +275.416 q^{49} +85.8117 q^{51} -228.792 q^{53} +128.680 q^{55} +259.812 q^{57} -179.849 q^{59} +480.039 q^{61} -223.812 q^{63} +303.019 q^{65} -855.472 q^{67} -157.019 q^{69} -675.775 q^{71} -621.623 q^{73} -75.0000 q^{75} -640.000 q^{77} +513.699 q^{79} +81.0000 q^{81} -1284.30 q^{83} -143.019 q^{85} -18.0000 q^{87} -1004.87 q^{89} -1507.10 q^{91} +254.604 q^{93} -433.019 q^{95} +300.416 q^{97} +231.623 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 10 q^{5} - 12 q^{7} + 18 q^{9} - 24 q^{11} + 8 q^{13} - 30 q^{15} + 56 q^{17} - 60 q^{19} + 36 q^{21} - 84 q^{23} + 50 q^{25} - 54 q^{27} + 12 q^{29} - 132 q^{31} + 72 q^{33} - 60 q^{35}+ \cdots - 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −24.8680 −1.34274 −0.671372 0.741121i \(-0.734295\pi\)
−0.671372 + 0.741121i \(0.734295\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 25.7359 0.705425 0.352712 0.935732i \(-0.385259\pi\)
0.352712 + 0.935732i \(0.385259\pi\)
\(12\) 0 0
\(13\) 60.6039 1.29296 0.646481 0.762930i \(-0.276240\pi\)
0.646481 + 0.762930i \(0.276240\pi\)
\(14\) 0 0
\(15\) −15.0000 −0.258199
\(16\) 0 0
\(17\) −28.6039 −0.408086 −0.204043 0.978962i \(-0.565408\pi\)
−0.204043 + 0.978962i \(0.565408\pi\)
\(18\) 0 0
\(19\) −86.6039 −1.04570 −0.522850 0.852425i \(-0.675131\pi\)
−0.522850 + 0.852425i \(0.675131\pi\)
\(20\) 0 0
\(21\) 74.6039 0.775233
\(22\) 0 0
\(23\) 52.3398 0.474505 0.237252 0.971448i \(-0.423753\pi\)
0.237252 + 0.971448i \(0.423753\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 6.00000 0.0384197 0.0192099 0.999815i \(-0.493885\pi\)
0.0192099 + 0.999815i \(0.493885\pi\)
\(30\) 0 0
\(31\) −84.8680 −0.491701 −0.245851 0.969308i \(-0.579067\pi\)
−0.245851 + 0.969308i \(0.579067\pi\)
\(32\) 0 0
\(33\) −77.2078 −0.407277
\(34\) 0 0
\(35\) −124.340 −0.600493
\(36\) 0 0
\(37\) −448.227 −1.99157 −0.995785 0.0917169i \(-0.970765\pi\)
−0.995785 + 0.0917169i \(0.970765\pi\)
\(38\) 0 0
\(39\) −181.812 −0.746491
\(40\) 0 0
\(41\) 183.208 0.697860 0.348930 0.937149i \(-0.386545\pi\)
0.348930 + 0.937149i \(0.386545\pi\)
\(42\) 0 0
\(43\) −252.000 −0.893713 −0.446856 0.894606i \(-0.647456\pi\)
−0.446856 + 0.894606i \(0.647456\pi\)
\(44\) 0 0
\(45\) 45.0000 0.149071
\(46\) 0 0
\(47\) −41.9243 −0.130112 −0.0650562 0.997882i \(-0.520723\pi\)
−0.0650562 + 0.997882i \(0.520723\pi\)
\(48\) 0 0
\(49\) 275.416 0.802961
\(50\) 0 0
\(51\) 85.8117 0.235609
\(52\) 0 0
\(53\) −228.792 −0.592963 −0.296481 0.955039i \(-0.595813\pi\)
−0.296481 + 0.955039i \(0.595813\pi\)
\(54\) 0 0
\(55\) 128.680 0.315476
\(56\) 0 0
\(57\) 259.812 0.603735
\(58\) 0 0
\(59\) −179.849 −0.396852 −0.198426 0.980116i \(-0.563583\pi\)
−0.198426 + 0.980116i \(0.563583\pi\)
\(60\) 0 0
\(61\) 480.039 1.00758 0.503792 0.863825i \(-0.331938\pi\)
0.503792 + 0.863825i \(0.331938\pi\)
\(62\) 0 0
\(63\) −223.812 −0.447581
\(64\) 0 0
\(65\) 303.019 0.578230
\(66\) 0 0
\(67\) −855.472 −1.55989 −0.779944 0.625849i \(-0.784753\pi\)
−0.779944 + 0.625849i \(0.784753\pi\)
\(68\) 0 0
\(69\) −157.019 −0.273955
\(70\) 0 0
\(71\) −675.775 −1.12957 −0.564787 0.825237i \(-0.691042\pi\)
−0.564787 + 0.825237i \(0.691042\pi\)
\(72\) 0 0
\(73\) −621.623 −0.996651 −0.498325 0.866990i \(-0.666052\pi\)
−0.498325 + 0.866990i \(0.666052\pi\)
\(74\) 0 0
\(75\) −75.0000 −0.115470
\(76\) 0 0
\(77\) −640.000 −0.947205
\(78\) 0 0
\(79\) 513.699 0.731591 0.365795 0.930695i \(-0.380797\pi\)
0.365795 + 0.930695i \(0.380797\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −1284.30 −1.69844 −0.849220 0.528039i \(-0.822928\pi\)
−0.849220 + 0.528039i \(0.822928\pi\)
\(84\) 0 0
\(85\) −143.019 −0.182502
\(86\) 0 0
\(87\) −18.0000 −0.0221816
\(88\) 0 0
\(89\) −1004.87 −1.19681 −0.598405 0.801194i \(-0.704198\pi\)
−0.598405 + 0.801194i \(0.704198\pi\)
\(90\) 0 0
\(91\) −1507.10 −1.73612
\(92\) 0 0
\(93\) 254.604 0.283884
\(94\) 0 0
\(95\) −433.019 −0.467651
\(96\) 0 0
\(97\) 300.416 0.314460 0.157230 0.987562i \(-0.449744\pi\)
0.157230 + 0.987562i \(0.449744\pi\)
\(98\) 0 0
\(99\) 231.623 0.235142
\(100\) 0 0
\(101\) −1649.25 −1.62481 −0.812407 0.583091i \(-0.801843\pi\)
