Properties

Label 480.4.a.c.1.1
Level $480$
Weight $4$
Character 480.1
Self dual yes
Analytic conductor $28.321$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [480,4,Mod(1,480)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(480, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("480.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 480 = 2^{5} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 480.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.3209168028\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 480.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +5.00000 q^{5} -32.0000 q^{7} +9.00000 q^{9} -64.0000 q^{11} -6.00000 q^{13} -15.0000 q^{15} +38.0000 q^{17} +116.000 q^{19} +96.0000 q^{21} +120.000 q^{23} +25.0000 q^{25} -27.0000 q^{27} -122.000 q^{29} -164.000 q^{31} +192.000 q^{33} -160.000 q^{35} +146.000 q^{37} +18.0000 q^{39} -238.000 q^{41} +148.000 q^{43} +45.0000 q^{45} +184.000 q^{47} +681.000 q^{49} -114.000 q^{51} +470.000 q^{53} -320.000 q^{55} -348.000 q^{57} +216.000 q^{59} +806.000 q^{61} -288.000 q^{63} -30.0000 q^{65} +732.000 q^{67} -360.000 q^{69} -264.000 q^{71} -638.000 q^{73} -75.0000 q^{75} +2048.00 q^{77} -596.000 q^{79} +81.0000 q^{81} +884.000 q^{83} +190.000 q^{85} +366.000 q^{87} +930.000 q^{89} +192.000 q^{91} +492.000 q^{93} +580.000 q^{95} +322.000 q^{97} -576.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −32.0000 −1.72784 −0.863919 0.503631i \(-0.831997\pi\)
−0.863919 + 0.503631i \(0.831997\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −64.0000 −1.75425 −0.877124 0.480264i \(-0.840541\pi\)
−0.877124 + 0.480264i \(0.840541\pi\)
\(12\) 0 0
\(13\) −6.00000 −0.128008 −0.0640039 0.997950i \(-0.520387\pi\)
−0.0640039 + 0.997950i \(0.520387\pi\)
\(14\) 0 0
\(15\) −15.0000 −0.258199
\(16\) 0 0
\(17\) 38.0000 0.542138 0.271069 0.962560i \(-0.412623\pi\)
0.271069 + 0.962560i \(0.412623\pi\)
\(18\) 0 0
\(19\) 116.000 1.40064 0.700322 0.713827i \(-0.253040\pi\)
0.700322 + 0.713827i \(0.253040\pi\)
\(20\) 0 0
\(21\) 96.0000 0.997567
\(22\) 0 0
\(23\) 120.000 1.08790 0.543951 0.839117i \(-0.316928\pi\)
0.543951 + 0.839117i \(0.316928\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −122.000 −0.781201 −0.390601 0.920560i \(-0.627733\pi\)
−0.390601 + 0.920560i \(0.627733\pi\)
\(30\) 0 0
\(31\) −164.000 −0.950170 −0.475085 0.879940i \(-0.657583\pi\)
−0.475085 + 0.879940i \(0.657583\pi\)
\(32\) 0 0
\(33\) 192.000 1.01282
\(34\) 0 0
\(35\) −160.000 −0.772712
\(36\) 0 0
\(37\) 146.000 0.648710 0.324355 0.945936i \(-0.394853\pi\)
0.324355 + 0.945936i \(0.394853\pi\)
\(38\) 0 0
\(39\) 18.0000 0.0739053
\(40\) 0 0
\(41\) −238.000 −0.906570 −0.453285 0.891366i \(-0.649748\pi\)
−0.453285 + 0.891366i \(0.649748\pi\)
\(42\) 0 0
\(43\) 148.000 0.524879 0.262439 0.964948i \(-0.415473\pi\)
0.262439 + 0.964948i \(0.415473\pi\)
\(44\) 0 0
\(45\) 45.0000 0.149071
\(46\) 0 0
\(47\) 184.000 0.571046 0.285523 0.958372i \(-0.407833\pi\)
0.285523 + 0.958372i \(0.407833\pi\)
\(48\) 0 0
\(49\) 681.000 1.98542
\(50\) 0 0
\(51\) −114.000 −0.313004
\(52\) 0 0
\(53\) 470.000 1.21810 0.609052 0.793131i \(-0.291550\pi\)
0.609052 + 0.793131i \(0.291550\pi\)
\(54\) 0 0
\(55\) −320.000 −0.784523
\(56\) 0 0
\(57\) −348.000 −0.808662
\(58\) 0 0
\(59\) 216.000 0.476624 0.238312 0.971189i \(-0.423406\pi\)
0.238312 + 0.971189i \(0.423406\pi\)
\(60\) 0 0
\(61\) 806.000 1.69177 0.845883 0.533369i \(-0.179074\pi\)
0.845883 + 0.533369i \(0.179074\pi\)
\(62\) 0 0
\(63\) −288.000 −0.575946
\(64\) 0 0
\(65\) −30.0000 −0.0572468
\(66\) 0 0
\(67\) 732.000 1.33475 0.667373 0.744723i \(-0.267419\pi\)
0.667373 + 0.744723i \(0.267419\pi\)
\(68\) 0 0
\(69\) −360.000 −0.628100
\(70\) 0 0
\(71\) −264.000 −0.441282 −0.220641 0.975355i \(-0.570815\pi\)
−0.220641 + 0.975355i \(0.570815\pi\)
\(72\) 0 0
\(73\) −638.000 −1.02291 −0.511454 0.859311i \(-0.670893\pi\)
−0.511454 + 0.859311i \(0.670893\pi\)
\(74\) 0 0
\(75\) −75.0000 −0.115470
\(76\) 0 0
\(77\) 2048.00 3.03106
\(78\) 0 0
\(79\) −596.000 −0.848800 −0.424400 0.905475i \(-0.639515\pi\)
−0.424400 + 0.905475i \(0.639515\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 884.000 1.16906 0.584528 0.811374i \(-0.301280\pi\)
0.584528 + 0.811374i \(0.301280\pi\)
\(84\) 0 0
\(85\) 190.000 0.242452
\(86\) 0 0
\(87\) 366.000 0.451027
\(88\) 0 0
\(89\) 930.000 1.10764 0.553819 0.832637i \(-0.313170\pi\)
0.553819 + 0.832637i \(0.313170\pi\)
\(90\) 0 0
\(91\) 192.000 0.221177
\(92\) 0 0
\(93\) 492.000 0.548581
\(94\) 0 0
\(95\) 580.000 0.626387
\(96\) 0 0
\(97\) 322.000 0.337053 0.168527 0.985697i \(-0.446099\pi\)
0.168527 + 0.985697i \(0.446099\pi\)
\(98\) 0 0
\(99\) −576.000 −0.584749
\(100\) 0 0
\(101\) −946.000 −0.931985 −0.465993 0.884789i \(-0.654303\pi\)
−0.465993 + 0.884789i \(0.654303\pi\)
\(102\) 0 0
\(103\) −424.000 −0.405611 −0.202806 0.979219i \(-0.565006\pi\)
−0.202806 + 0.979219i \(0.565006\pi\)
\(104\) 0 0
\(105\) 480.000 0.446126
\(106\) 0 0
\(107\) 1668.00 1.50702 0.753512 0.657434i \(-0.228358\pi\)
0.753512 + 0.657434i \(0.228358\pi\)
\(108\) 0 0
\(109\) −1634.00 −1.43586 −0.717930 0.696115i \(-0.754910\pi\)
−0.717930 + 0.696115i \(0.754910\pi\)
\(110\) 0 0
\(111\) −438.000 −0.374533
\(112\) 0 0
\(113\) 1686.00 1.40359 0.701794 0.712380i \(-0.252383\pi\)
0.701794 + 0.712380i \(0.252383\pi\)
\(114\) 0 0
\(115\) 600.000 0.486524
\(116\) 0 0
\(117\) −54.0000 −0.0426692
\(118\) 0 0
\(119\) −1216.00 −0.936727
\(120\) 0 0
\(121\) 2765.00 2.07739
\(122\) 0 0
\(123\) 714.000 0.523408
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −2640.00 −1.84458 −0.922292 0.386494i \(-0.873686\pi\)
−0.922292 + 0.386494i \(0.873686\pi\)
\(128\) 0 0
\(129\) −444.000 −0.303039
\(130\) 0 0
\(131\) 2536.00 1.69138 0.845692 0.533671i \(-0.179188\pi\)
0.845692 + 0.533671i \(0.179188\pi\)
\(132\) 0 0
\(133\) −3712.00 −2.42008
\(134\) 0 0
\(135\) −135.000 −0.0860663
\(136\) 0 0