−0.812407 + 0.583091i \(0.801843\pi\)
\(102\) 0 0
\(103\) 1326.38 1.26885 0.634427 0.772983i \(-0.281236\pi\)
0.634427 + 0.772983i \(0.281236\pi\)
\(104\) 0 0
\(105\) 373.019 0.346695
\(106\) 0 0
\(107\) −1189.43 −1.07464 −0.537322 0.843377i \(-0.680564\pi\)
−0.537322 + 0.843377i \(0.680564\pi\)
\(108\) 0 0
\(109\) 1864.42 1.63834 0.819168 0.573554i \(-0.194436\pi\)
0.819168 + 0.573554i \(0.194436\pi\)
\(110\) 0 0
\(111\) 1344.68 1.14983
\(112\) 0 0
\(113\) −1218.19 −1.01414 −0.507069 0.861906i \(-0.669271\pi\)
−0.507069 + 0.861906i \(0.669271\pi\)
\(114\) 0 0
\(115\) 261.699 0.212205
\(116\) 0 0
\(117\) 545.435 0.430987
\(118\) 0 0
\(119\) 711.320 0.547955
\(120\) 0 0
\(121\) −668.662 −0.502376
\(122\) 0 0
\(123\) −549.623 −0.402909
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −1740.19 −1.21588 −0.607941 0.793982i \(-0.708004\pi\)
−0.607941 + 0.793982i \(0.708004\pi\)
\(128\) 0 0
\(129\) 756.000 0.515985
\(130\) 0 0
\(131\) 456.303 0.304331 0.152166 0.988355i \(-0.451375\pi\)
0.152166 + 0.988355i \(0.451375\pi\)
\(132\) 0 0
\(133\) 2153.66 1.40411
\(134\) 0 0
\(135\) −135.000 −0.0860663
\(136\) 0 0
\(137\) 1329.51 0.829109 0.414555 0.910024i \(-0.363937\pi\)
0.414555 + 0.910024i \(0.363937\pi\)
\(138\) 0 0
\(139\) −1097.25 −0.669550 −0.334775 0.942298i \(-0.608660\pi\)
−0.334775 + 0.942298i \(0.608660\pi\)
\(140\) 0 0
\(141\) 125.773 0.0751204
\(142\) 0 0
\(143\) 1559.70 0.912087
\(144\) 0 0
\(145\) 30.0000 0.0171818
\(146\) 0 0
\(147\) −826.247 −0.463590
\(148\) 0 0
\(149\) 1590.16 0.874299 0.437150 0.899389i \(-0.355988\pi\)
0.437150 + 0.899389i \(0.355988\pi\)
\(150\) 0 0
\(151\) 1166.60 0.628721 0.314361 0.949304i \(-0.398210\pi\)
0.314361 + 0.949304i \(0.398210\pi\)
\(152\) 0 0
\(153\) −257.435 −0.136029
\(154\) 0 0
\(155\) −424.340 −0.219895
\(156\) 0 0
\(157\) 1770.57 0.900041 0.450021 0.893018i \(-0.351417\pi\)
0.450021 + 0.893018i \(0.351417\pi\)
\(158\) 0 0
\(159\) 686.377 0.342347
\(160\) 0 0
\(161\) −1301.58 −0.637138
\(162\) 0 0
\(163\) 4018.35 1.93093 0.965464 0.260538i \(-0.0838999\pi\)
0.965464 + 0.260538i \(0.0838999\pi\)
\(164\) 0 0
\(165\) −386.039 −0.182140
\(166\) 0 0
\(167\) 2899.74 1.34365 0.671823 0.740712i \(-0.265512\pi\)
0.671823 + 0.740712i \(0.265512\pi\)
\(168\) 0 0
\(169\) 1475.83 0.671748
\(170\) 0 0
\(171\) −779.435 −0.348567
\(172\) 0 0
\(173\) −3127.74 −1.37455 −0.687276 0.726396i \(-0.741194\pi\)
−0.687276 + 0.726396i \(0.741194\pi\)
\(174\) 0 0
\(175\) −621.699 −0.268549
\(176\) 0 0
\(177\) 539.546 0.229123
\(178\) 0 0
\(179\) 2852.53 1.19111 0.595553 0.803316i \(-0.296933\pi\)
0.595553 + 0.803316i \(0.296933\pi\)
\(180\) 0 0
\(181\) −1666.91 −0.684532 −0.342266 0.939603i \(-0.611194\pi\)
−0.342266 + 0.939603i \(0.611194\pi\)
\(182\) 0 0
\(183\) −1440.12 −0.581729
\(184\) 0 0
\(185\) −2241.14 −0.890657
\(186\) 0 0
\(187\) −736.147 −0.287874
\(188\) 0 0
\(189\) 671.435 0.258411
\(190\) 0 0
\(191\) 3144.00 1.19106 0.595528 0.803334i \(-0.296943\pi\)
0.595528 + 0.803334i \(0.296943\pi\)
\(192\) 0 0
\(193\) −1063.13 −0.396507 −0.198253 0.980151i \(-0.563527\pi\)
−0.198253 + 0.980151i \(0.563527\pi\)
\(194\) 0 0
\(195\) −909.058 −0.333841
\(196\) 0 0
\(197\) −4600.87 −1.66395 −0.831976 0.554812i \(-0.812790\pi\)
−0.831976 + 0.554812i \(0.812790\pi\)
\(198\) 0 0
\(199\) 1834.83 0.653606 0.326803 0.945092i \(-0.394029\pi\)
0.326803 + 0.945092i \(0.394029\pi\)
\(200\) 0 0
\(201\) 2566.42 0.900602
\(202\) 0 0
\(203\) −149.208 −0.0515878
\(204\) 0 0
\(205\) 916.039 0.312092
\(206\) 0 0
\(207\) 471.058 0.158168
\(208\) 0 0
\(209\) −2228.83 −0.737663
\(210\) 0 0
\(211\) −1896.80 −0.618867 −0.309434 0.950921i \(-0.600139\pi\)
−0.309434 + 0.950921i \(0.600139\pi\)
\(212\) 0 0
\(213\) 2027.32 0.652160
\(214\) 0 0
\(215\) −1260.00 −0.399680
\(216\) 0 0
\(217\) 2110.49 0.660229
\(218\) 0 0
\(219\) 1864.87 0.575417
\(220\) 0 0
\(221\) −1733.51 −0.527639
\(222\) 0 0
\(223\) 5967.06 1.79186 0.895928 0.444200i \(-0.146512\pi\)
0.895928 + 0.444200i \(0.146512\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 0 0