\(137\) −634.000 −0.395374 −0.197687 0.980265i \(-0.563343\pi\)
−0.197687 + 0.980265i \(0.563343\pi\)
\(138\) 0 0
\(139\) −2980.00 −1.81842 −0.909210 0.416338i \(-0.863313\pi\)
−0.909210 + 0.416338i \(0.863313\pi\)
\(140\) 0 0
\(141\) −552.000 −0.329694
\(142\) 0 0
\(143\) 384.000 0.224557
\(144\) 0 0
\(145\) −610.000 −0.349364
\(146\) 0 0
\(147\) −2043.00 −1.14628
\(148\) 0 0
\(149\) −338.000 −0.185839 −0.0929196 0.995674i \(-0.529620\pi\)
−0.0929196 + 0.995674i \(0.529620\pi\)
\(150\) 0 0
\(151\) 428.000 0.230663 0.115332 0.993327i \(-0.463207\pi\)
0.115332 + 0.993327i \(0.463207\pi\)
\(152\) 0 0
\(153\) 342.000 0.180713
\(154\) 0 0
\(155\) −820.000 −0.424929
\(156\) 0 0
\(157\) 3010.00 1.53009 0.765045 0.643977i \(-0.222717\pi\)
0.765045 + 0.643977i \(0.222717\pi\)
\(158\) 0 0
\(159\) −1410.00 −0.703272
\(160\) 0 0
\(161\) −3840.00 −1.87972
\(162\) 0 0
\(163\) 132.000 0.0634297 0.0317148 0.999497i \(-0.489903\pi\)
0.0317148 + 0.999497i \(0.489903\pi\)
\(164\) 0 0
\(165\) 960.000 0.452945
\(166\) 0 0
\(167\) −2176.00 −1.00829 −0.504144 0.863620i \(-0.668192\pi\)
−0.504144 + 0.863620i \(0.668192\pi\)
\(168\) 0 0
\(169\) −2161.00 −0.983614
\(170\) 0 0
\(171\) 1044.00 0.466881
\(172\) 0 0
\(173\) −2778.00 −1.22085 −0.610426 0.792073i \(-0.709002\pi\)
−0.610426 + 0.792073i \(0.709002\pi\)
\(174\) 0 0
\(175\) −800.000 −0.345568
\(176\) 0 0
\(177\) −648.000 −0.275179
\(178\) 0 0
\(179\) 3888.00 1.62348 0.811740 0.584020i \(-0.198521\pi\)
0.811740 + 0.584020i \(0.198521\pi\)
\(180\) 0 0
\(181\) 1350.00 0.554391 0.277195 0.960814i \(-0.410595\pi\)
0.277195 + 0.960814i \(0.410595\pi\)
\(182\) 0 0
\(183\) −2418.00 −0.976742
\(184\) 0 0
\(185\) 730.000 0.290112
\(186\) 0 0
\(187\) −2432.00 −0.951045
\(188\) 0 0
\(189\) 864.000 0.332522
\(190\) 0 0
\(191\) 4760.00 1.80325 0.901627 0.432514i \(-0.142374\pi\)
0.901627 + 0.432514i \(0.142374\pi\)
\(192\) 0 0
\(193\) 1034.00 0.385642 0.192821 0.981234i \(-0.438236\pi\)
0.192821 + 0.981234i \(0.438236\pi\)
\(194\) 0 0
\(195\) 90.0000 0.0330515
\(196\) 0 0
\(197\) −1354.00 −0.489688 −0.244844 0.969563i \(-0.578737\pi\)
−0.244844 + 0.969563i \(0.578737\pi\)
\(198\) 0 0
\(199\) 2324.00 0.827859 0.413930 0.910309i \(-0.364156\pi\)
0.413930 + 0.910309i \(0.364156\pi\)
\(200\) 0 0
\(201\) −2196.00 −0.770616
\(202\) 0 0
\(203\) 3904.00 1.34979
\(204\) 0 0
\(205\) −1190.00 −0.405430
\(206\) 0 0
\(207\) 1080.00 0.362634
\(208\) 0 0
\(209\) −7424.00 −2.45708
\(210\) 0 0
\(211\) 3220.00 1.05059 0.525294 0.850921i \(-0.323955\pi\)
0.525294 + 0.850921i \(0.323955\pi\)
\(212\) 0 0
\(213\) 792.000 0.254774
\(214\) 0 0
\(215\) 740.000 0.234733
\(216\) 0 0
\(217\) 5248.00 1.64174
\(218\) 0 0
\(219\) 1914.00 0.590576
\(220\) 0 0
\(221\) −228.000 −0.0693979
\(222\) 0 0
\(223\) 32.0000 0.00960932 0.00480466 0.999988i \(-0.498471\pi\)
0.00480466 + 0.999988i \(0.498471\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 0 0
\(227\) 3996.00 1.16839 0.584193 0.811614i \(-0.301411\pi\)
0.584193 + 0.811614i \(0.301411\pi\)
\(228\) 0 0
\(229\) −3010.00 −0.868587 −0.434293 0.900771i \(-0.643002\pi\)
−0.434293 + 0.900771i \(0.643002\pi\)
\(230\) 0 0
\(231\) −6144.00 −1.74998
\(232\) 0 0
\(233\) −2698.00 −0.758592 −0.379296 0.925275i \(-0.623834\pi\)
−0.379296 + 0.925275i \(0.623834\pi\)
\(234\) 0 0
\(235\) 920.000 0.255380
\(236\) 0 0
\(237\) 1788.00 0.490055
\(238\) 0 0
\(239\) 2200.00 0.595423 0.297712 0.954656i \(-0.403777\pi\)
0.297712 + 0.954656i \(0.403777\pi\)
\(240\) 0 0
\(241\) −6174.00 −1.65022 −0.825109 0.564974i \(-0.808886\pi\)
−0.825109 + 0.564974i \(0.808886\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 3405.00 0.887908
\(246\) 0 0
\(247\) −696.000 −0.179293
\(248\) 0 0
\(249\) −2652.00 −0.674955
\(250\) 0 0
\(251\) −4808.00 −1.20908 −0.604538 0.796576i \(-0.706642\pi\)
−0.604538 + 0.796576i \(0.706642\pi\)
\(252\) 0 0
\(253\) −7680.00 −1.90845
\(254\) 0 0
\(255\) −570.000 −0.139980
\(256\) 0 0
\(257\) 3974.00 0.964558 0.482279 0.876018i \(-0.339809\pi\)
0.482279 + 0.876018i \(0.339809\pi\)
\(258\) 0 0
\(259\) −4672.00 −1.12086
\(260\) 0 0
\(261\) −1098.00 −0.260400
\(262\) 0 0
\(263\) −1408.00 −0.330118 −0.165059 0.986284i \(-0.552781\pi\)
−0.165059 + 0.986284i \(0.552781\pi\)
\(264\) 0 0
\(265\) 2350.00 0.544752
\(266\) 0 0
\(267\) −2790.00 −0.639495
\(268\) 0 0
\(269\) −3258.00 −0.738453 −0.369226 0.929340i \(-0.620377\pi\)
−0.369226 + 0.929340i \(0.620377\pi\)
\(270\) 0 0
\(271\) −8612.00 −1.93041 −0.965206 0.261490i \(-0.915786\pi\)
−0.965206 + 0.261490i \(0.915786\pi\)
\(272\) 0 0
\(273\) −576.000 −0.127696
\(274\) 0 0
\(275\) −1600.00 −0.350850
\(276\) 0 0
\(277\) −4006.00 −0.868943 −0.434472 0.900686i \(-0.643065\pi\)
−0.434472 + 0.900686i \(0.643065\pi\)
\(278\) 0 0
\(279\) −1476.00 −0.316723
\(280\) 0 0
\(281\) 6194.00 1.31496 0.657479 0.753473i \(-0.271623\pi\)
0.657479 + 0.753473i \(0.271623\pi\)
\(282\) 0 0
\(283\) −1724.00 −0.362124 −0.181062 0.983472i \(-0.557954\pi\)
−0.181062 + 0.983472i \(0.557954\pi\)
\(284\) 0 0
\(285\) −1740.00 −0.361645
\(286\) 0 0
\(287\) 7616.00 1.56641
\(288\) 0 0
\(289\) −3469.00 −0.706086
\(290\) 0 0
\(291\) −966.000 −0.194598
\(292\) 0 0
\(293\) 2502.00 0.498868 0.249434 0.968392i \(-0.419755\pi\)
0.249434 + 0.968392i \(0.419755\pi\)
\(294\) 0 0
\(295\) 1080.00 0.213153
\(296\) 0 0
\(297\) 1728.00 0.337605
\(298\) 0 0
\(299\) −720.000 −0.139260
\(300\) 0 0
\(301\) −4736.00 −0.906905
\(302\) 0 0
\(303\) 2838.00 0.538082
\(304\) 0 0
\(305\) 4030.00 0.756581
\(306\) 0 0
\(307\) 6404.00 1.19054 0.595270 0.803526i \(-0.297045\pi\)
0.595270 + 0.803526i \(0.297045\pi\)
\(308\) 0 0
\(309\) 1272.00 0.234180
\(310\) 0 0
\(311\) −896.000 −0.163368 −0.0816841 0.996658i \(-0.526030\pi\)
−0.0816841 + 0.996658i \(0.526030\pi\)
\(312\) 0 0
\(313\) −4110.00 −0.742207 −0.371104 0.928591i \(-0.621021\pi\)
−0.371104 + 0.928591i \(0.621021\pi\)
\(314\) 0 0
\(315\) −1440.00 −0.257571
\(316\) 0 0