\(227\) −6375.03 −1.86399 −0.931995 0.362472i \(-0.881933\pi\)
−0.931995 + 0.362472i \(0.881933\pi\)
\(228\) 0 0
\(229\) −1360.12 −0.392485 −0.196242 0.980555i \(-0.562874\pi\)
−0.196242 + 0.980555i \(0.562874\pi\)
\(230\) 0 0
\(231\) 1920.00 0.546869
\(232\) 0 0
\(233\) 96.7594 0.0272056 0.0136028 0.999907i \(-0.495670\pi\)
0.0136028 + 0.999907i \(0.495670\pi\)
\(234\) 0 0
\(235\) −209.621 −0.0581880
\(236\) 0 0
\(237\) −1541.10 −0.422384
\(238\) 0 0
\(239\) 6068.00 1.64229 0.821143 0.570722i \(-0.193337\pi\)
0.821143 + 0.570722i \(0.193337\pi\)
\(240\) 0 0
\(241\) −542.753 −0.145070 −0.0725349 0.997366i \(-0.523109\pi\)
−0.0725349 + 0.997366i \(0.523109\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 1377.08 0.359095
\(246\) 0 0
\(247\) −5248.53 −1.35205
\(248\) 0 0
\(249\) 3852.91 0.980595
\(250\) 0 0
\(251\) 4658.42 1.17146 0.585731 0.810505i \(-0.300807\pi\)
0.585731 + 0.810505i \(0.300807\pi\)
\(252\) 0 0
\(253\) 1347.01 0.334727
\(254\) 0 0
\(255\) 429.058 0.105367
\(256\) 0 0
\(257\) −6519.33 −1.58235 −0.791176 0.611588i \(-0.790531\pi\)
−0.791176 + 0.611588i \(0.790531\pi\)
\(258\) 0 0
\(259\) 11146.5 2.67417
\(260\) 0 0
\(261\) 54.0000 0.0128066
\(262\) 0 0
\(263\) 1205.17 0.282562 0.141281 0.989970i \(-0.454878\pi\)
0.141281 + 0.989970i \(0.454878\pi\)
\(264\) 0 0
\(265\) −1143.96 −0.265181
\(266\) 0 0
\(267\) 3014.61 0.690978
\(268\) 0 0
\(269\) −6083.66 −1.37891 −0.689456 0.724327i \(-0.742150\pi\)
−0.689456 + 0.724327i \(0.742150\pi\)
\(270\) 0 0
\(271\) 3151.36 0.706389 0.353194 0.935550i \(-0.385095\pi\)
0.353194 + 0.935550i \(0.385095\pi\)
\(272\) 0 0
\(273\) 4521.29 1.00235
\(274\) 0 0
\(275\) 643.398 0.141085
\(276\) 0 0
\(277\) 6780.54 1.47077 0.735385 0.677650i \(-0.237002\pi\)
0.735385 + 0.677650i \(0.237002\pi\)
\(278\) 0 0
\(279\) −763.812 −0.163900
\(280\) 0 0
\(281\) 5163.29 1.09614 0.548071 0.836432i \(-0.315362\pi\)
0.548071 + 0.836432i \(0.315362\pi\)
\(282\) 0 0
\(283\) −6543.64 −1.37448 −0.687242 0.726429i \(-0.741179\pi\)
−0.687242 + 0.726429i \(0.741179\pi\)
\(284\) 0 0
\(285\) 1299.06 0.269999
\(286\) 0 0
\(287\) −4556.00 −0.937047
\(288\) 0 0
\(289\) −4094.82 −0.833466
\(290\) 0 0
\(291\) −901.247 −0.181553
\(292\) 0 0
\(293\) 267.208 0.0532780 0.0266390 0.999645i \(-0.491520\pi\)
0.0266390 + 0.999645i \(0.491520\pi\)
\(294\) 0 0
\(295\) −899.243 −0.177478
\(296\) 0 0
\(297\) −694.870 −0.135759
\(298\) 0 0
\(299\) 3172.00 0.613516
\(300\) 0 0
\(301\) 6266.73 1.20003
\(302\) 0 0
\(303\) 4947.74 0.938087
\(304\) 0 0
\(305\) 2400.19 0.450606
\(306\) 0 0
\(307\) 646.800 0.120244 0.0601219 0.998191i \(-0.480851\pi\)
0.0601219 + 0.998191i \(0.480851\pi\)
\(308\) 0 0
\(309\) −3979.14 −0.732573
\(310\) 0 0
\(311\) −5855.48 −1.06763 −0.533816 0.845601i \(-0.679243\pi\)
−0.533816 + 0.845601i \(0.679243\pi\)
\(312\) 0 0
\(313\) −3939.52 −0.711421 −0.355710 0.934596i \(-0.615761\pi\)
−0.355710 + 0.934596i \(0.615761\pi\)
\(314\) 0 0
\(315\) −1119.06 −0.200164
\(316\) 0 0
\(317\) 16.1943 0.00286929 0.00143464 0.999999i \(-0.499543\pi\)
0.00143464 + 0.999999i \(0.499543\pi\)
\(318\) 0 0
\(319\) 154.416 0.0271022
\(320\) 0 0
\(321\) 3568.30 0.620446
\(322\) 0 0
\(323\) 2477.21 0.426735
\(324\) 0 0
\(325\) 1515.10 0.258592
\(326\) 0 0
\(327\) −5593.25 −0.945894
\(328\) 0 0
\(329\) 1042.57 0.174708
\(330\) 0 0
\(331\) −1946.45 −0.323223 −0.161611 0.986854i \(-0.551669\pi\)
−0.161611 + 0.986854i \(0.551669\pi\)
\(332\) 0 0
\(333\) −4034.04 −0.663857
\(334\) 0 0
\(335\) −4277.36 −0.697603
\(336\) 0 0
\(337\) −3713.10 −0.600195 −0.300097 0.953909i \(-0.597019\pi\)
−0.300097 + 0.953909i \(0.597019\pi\)
\(338\) 0 0
\(339\) 3654.57 0.585512
\(340\) 0 0
\(341\) −2184.16 −0.346858
\(342\) 0 0
\(343\) 1680.69 0.264573
\(344\) 0 0
\(345\) −785.097 −0.122517
\(346\) 0 0
\(347\) −12200.6 −1.88750 −0.943751 0.330658i \(-0.892729\pi\)
−0.943751 + 0.330658i \(0.892729\pi\)
\(348\) 0 0
\(349\) −1455.52 −0.223244 −0.111622 0.993751i \(-0.535605\pi\)
−0.111622 + 0.993751i \(0.535605\pi\)
\(350\) 0 0
\(351\) −1636.30 −0.248830