\(317\) 6926.00 1.22714 0.613569 0.789641i \(-0.289733\pi\)
0.613569 + 0.789641i \(0.289733\pi\)
\(318\) 0 0
\(319\) 7808.00 1.37042
\(320\) 0 0
\(321\) −5004.00 −0.870081
\(322\) 0 0
\(323\) 4408.00 0.759343
\(324\) 0 0
\(325\) −150.000 −0.0256015
\(326\) 0 0
\(327\) 4902.00 0.828995
\(328\) 0 0
\(329\) −5888.00 −0.986675
\(330\) 0 0
\(331\) 2692.00 0.447026 0.223513 0.974701i \(-0.428247\pi\)
0.223513 + 0.974701i \(0.428247\pi\)
\(332\) 0 0
\(333\) 1314.00 0.216237
\(334\) 0 0
\(335\) 3660.00 0.596917
\(336\) 0 0
\(337\) 11914.0 1.92581 0.962903 0.269846i \(-0.0869728\pi\)
0.962903 + 0.269846i \(0.0869728\pi\)
\(338\) 0 0
\(339\) −5058.00 −0.810362
\(340\) 0 0
\(341\) 10496.0 1.66683
\(342\) 0 0
\(343\) −10816.0 −1.70265
\(344\) 0 0
\(345\) −1800.00 −0.280895
\(346\) 0 0
\(347\) 6660.00 1.03034 0.515169 0.857088i \(-0.327729\pi\)
0.515169 + 0.857088i \(0.327729\pi\)
\(348\) 0 0
\(349\) 3046.00 0.467188 0.233594 0.972334i \(-0.424951\pi\)
0.233594 + 0.972334i \(0.424951\pi\)
\(350\) 0 0
\(351\) 162.000 0.0246351
\(352\) 0 0
\(353\) −3522.00 −0.531040 −0.265520 0.964105i \(-0.585544\pi\)
−0.265520 + 0.964105i \(0.585544\pi\)
\(354\) 0 0
\(355\) −1320.00 −0.197347
\(356\) 0 0
\(357\) 3648.00 0.540820
\(358\) 0 0
\(359\) 8656.00 1.27255 0.636276 0.771461i \(-0.280474\pi\)
0.636276 + 0.771461i \(0.280474\pi\)
\(360\) 0 0
\(361\) 6597.00 0.961802
\(362\) 0 0
\(363\) −8295.00 −1.19938
\(364\) 0 0
\(365\) −3190.00 −0.457458
\(366\) 0 0
\(367\) −936.000 −0.133130 −0.0665651 0.997782i \(-0.521204\pi\)
−0.0665651 + 0.997782i \(0.521204\pi\)
\(368\) 0 0
\(369\) −2142.00 −0.302190
\(370\) 0 0
\(371\) −15040.0 −2.10468
\(372\) 0 0
\(373\) 11578.0 1.60720 0.803601 0.595169i \(-0.202915\pi\)
0.803601 + 0.595169i \(0.202915\pi\)
\(374\) 0 0
\(375\) −375.000 −0.0516398
\(376\) 0 0
\(377\) 732.000 0.0999998
\(378\) 0 0
\(379\) −9948.00 −1.34827 −0.674135 0.738608i \(-0.735483\pi\)
−0.674135 + 0.738608i \(0.735483\pi\)
\(380\) 0 0
\(381\) 7920.00 1.06497
\(382\) 0 0
\(383\) −8336.00 −1.11214 −0.556070 0.831135i \(-0.687691\pi\)
−0.556070 + 0.831135i \(0.687691\pi\)
\(384\) 0 0
\(385\) 10240.0 1.35553
\(386\) 0 0
\(387\) 1332.00 0.174960
\(388\) 0 0
\(389\) −6370.00 −0.830262 −0.415131 0.909762i \(-0.636264\pi\)
−0.415131 + 0.909762i \(0.636264\pi\)
\(390\) 0 0
\(391\) 4560.00 0.589793
\(392\) 0 0
\(393\) −7608.00 −0.976521
\(394\) 0 0
\(395\) −2980.00 −0.379595
\(396\) 0 0
\(397\) 10394.0 1.31400 0.657002 0.753888i \(-0.271824\pi\)
0.657002 + 0.753888i \(0.271824\pi\)
\(398\) 0 0
\(399\) 11136.0 1.39724
\(400\) 0 0
\(401\) −7470.00 −0.930259 −0.465130 0.885243i \(-0.653992\pi\)
−0.465130 + 0.885243i \(0.653992\pi\)
\(402\) 0 0
\(403\) 984.000 0.121629
\(404\) 0 0
\(405\) 405.000 0.0496904
\(406\) 0 0
\(407\) −9344.00 −1.13800
\(408\) 0 0
\(409\) 2810.00 0.339720 0.169860 0.985468i \(-0.445668\pi\)
0.169860 + 0.985468i \(0.445668\pi\)
\(410\) 0 0
\(411\) 1902.00 0.228269
\(412\) 0 0
\(413\) −6912.00 −0.823529
\(414\) 0 0
\(415\) 4420.00 0.522818
\(416\) 0 0
\(417\) 8940.00 1.04986
\(418\) 0 0
\(419\) 4320.00 0.503689 0.251845 0.967768i \(-0.418963\pi\)
0.251845 + 0.967768i \(0.418963\pi\)
\(420\) 0 0
\(421\) −15122.0 −1.75060 −0.875298 0.483583i \(-0.839335\pi\)
−0.875298 + 0.483583i \(0.839335\pi\)
\(422\) 0 0
\(423\) 1656.00 0.190349
\(424\) 0 0
\(425\) 950.000 0.108428
\(426\) 0 0
\(427\) −25792.0 −2.92310
\(428\) 0 0
\(429\) −1152.00 −0.129648
\(430\) 0 0
\(431\) 12616.0 1.40996 0.704978 0.709229i \(-0.250957\pi\)
0.704978 + 0.709229i \(0.250957\pi\)
\(432\) 0 0
\(433\) 15098.0 1.67567 0.837833 0.545926i \(-0.183822\pi\)
0.837833 + 0.545926i \(0.183822\pi\)
\(434\) 0 0
\(435\) 1830.00 0.201705
\(436\) 0 0
\(437\) 13920.0 1.52376
\(438\) 0 0
\(439\) 2372.00 0.257880 0.128940 0.991652i \(-0.458843\pi\)
0.128940 + 0.991652i \(0.458843\pi\)
\(440\) 0 0
\(441\) 6129.00 0.661808
\(442\) 0 0
\(443\) 36.0000 0.00386097 0.00193049 0.999998i \(-0.499386\pi\)
0.00193049 + 0.999998i \(0.499386\pi\)
\(444\) 0 0
\(445\) 4650.00 0.495351
\(446\) 0 0
\(447\) 1014.00 0.107294
\(448\) 0 0
\(449\) 7330.00 0.770432 0.385216 0.922826i \(-0.374127\pi\)
0.385216 + 0.922826i \(0.374127\pi\)
\(450\) 0 0
\(451\) 15232.0 1.59035
\(452\) 0 0
\(453\) −1284.00 −0.133173
\(454\) 0 0
\(455\) 960.000 0.0989132
\(456\) 0 0
\(457\) 9642.00 0.986945 0.493472 0.869761i \(-0.335727\pi\)
0.493472 + 0.869761i \(0.335727\pi\)
\(458\) 0 0
\(459\) −1026.00 −0.104335
\(460\) 0 0
\(461\) 9654.00 0.975340 0.487670 0.873028i \(-0.337847\pi\)
0.487670 + 0.873028i \(0.337847\pi\)
\(462\) 0 0
\(463\) 13960.0 1.40124 0.700622 0.713532i \(-0.252906\pi\)
0.700622 + 0.713532i \(0.252906\pi\)
\(464\) 0 0
\(465\) 2460.00 0.245333
\(466\) 0 0
\(467\) −9996.00 −0.990492 −0.495246 0.868753i \(-0.664922\pi\)
−0.495246 + 0.868753i \(0.664922\pi\)
\(468\) 0 0
\(469\) −23424.0 −2.30623
\(470\) 0 0
\(471\) −9030.00 −0.883398
\(472\) 0 0
\(473\) −9472.00 −0.920767
\(474\) 0 0
\(475\) 2900.00 0.280129
\(476\) 0 0
\(477\) 4230.00 0.406034
\(478\) 0 0
\(479\) 8736.00 0.833315 0.416658 0.909063i \(-0.363201\pi\)
0.416658 + 0.909063i \(0.363201\pi\)
\(480\) 0 0
\(481\) −876.000 −0.0830398
\(482\) 0 0
\(483\) 11520.0 1.08525
\(484\) 0 0
\(485\) 1610.00 0.150735
\(486\) 0 0
\(487\) −6712.00 −0.624537 −0.312269 0.949994i \(-0.601089\pi\)
−0.312269 + 0.949994i \(0.601089\pi\)
\(488\) 0 0
\(489\) −396.000 −0.0366211
\(490\) 0 0
\(491\) 2512.00 0.230886 0.115443 0.993314i \(-0.463171\pi\)
0.115443 + 0.993314i \(0.463171\pi\)
\(492\) 0 0
\(493\) −4636.00 −0.423519
\(494\) 0 0
\(495\) −2880.00 −0.261508
\(496\) 0 0
\(497\) 8448.00 0.762464
\(498\) 0 0
\(499\) 5708.00 0.512074 0.256037 0.966667i \(-0.417583\pi\)
0.256037 + 0.966667i \(0.417583\pi\)
\(500\) 0 0
\(501\) 6528.00 0.582135
\(502\) 0 0
\(503\) 5440.00 0.482222 0.241111 0.970498i \(-0.422488\pi\)
0.241111 + 0.970498i \(0.422488\pi\)
\(504\) 0 0
\(505\) −4730.00 −0.416797
\(506\) 0 0
\(507\) 6483.00 0.567890