\(352\) 0 0
\(353\) 364.526 0.0549625 0.0274813 0.999622i \(-0.491251\pi\)
0.0274813 + 0.999622i \(0.491251\pi\)
\(354\) 0 0
\(355\) −3378.87 −0.505161
\(356\) 0 0
\(357\) −2133.96 −0.316362
\(358\) 0 0
\(359\) −11180.1 −1.64363 −0.821814 0.569756i \(-0.807038\pi\)
−0.821814 + 0.569756i \(0.807038\pi\)
\(360\) 0 0
\(361\) 641.233 0.0934879
\(362\) 0 0
\(363\) 2005.99 0.290047
\(364\) 0 0
\(365\) −3108.12 −0.445716
\(366\) 0 0
\(367\) −5558.37 −0.790585 −0.395292 0.918555i \(-0.629357\pi\)
−0.395292 + 0.918555i \(0.629357\pi\)
\(368\) 0 0
\(369\) 1648.87 0.232620
\(370\) 0 0
\(371\) 5689.60 0.796197
\(372\) 0 0
\(373\) 9598.80 1.33246 0.666229 0.745747i \(-0.267907\pi\)
0.666229 + 0.745747i \(0.267907\pi\)
\(374\) 0 0
\(375\) −375.000 −0.0516398
\(376\) 0 0
\(377\) 363.623 0.0496752
\(378\) 0 0
\(379\) 5518.37 0.747915 0.373958 0.927446i \(-0.378001\pi\)
0.373958 + 0.927446i \(0.378001\pi\)
\(380\) 0 0
\(381\) 5220.58 0.701990
\(382\) 0 0
\(383\) 7208.20 0.961675 0.480838 0.876810i \(-0.340333\pi\)
0.480838 + 0.876810i \(0.340333\pi\)
\(384\) 0 0
\(385\) −3200.00 −0.423603
\(386\) 0 0
\(387\) −2268.00 −0.297904
\(388\) 0 0
\(389\) −8580.13 −1.11833 −0.559164 0.829057i \(-0.688878\pi\)
−0.559164 + 0.829057i \(0.688878\pi\)
\(390\) 0 0
\(391\) −1497.12 −0.193639
\(392\) 0 0
\(393\) −1368.91 −0.175706
\(394\) 0 0
\(395\) 2568.50 0.327177
\(396\) 0 0
\(397\) 10323.7 1.30512 0.652558 0.757738i \(-0.273696\pi\)
0.652558 + 0.757738i \(0.273696\pi\)
\(398\) 0 0
\(399\) −6460.99 −0.810661
\(400\) 0 0
\(401\) 6130.00 0.763386 0.381693 0.924289i \(-0.375341\pi\)
0.381693 + 0.924289i \(0.375341\pi\)
\(402\) 0 0
\(403\) −5143.33 −0.635750
\(404\) 0 0
\(405\) 405.000 0.0496904
\(406\) 0 0
\(407\) −11535.5 −1.40490
\(408\) 0 0
\(409\) 4015.45 0.485456 0.242728 0.970094i \(-0.421958\pi\)
0.242728 + 0.970094i \(0.421958\pi\)
\(410\) 0 0
\(411\) −3988.54 −0.478686
\(412\) 0 0
\(413\) 4472.47 0.532871
\(414\) 0 0
\(415\) −6421.51 −0.759566
\(416\) 0 0
\(417\) 3291.75 0.386565
\(418\) 0 0
\(419\) 11923.3 1.39020 0.695098 0.718915i \(-0.255361\pi\)
0.695098 + 0.718915i \(0.255361\pi\)
\(420\) 0 0
\(421\) −12939.9 −1.49799 −0.748993 0.662577i \(-0.769463\pi\)
−0.748993 + 0.662577i \(0.769463\pi\)
\(422\) 0 0
\(423\) −377.318 −0.0433708
\(424\) 0 0
\(425\) −715.097 −0.0816172
\(426\) 0 0
\(427\) −11937.6 −1.35293
\(428\) 0 0
\(429\) −4679.09 −0.526594
\(430\) 0 0
\(431\) −5958.20 −0.665885 −0.332942 0.942947i \(-0.608041\pi\)
−0.332942 + 0.942947i \(0.608041\pi\)
\(432\) 0 0
\(433\) 8063.83 0.894972 0.447486 0.894291i \(-0.352319\pi\)
0.447486 + 0.894291i \(0.352319\pi\)
\(434\) 0 0
\(435\) −90.0000 −0.00991993
\(436\) 0 0
\(437\) −4532.83 −0.496189
\(438\) 0 0
\(439\) −6065.39 −0.659420 −0.329710 0.944082i \(-0.606951\pi\)
−0.329710 + 0.944082i \(0.606951\pi\)
\(440\) 0 0
\(441\) 2478.74 0.267654
\(442\) 0 0
\(443\) 5019.57 0.538345 0.269172 0.963092i \(-0.413250\pi\)
0.269172 + 0.963092i \(0.413250\pi\)
\(444\) 0 0
\(445\) −5024.35 −0.535229
\(446\) 0 0
\(447\) −4770.47 −0.504777
\(448\) 0 0
\(449\) 1830.39 0.192386 0.0961931 0.995363i \(-0.469333\pi\)
0.0961931 + 0.995363i \(0.469333\pi\)
\(450\) 0 0
\(451\) 4715.02 0.492288
\(452\) 0 0
\(453\) −3499.81 −0.362992
\(454\) 0 0
\(455\) −7535.48 −0.776414
\(456\) 0 0
\(457\) −7111.06 −0.727881 −0.363940 0.931422i \(-0.618569\pi\)
−0.363940 + 0.931422i \(0.618569\pi\)
\(458\) 0 0
\(459\) 772.305 0.0785362
\(460\) 0 0
\(461\) 2347.58 0.237176 0.118588 0.992944i \(-0.462163\pi\)
0.118588 + 0.992944i \(0.462163\pi\)
\(462\) 0 0
\(463\) −8669.58 −0.870215 −0.435107 0.900379i \(-0.643290\pi\)
−0.435107 + 0.900379i \(0.643290\pi\)
\(464\) 0 0
\(465\) 1273.02 0.126957
\(466\) 0 0
\(467\) 6448.02 0.638927 0.319463 0.947599i \(-0.396497\pi\)
0.319463 + 0.947599i \(0.396497\pi\)
\(468\) 0 0
\(469\) 21273.8 2.09453
\(470\) 0 0
\(471\) −5311.70 −0.519639
\(472\) 0 0
\(473\) −6485.45 −0.630447
\(474\) 0 0
\(475\) −2165.10 −0.209140
\(476\) 0 0
\(477\) −2059.13 −0.197654
\(478\) 0 0
\(479\) 7603.95 0.725330 0.362665 0.931920i \(-0.381867\pi\)