\(508\) 0 0
\(509\) 3942.00 0.343273 0.171637 0.985160i \(-0.445095\pi\)
0.171637 + 0.985160i \(0.445095\pi\)
\(510\) 0 0
\(511\) 20416.0 1.76742
\(512\) 0 0
\(513\) −3132.00 −0.269554
\(514\) 0 0
\(515\) −2120.00 −0.181395
\(516\) 0 0
\(517\) −11776.0 −1.00176
\(518\) 0 0
\(519\) 8334.00 0.704859
\(520\) 0 0
\(521\) −2310.00 −0.194247 −0.0971237 0.995272i \(-0.530964\pi\)
−0.0971237 + 0.995272i \(0.530964\pi\)
\(522\) 0 0
\(523\) 2956.00 0.247145 0.123573 0.992336i \(-0.460565\pi\)
0.123573 + 0.992336i \(0.460565\pi\)
\(524\) 0 0
\(525\) 2400.00 0.199513
\(526\) 0 0
\(527\) −6232.00 −0.515124
\(528\) 0 0
\(529\) 2233.00 0.183529
\(530\) 0 0
\(531\) 1944.00 0.158875
\(532\) 0 0
\(533\) 1428.00 0.116048
\(534\) 0 0
\(535\) 8340.00 0.673962
\(536\) 0 0
\(537\) −11664.0 −0.937316
\(538\) 0 0
\(539\) −43584.0 −3.48292
\(540\) 0 0
\(541\) 2078.00 0.165139 0.0825695 0.996585i \(-0.473687\pi\)
0.0825695 + 0.996585i \(0.473687\pi\)
\(542\) 0 0
\(543\) −4050.00 −0.320078
\(544\) 0 0
\(545\) −8170.00 −0.642136
\(546\) 0 0
\(547\) −6164.00 −0.481816 −0.240908 0.970548i \(-0.577445\pi\)
−0.240908 + 0.970548i \(0.577445\pi\)
\(548\) 0 0
\(549\) 7254.00 0.563922
\(550\) 0 0
\(551\) −14152.0 −1.09418
\(552\) 0 0
\(553\) 19072.0 1.46659
\(554\) 0 0
\(555\) −2190.00 −0.167496
\(556\) 0 0
\(557\) 13526.0 1.02893 0.514466 0.857511i \(-0.327990\pi\)
0.514466 + 0.857511i \(0.327990\pi\)
\(558\) 0 0
\(559\) −888.000 −0.0671885
\(560\) 0 0
\(561\) 7296.00 0.549086
\(562\) 0 0
\(563\) −276.000 −0.0206608 −0.0103304 0.999947i \(-0.503288\pi\)
−0.0103304 + 0.999947i \(0.503288\pi\)
\(564\) 0 0
\(565\) 8430.00 0.627704
\(566\) 0 0
\(567\) −2592.00 −0.191982
\(568\) 0 0
\(569\) −774.000 −0.0570260 −0.0285130 0.999593i \(-0.509077\pi\)
−0.0285130 + 0.999593i \(0.509077\pi\)
\(570\) 0 0
\(571\) 6676.00 0.489285 0.244643 0.969613i \(-0.421329\pi\)
0.244643 + 0.969613i \(0.421329\pi\)
\(572\) 0 0
\(573\) −14280.0 −1.04111
\(574\) 0 0
\(575\) 3000.00 0.217580
\(576\) 0 0
\(577\) −11774.0 −0.849494 −0.424747 0.905312i \(-0.639637\pi\)
−0.424747 + 0.905312i \(0.639637\pi\)
\(578\) 0 0
\(579\) −3102.00 −0.222651
\(580\) 0 0
\(581\) −28288.0 −2.01994
\(582\) 0 0
\(583\) −30080.0 −2.13685
\(584\) 0 0
\(585\) −270.000 −0.0190823
\(586\) 0 0
\(587\) 12292.0 0.864302 0.432151 0.901801i \(-0.357755\pi\)
0.432151 + 0.901801i \(0.357755\pi\)
\(588\) 0 0
\(589\) −19024.0 −1.33085
\(590\) 0 0
\(591\) 4062.00 0.282721
\(592\) 0 0
\(593\) 7110.00 0.492365 0.246183 0.969223i \(-0.420824\pi\)
0.246183 + 0.969223i \(0.420824\pi\)
\(594\) 0 0
\(595\) −6080.00 −0.418917
\(596\) 0 0
\(597\) −6972.00 −0.477965
\(598\) 0 0
\(599\) −4416.00 −0.301223 −0.150612 0.988593i \(-0.548124\pi\)
−0.150612 + 0.988593i \(0.548124\pi\)
\(600\) 0 0
\(601\) 3850.00 0.261306 0.130653 0.991428i \(-0.458293\pi\)
0.130653 + 0.991428i \(0.458293\pi\)
\(602\) 0 0
\(603\) 6588.00 0.444916
\(604\) 0 0
\(605\) 13825.0 0.929035
\(606\) 0 0