0.362665 + 0.931920i \(0.381867\pi\)
\(480\) 0 0
\(481\) −27164.3 −2.57502
\(482\) 0 0
\(483\) 3904.75 0.367852
\(484\) 0 0
\(485\) 1502.08 0.140631
\(486\) 0 0
\(487\) −14109.5 −1.31286 −0.656429 0.754388i \(-0.727934\pi\)
−0.656429 + 0.754388i \(0.727934\pi\)
\(488\) 0 0
\(489\) −12055.0 −1.11482
\(490\) 0 0
\(491\) −15808.3 −1.45299 −0.726493 0.687173i \(-0.758851\pi\)
−0.726493 + 0.687173i \(0.758851\pi\)
\(492\) 0 0
\(493\) −171.623 −0.0156786
\(494\) 0 0
\(495\) 1158.12 0.105159
\(496\) 0 0
\(497\) 16805.1 1.51673
\(498\) 0 0
\(499\) 14653.7 1.31461 0.657304 0.753625i \(-0.271697\pi\)
0.657304 + 0.753625i \(0.271697\pi\)
\(500\) 0 0
\(501\) −8699.23 −0.775754
\(502\) 0 0
\(503\) −323.889 −0.0287108 −0.0143554 0.999897i \(-0.504570\pi\)
−0.0143554 + 0.999897i \(0.504570\pi\)
\(504\) 0 0
\(505\) −8246.23 −0.726639
\(506\) 0 0
\(507\) −4427.49 −0.387834
\(508\) 0 0
\(509\) 2178.99 0.189748 0.0948741 0.995489i \(-0.469755\pi\)
0.0948741 + 0.995489i \(0.469755\pi\)
\(510\) 0 0
\(511\) 15458.5 1.33825
\(512\) 0 0
\(513\) 2338.30 0.201245
\(514\) 0 0
\(515\) 6631.89 0.567449
\(516\) 0 0
\(517\) −1078.96 −0.0917845
\(518\) 0 0
\(519\) 9383.22 0.793599
\(520\) 0 0
\(521\) −12371.2 −1.04029 −0.520145 0.854078i \(-0.674122\pi\)
−0.520145 + 0.854078i \(0.674122\pi\)
\(522\) 0 0
\(523\) −3963.16 −0.331351 −0.165676 0.986180i \(-0.552980\pi\)
−0.165676 + 0.986180i \(0.552980\pi\)
\(524\) 0 0
\(525\) 1865.10 0.155047
\(526\) 0 0
\(527\) 2427.55 0.200656
\(528\) 0 0
\(529\) −9427.54 −0.774845
\(530\) 0 0
\(531\) −1618.64 −0.132284
\(532\) 0 0
\(533\) 11103.1 0.902305
\(534\) 0 0
\(535\) −5947.16 −0.480595
\(536\) 0 0
\(537\) −8557.58 −0.687685
\(538\) 0 0
\(539\) 7088.07 0.566428
\(540\) 0 0
\(541\) 2426.23 0.192813 0.0964066 0.995342i \(-0.469265\pi\)
0.0964066 + 0.995342i \(0.469265\pi\)
\(542\) 0 0
\(543\) 5000.73 0.395215
\(544\) 0 0
\(545\) 9322.08 0.732686
\(546\) 0 0
\(547\) 1636.29 0.127902 0.0639512 0.997953i \(-0.479630\pi\)
0.0639512 + 0.997953i \(0.479630\pi\)
\(548\) 0 0
\(549\) 4320.35 0.335862
\(550\) 0 0
\(551\) −519.623 −0.0401755
\(552\) 0 0
\(553\) −12774.6 −0.982339
\(554\) 0 0
\(555\) 6723.41 0.514221
\(556\) 0 0
\(557\) −4160.34 −0.316480 −0.158240 0.987401i \(-0.550582\pi\)
−0.158240 + 0.987401i \(0.550582\pi\)
\(558\) 0 0
\(559\) −15272.2 −1.15554
\(560\) 0 0
\(561\) 2208.44 0.166204
\(562\) 0 0
\(563\) −16665.2 −1.24752 −0.623762 0.781614i \(-0.714397\pi\)
−0.623762 + 0.781614i \(0.714397\pi\)
\(564\) 0 0
\(565\) −6090.94 −0.453536
\(566\) 0 0
\(567\) −2014.30 −0.149194
\(568\) 0 0
\(569\) 12324.4 0.908025 0.454013 0.890995i \(-0.349992\pi\)
0.454013 + 0.890995i \(0.349992\pi\)
\(570\) 0 0
\(571\) 14208.0 1.04131 0.520653 0.853768i \(-0.325688\pi\)
0.520653 + 0.853768i \(0.325688\pi\)
\(572\) 0 0
\(573\) −9432.00 −0.687657
\(574\) 0 0
\(575\) 1308.50 0.0949009
\(576\) 0 0
\(577\) 13281.1 0.958232 0.479116 0.877752i \(-0.340957\pi\)
0.479116 + 0.877752i \(0.340957\pi\)
\(578\) 0 0
\(579\) 3189.39 0.228923
\(580\) 0 0
\(581\) 31938.0 2.28057
\(582\) 0 0
\(583\) −5888.18 −0.418291
\(584\) 0 0
\(585\) 2727.17 0.192743
\(586\) 0 0
\(587\) −24241.4 −1.70451 −0.852256 0.523124i \(-0.824766\pi\)
−0.852256 + 0.523124i \(0.824766\pi\)
\(588\) 0 0
\(589\) 7349.90 0.514172
\(590\) 0 0
\(591\) 13802.6 0.960683
\(592\) 0 0
\(593\) 18184.5 1.25927 0.629637 0.776889i \(-0.283204\pi\)
0.629637 + 0.776889i \(0.283204\pi\)
\(594\) 0 0
\(595\) 3556.60 0.245053
\(596\) 0 0
\(597\) −5504.49 −0.377360
\(598\) 0 0
\(599\) −10505.1 −0.716569 −0.358285 0.933612i \(-0.616638\pi\)
−0.358285 + 0.933612i \(0.616638\pi\)
\(600\) 0 0
\(601\) −4822.88 −0.327337 −0.163669 0.986515i \(-0.552333\pi\)
−0.163669 + 0.986515i \(0.552333\pi\)
\(602\) 0 0
\(603\) −7699.25 −0.519963
\(604\) 0 0
\(605\) −3343.31 −0.224669
\(606\) 0 0
\(607\) 27083.2 1.81099 0.905496 0.424355i \(-0.139499\pi\)
0.905496 + 0.424355i \(0.139499\pi\)
\(608\) 0 0
\(609\) 447.623 0.0297843
\(610\) 0 0
\(611\) −2540.77 −0.168230
\(612\) 0 0
\(613\) −10078.3 −0.664042 −0.332021 0.943272i \(-0.607731\pi\)
−0.332021 + 0.943272i \(0.607731\pi\)
\(614\) 0 0
\(615\) −2748.12 −0.180187
\(616\) 0 0
\(617\) 24141.2 1.57518 0.787591 0.616199i \(-0.211328\pi\)
0.787591 + 0.616199i \(0.211328\pi\)
\(618\) 0 0
\(619\) 22858.7 1.48428 0.742140 0.670245i \(-0.233811\pi\)
0.742140 + 0.670245i \(0.233811\pi\)
\(620\) 0 0
\(621\) −1413.17 −0.0913184
\(622\) 0 0
\(623\) 24989.1 1.60701
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 6686.49 0.425890
\(628\) 0 0
\(629\) 12821.0 0.812732
\(630\) 0 0
\(631\) −569.330 −0.0359187 −0.0179593 0.999839i \(-0.505717\pi\)
−0.0179593 + 0.999839i \(0.505717\pi\)
\(632\) 0 0
\(633\) 5690.39 0.357303
\(634\) 0 0
\(635\) −8700.96 −0.543759
\(636\) 0 0
\(637\) 16691.3 1.03820
\(638\) 0 0
\(639\) −6081.97 −0.376524
\(640\) 0 0
\(641\) 25927.2 1.59760 0.798802 0.601594i \(-0.205468\pi\)
0.798802 + 0.601594i \(0.205468\pi\)
\(642\) 0 0
\(643\) 19555.1 1.19935 0.599673 0.800245i \(-0.295297\pi\)
0.599673 + 0.800245i \(0.295297\pi\)
\(644\) 0 0
\(645\) 3780.00 0.230756
\(646\) 0 0
\(647\) 8653.85 0.525839 0.262919 0.964818i \(-0.415315\pi\)
0.262919 + 0.964818i \(0.415315\pi\)
\(648\) 0 0
\(649\) −4628.57 −0.279949
\(650\) 0 0
\(651\) −6331.48 −0.381183
\(652\) 0 0
\(653\) −27732.5 −1.66195 −0.830976 0.556308i \(-0.812218\pi\)
−0.830976 + 0.556308i \(0.812218\pi\)
\(654\) 0 0
\(655\) 2281.51 0.136101
\(656\) 0 0
\(657\) −5594.61 −0.332217
\(658\) 0 0
\(659\) 30254.7 1.78840 0.894201 0.447665i \(-0.147744\pi\)
0.894201 + 0.447665i \(0.147744\pi\)
\(660\) 0 0
\(661\) −20714.2 −1.21890 −0.609448 0.792826i \(-0.708609\pi\)
−0.609448 + 0.792826i \(0.708609\pi\)
\(662\) 0 0
\(663\) 5200.52 0.304633
\(664\) 0 0
\(665\) 10768.3 0.627936
\(666\) 0 0
\(667\) 314.039 0.0182303
\(668\) 0 0
\(669\) −17901.2 −1.03453
\(670\) 0 0
\(671\) 12354.2 0.710775
\(672\) 0 0
\(673\) −5092.56 −0.291685 −0.145842 0.989308i \(-0.546589\pi\)
−0.145842 + 0.989308i \(0.546589\pi\)
\(674\) 0 0
\(675\) −675.000 −0.0384900
\(676\) 0 0
\(677\) −27189.5 −1.54354 −0.771771 0.635901i \(-0.780629\pi\)
−0.771771 + 0.635901i \(0.780629\pi\)
\(678\) 0 0
\(679\) −7470.72 −0.422239
\(680\) 0 0
\(681\) 19125.1 1.07617
\(682\) 0 0
\(683\) −7705.95 −0.431713 −0.215856 0.976425i \(-0.569254\pi\)
−0.215856 + 0.976425i \(0.569254\pi\)
\(684\) 0 0
\(685\) 6647.56 0.370789
\(686\) 0 0
\(687\) 4080.35 0.226601
\(688\) 0 0
\(689\) −13865.7 −0.766678
\(690\) 0 0
\(691\) −15821.6 −0.871033 −0.435516 0.900181i \(-0.643434\pi\)
−0.435516 + 0.900181i \(0.643434\pi\)
\(692\) 0 0
\(693\) −5760.00 −0.315735
\(694\) 0 0
\(695\) −5486.24 −0.299432
\(696\) 0 0
\(697\) −5240.45 −0.284787
\(698\) 0 0
\(699\) −290.278 −0.0157072
\(700\) 0 0
\(701\) −2108.00 −0.113578 −0.0567888 0.998386i \(-0.518086\pi\)
−0.0567888 + 0.998386i \(0.518086\pi\)
\(702\) 0 0
\(703\) 38818.2 2.08258
\(704\) 0 0
\(705\) 628.864 0.0335949
\(706\) 0 0
\(707\) 41013.4 2.18171
\(708\) 0 0
\(709\) 301.312 0.0159605 0.00798027 0.999968i \(-0.497460\pi\)
0.00798027 + 0.999968i \(0.497460\pi\)
\(710\) 0 0
\(711\) 4623.29 0.243864
\(712\) 0 0
\(713\) −4441.97 −0.233314
\(714\) 0 0
\(715\) 7798.49 0.407898
\(716\) 0 0
\(717\) −18204.0 −0.948175
\(718\) 0 0
\(719\) −12744.9 −0.661061 −0.330530 0.943795i \(-0.607228\pi\)
−0.330530 + 0.943795i \(0.607228\pi\)
\(720\) 0 0
\(721\) −32984.3 −1.70375
\(722\) 0 0
\(723\) 1628.26 0.0837561
\(724\) 0 0
\(725\) 150.000 0.00768395
\(726\) 0 0
\(727\) 3416.70 0.174303 0.0871515 0.996195i \(-0.472224\pi\)
0.0871515 + 0.996195i \(0.472224\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 7208.18 0.364712
\(732\) 0 0
\(733\) −5965.41 −0.300597 −0.150298 0.988641i \(-0.548023\pi\)
−0.150298 + 0.988641i \(0.548023\pi\)
\(734\) 0 0
\(735\) −4131.23 −0.207324
\(736\) 0 0
\(737\) −22016.4 −1.10038
\(738\) 0 0
\(739\) −8546.50 −0.425424 −0.212712 0.977115i \(-0.568230\pi\)
−0.212712 + 0.977115i \(0.568230\pi\)
\(740\) 0 0
\(741\) 15745.6 0.780606
\(742\) 0 0
\(743\) 33899.8 1.67384 0.836919 0.547326i \(-0.184354\pi\)
0.836919 + 0.547326i \(0.184354\pi\)
\(744\) 0 0
\(745\) 7950.78 0.390999
\(746\) 0 0
\(747\) −11558.7 −0.566147
\(748\) 0 0
\(749\) 29578.8 1.44297
\(750\) 0 0
\(751\) 18256.9 0.887087 0.443544 0.896253i \(-0.353721\pi\)
0.443544 + 0.896253i \(0.353721\pi\)
\(752\) 0 0
\(753\) −13975.3 −0.676344
\(754\) 0 0
\(755\) 5833.02 0.281173
\(756\) 0 0
\(757\) 1117.87 0.0536717 0.0268359 0.999640i \(-0.491457\pi\)
0.0268359 + 0.999640i \(0.491457\pi\)
\(758\) 0 0
\(759\) −4041.04 −0.193255
\(760\) 0 0
\(761\) 28438.3 1.35465 0.677324 0.735685i \(-0.263140\pi\)
0.677324 + 0.735685i \(0.263140\pi\)
\(762\) 0 0
\(763\) −46364.2 −2.19987
\(764\) 0 0
\(765\) −1287.17 −0.0608339
\(766\) 0 0
\(767\) −10899.5 −0.513115
\(768\) 0 0
\(769\) 4566.26 0.214127 0.107063 0.994252i \(-0.465855\pi\)
0.107063 + 0.994252i \(0.465855\pi\)
\(770\) 0 0
\(771\) 19558.0 0.913572
\(772\) 0 0
\(773\) 29259.6 1.36144 0.680720 0.732543i \(-0.261667\pi\)
0.680720 + 0.732543i \(0.261667\pi\)
\(774\) 0 0
\(775\) −2121.70 −0.0983402
\(776\) 0 0
\(777\) −33439.5 −1.54393
\(778\) 0 0
\(779\) −15866.5 −0.729752
\(780\) 0 0
\(781\) −17391.7 −0.796829
\(782\) 0 0
\(783\) −162.000 −0.00739388
\(784\) 0 0
\(785\) 8852.83 0.402511
\(786\) 0 0
\(787\) −7865.23 −0.356246 −0.178123 0.984008i \(-0.557002\pi\)
−0.178123 + 0.984008i \(0.557002\pi\)
\(788\) 0 0
\(789\) −3615.50 −0.163137
\(790\) 0 0
\(791\) 30293.9 1.36173
\(792\) 0 0
\(793\) 29092.2 1.30277
\(794\) 0 0
\(795\) 3431.88 0.153102
\(796\) 0 0
\(797\) 11603.9 0.515724 0.257862 0.966182i \(-0.416982\pi\)
0.257862 + 0.966182i \(0.416982\pi\)
\(798\) 0 0
\(799\) 1199.20 0.0530970
\(800\) 0 0
\(801\) −9043.83 −0.398936
\(802\) 0 0
\(803\) −15998.1 −0.703062
\(804\) 0 0
\(805\) −6507.92 −0.284937
\(806\) 0 0
\(807\) 18251.0 0.796115
\(808\) 0 0
\(809\) −6069.60 −0.263777 −0.131889 0.991265i \(-0.542104\pi\)
−0.131889 + 0.991265i \(0.542104\pi\)
\(810\) 0 0
\(811\) −26995.1 −1.16883 −0.584417 0.811453i \(-0.698677\pi\)
−0.584417 + 0.811453i \(0.698677\pi\)
\(812\) 0 0
\(813\) −9454.07 −0.407834
\(814\) 0 0
\(815\) 20091.7 0.863537
\(816\) 0 0
\(817\) 21824.2 0.934555
\(818\) 0 0
\(819\) −13563.9 −0.578705
\(820\) 0 0
\(821\) 23158.9 0.984472 0.492236 0.870462i \(-0.336180\pi\)
0.492236 + 0.870462i \(0.336180\pi\)
\(822\) 0 0
\(823\) 30150.7 1.27702 0.638511 0.769613i \(-0.279551\pi\)
0.638511 + 0.769613i \(0.279551\pi\)
\(824\) 0 0
\(825\) −1930.19 −0.0814554
\(826\) 0 0
\(827\) 33988.7 1.42914 0.714572 0.699562i \(-0.246622\pi\)
0.714572 + 0.699562i \(0.246622\pi\)
\(828\) 0 0
\(829\) −11198.3 −0.469158 −0.234579 0.972097i \(-0.575371\pi\)
−0.234579 + 0.972097i \(0.575371\pi\)
\(830\) 0 0
\(831\) −20341.6 −0.849149
\(832\) 0 0
\(833\) −7877.96 −0.327677
\(834\) 0 0
\(835\) 14498.7 0.600896
\(836\) 0 0
\(837\) 2291.43 0.0946279
\(838\) 0 0
\(839\) −20126.3 −0.828174 −0.414087 0.910237i \(-0.635899\pi\)
−0.414087 + 0.910237i \(0.635899\pi\)
\(840\) 0 0
\(841\) −24353.0 −0.998524
\(842\) 0 0
\(843\) −15489.9 −0.632858
\(844\) 0 0
\(845\) 7379.16 0.300415
\(846\) 0 0
\(847\) 16628.3 0.674562
\(848\) 0 0
\(849\) 19630.9 0.793558
\(850\) 0 0
\(851\) −23460.1 −0.945009
\(852\) 0 0
\(853\) −24676.2 −0.990500 −0.495250 0.868751i \(-0.664923\pi\)
−0.495250 + 0.868751i \(0.664923\pi\)
\(854\) 0 0
\(855\) −3897.17 −0.155884
\(856\) 0 0
\(857\) −44115.5 −1.75841 −0.879204 0.476446i \(-0.841925\pi\)
−0.879204 + 0.476446i \(0.841925\pi\)
\(858\) 0 0
\(859\) 408.822 0.0162385 0.00811923 0.999967i \(-0.497416\pi\)
0.00811923 + 0.999967i \(0.497416\pi\)
\(860\) 0 0
\(861\) 13668.0 0.541004
\(862\) 0 0
\(863\) −34369.3 −1.35567 −0.677836 0.735213i \(-0.737082\pi\)
−0.677836 + 0.735213i \(0.737082\pi\)
\(864\) 0 0
\(865\) −15638.7 −0.614719
\(866\) 0 0
\(867\) 12284.5 0.481202
\(868\) 0 0
\(869\) 13220.5 0.516082
\(870\) 0 0
\(871\) −51844.9 −2.01687
\(872\) 0 0
\(873\) 2703.74 0.104820
\(874\) 0 0
\(875\) −3108.50 −0.120099
\(876\) 0 0
\(877\) 41868.4 1.61208 0.806040 0.591861i \(-0.201606\pi\)
0.806040 + 0.591861i \(0.201606\pi\)
\(878\) 0 0
\(879\) −801.623 −0.0307600
\(880\) 0 0
\(881\) −2174.40 −0.0831526 −0.0415763 0.999135i \(-0.513238\pi\)
−0.0415763 + 0.999135i \(0.513238\pi\)
\(882\) 0 0
\(883\) −19480.7 −0.742442 −0.371221 0.928545i \(-0.621061\pi\)
−0.371221 + 0.928545i \(0.621061\pi\)
\(884\) 0 0
\(885\) 2697.73 0.102467
\(886\) 0 0
\(887\) 14546.7 0.550653 0.275326 0.961351i \(-0.411214\pi\)
0.275326 + 0.961351i \(0.411214\pi\)
\(888\) 0 0
\(889\) 43275.0 1.63262
\(890\) 0 0
\(891\) 2084.61 0.0783805
\(892\) 0 0
\(893\) 3630.80 0.136058
\(894\) 0 0
\(895\) 14262.6 0.532679
\(896\) 0 0
\(897\) −9515.99 −0.354214
\(898\) 0 0
\(899\) −509.208 −0.0188910
\(900\) 0 0
\(901\) 6544.35 0.241980
\(902\) 0 0
\(903\) −18800.2 −0.692836
\(904\) 0 0
\(905\) −8334.54 −0.306132
\(906\) 0 0
\(907\) −22357.6 −0.818492 −0.409246 0.912424i \(-0.634208\pi\)
−0.409246 + 0.912424i \(0.634208\pi\)
\(908\) 0 0
\(909\) −14843.2 −0.541605
\(910\) 0 0
\(911\) 32284.2 1.17412 0.587060 0.809544i \(-0.300285\pi\)
0.587060 + 0.809544i \(0.300285\pi\)
\(912\) 0 0
\(913\) −33052.7 −1.19812
\(914\) 0 0
\(915\) −7200.58 −0.260157
\(916\) 0 0
\(917\) −11347.3 −0.408639
\(918\) 0 0
\(919\) −12767.9 −0.458295 −0.229147 0.973392i \(-0.573594\pi\)
−0.229147 + 0.973392i \(0.573594\pi\)
\(920\) 0 0
\(921\) −1940.40 −0.0694228
\(922\) 0 0
\(923\) −40954.6 −1.46049
\(924\) 0 0
\(925\) −11205.7 −0.398314
\(926\) 0 0
\(927\) 11937.4 0.422951
\(928\) 0 0
\(929\) −17645.4 −0.623171 −0.311586 0.950218i \(-0.600860\pi\)
−0.311586 + 0.950218i \(0.600860\pi\)
\(930\) 0 0
\(931\) −23852.1 −0.839656
\(932\) 0 0
\(933\) 17566.4 0.616398
\(934\) 0 0
\(935\) −3680.74 −0.128741
\(936\) 0 0
\(937\) 45735.0 1.59455 0.797277 0.603614i \(-0.206273\pi\)
0.797277 + 0.603614i \(0.206273\pi\)
\(938\) 0 0
\(939\) 11818.6 0.410739
\(940\) 0 0
\(941\) −14982.6 −0.519042 −0.259521 0.965737i \(-0.583565\pi\)
−0.259521 + 0.965737i \(0.583565\pi\)
\(942\) 0 0
\(943\) 9589.06 0.331138
\(944\) 0 0
\(945\) 3357.17 0.115565
\(946\) 0 0
\(947\) −31821.4 −1.09193 −0.545964 0.837809i \(-0.683836\pi\)
−0.545964 + 0.837809i \(0.683836\pi\)
\(948\) 0 0
\(949\) −37672.8 −1.28863
\(950\) 0 0
\(951\) −48.5830 −0.00165658
\(952\) 0 0
\(953\) 19627.5 0.667154 0.333577 0.942723i \(-0.391744\pi\)
0.333577 + 0.942723i \(0.391744\pi\)
\(954\) 0 0
\(955\) 15720.0 0.532657
\(956\) 0 0
\(957\) −463.247 −0.0156475
\(958\) 0 0
\(959\) −33062.3 −1.11328
\(960\) 0 0
\(961\) −22588.4 −0.758230
\(962\) 0 0
\(963\) −10704.9 −0.358214
\(964\) 0 0
\(965\) −5315.65 −0.177323
\(966\) 0 0
\(967\) 34374.9 1.14315 0.571573 0.820551i \(-0.306333\pi\)
0.571573 + 0.820551i \(0.306333\pi\)
\(968\) 0 0
\(969\) −7431.62 −0.246376
\(970\) 0 0
\(971\) −33737.5 −1.11503 −0.557513 0.830169i \(-0.688244\pi\)
−0.557513 + 0.830169i \(0.688244\pi\)
\(972\) 0 0
\(973\) 27286.3 0.899034
\(974\) 0 0
\(975\) −4545.29 −0.149298
\(976\) 0 0
\(977\) 38438.8 1.25872 0.629358 0.777116i \(-0.283318\pi\)
0.629358 + 0.777116i \(0.283318\pi\)
\(978\) 0 0
\(979\) −25861.3 −0.844259
\(980\) 0 0
\(981\) 16779.7 0.546112
\(982\) 0 0
\(983\) −18714.3 −0.607217 −0.303609 0.952797i \(-0.598192\pi\)
−0.303609 + 0.952797i \(0.598192\pi\)
\(984\) 0 0
\(985\) −23004.3 −0.744142
\(986\) 0 0
\(987\) −3127.71 −0.100867
\(988\) 0 0
\(989\) −13189.6 −0.424071
\(990\) 0 0
\(991\) 23659.4 0.758392 0.379196 0.925316i \(-0.376201\pi\)
0.379196 + 0.925316i \(0.376201\pi\)
\(992\) 0 0
\(993\) 5839.36 0.186613
\(994\) 0 0
\(995\) 9174.15 0.292301
\(996\) 0 0
\(997\) 52118.0 1.65556 0.827780 0.561053i \(-0.189604\pi\)
0.827780 + 0.561053i \(0.189604\pi\)
\(998\) 0 0
\(999\) 12102.1 0.383278
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 480.4.a.o.1.1 2
3.2 odd 2 1440.4.a.s.1.1 2
4.3 odd 2 480.4.a.r.1.2 yes 2
5.4 even 2 2400.4.a.bb.1.2 2
8.3 odd 2 960.4.a.bk.1.2 2
8.5 even 2 960.4.a.bn.1.1 2
12.11 even 2 1440.4.a.y.1.2 2
20.19 odd 2 2400.4.a.y.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.4.a.o.1.1 2 1.1 even 1 trivial
480.4.a.r.1.2 yes 2 4.3 odd 2
960.4.a.bk.1.2 2 8.3 odd 2
960.4.a.bn.1.1 2 8.5 even 2
1440.4.a.s.1.1 2 3.2 odd 2
1440.4.a.y.1.2 2 12.11 even 2
2400.4.a.y.1.1 2 20.19 odd 2
2400.4.a.bb.1.2 2 5.4 even 2