\(607\) 21880.0 1.46307 0.731534 0.681805i \(-0.238805\pi\)
0.731534 + 0.681805i \(0.238805\pi\)
\(608\) 0 0
\(609\) −11712.0 −0.779301
\(610\) 0 0
\(611\) −1104.00 −0.0730983
\(612\) 0 0
\(613\) 2786.00 0.183565 0.0917826 0.995779i \(-0.470744\pi\)
0.0917826 + 0.995779i \(0.470744\pi\)
\(614\) 0 0
\(615\) 3570.00 0.234075
\(616\) 0 0
\(617\) 1014.00 0.0661622 0.0330811 0.999453i \(-0.489468\pi\)
0.0330811 + 0.999453i \(0.489468\pi\)
\(618\) 0 0
\(619\) −10708.0 −0.695300 −0.347650 0.937624i \(-0.613020\pi\)
−0.347650 + 0.937624i \(0.613020\pi\)
\(620\) 0 0
\(621\) −3240.00 −0.209367
\(622\) 0 0
\(623\) −29760.0 −1.91382
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 22272.0 1.41859
\(628\) 0 0
\(629\) 5548.00 0.351690
\(630\) 0 0
\(631\) 6660.00 0.420175 0.210087 0.977683i \(-0.432625\pi\)
0.210087 + 0.977683i \(0.432625\pi\)
\(632\) 0 0
\(633\) −9660.00 −0.606557
\(634\) 0 0
\(635\) −13200.0 −0.824923
\(636\) 0 0
\(637\) −4086.00 −0.254149
\(638\) 0 0
\(639\) −2376.00 −0.147094
\(640\) 0 0
\(641\) 90.0000 0.00554569 0.00277284 0.999996i \(-0.499117\pi\)
0.00277284 + 0.999996i \(0.499117\pi\)
\(642\) 0 0
\(643\) 21684.0 1.32991 0.664956 0.746882i \(-0.268450\pi\)
0.664956 + 0.746882i \(0.268450\pi\)
\(644\) 0 0
\(645\) −2220.00 −0.135523
\(646\) 0 0
\(647\) 1344.00 0.0816663 0.0408331 0.999166i \(-0.486999\pi\)
0.0408331 + 0.999166i \(0.486999\pi\)
\(648\) 0 0
\(649\) −13824.0 −0.836116
\(650\) 0 0
\(651\) −15744.0 −0.947859
\(652\) 0 0
\(653\) −9210.00 −0.551937 −0.275969 0.961167i \(-0.588999\pi\)
−0.275969 + 0.961167i \(0.588999\pi\)
\(654\) 0 0
\(655\) 12680.0 0.756410
\(656\) 0 0
\(657\) −5742.00 −0.340969
\(658\) 0 0
\(659\) −184.000 −0.0108765 −0.00543826 0.999985i \(-0.501731\pi\)
−0.00543826 + 0.999985i \(0.501731\pi\)
\(660\) 0 0
\(661\) −12866.0 −0.757079 −0.378540 0.925585i \(-0.623574\pi\)
−0.378540 + 0.925585i \(0.623574\pi\)
\(662\) 0 0
\(663\) 684.000 0.0400669
\(664\) 0 0
\(665\) −18560.0 −1.08229
\(666\) 0 0
\(667\) −14640.0 −0.849870
\(668\) 0 0
\(669\) −96.0000 −0.00554794
\(670\) 0 0
\(671\) −51584.0 −2.96778
\(672\) 0 0
\(673\) −26534.0 −1.51978 −0.759889 0.650053i \(-0.774747\pi\)
−0.759889 + 0.650053i \(0.774747\pi\)
\(674\) 0 0
\(675\) −675.000 −0.0384900
\(676\) 0 0
\(677\) 30062.0 1.70661 0.853306 0.521410i \(-0.174594\pi\)
0.853306 + 0.521410i \(0.174594\pi\)
\(678\) 0 0
\(679\) −10304.0 −0.582373
\(680\) 0 0
\(681\) −11988.0 −0.674569
\(682\) 0 0
\(683\) −12724.0 −0.712841 −0.356420 0.934326i \(-0.616003\pi\)
−0.356420 + 0.934326i \(0.616003\pi\)
\(684\) 0 0
\(685\) −3170.00 −0.176817
\(686\) 0 0
\(687\) 9030.00 0.501479
\(688\) 0 0
\(689\) −2820.00 −0.155927
\(690\) 0 0
\(691\) 21972.0 1.20963 0.604815 0.796366i \(-0.293247\pi\)
0.604815 + 0.796366i \(0.293247\pi\)
\(692\) 0 0
\(693\) 18432.0 1.01035
\(694\) 0 0
\(695\) −14900.0 −0.813222
\(696\) 0 0
\(697\) −9044.00 −0.491486
\(698\) 0 0
\(699\) 8094.00 0.437973
\(700\) 0 0
\(701\) −15642.0 −0.842782 −0.421391 0.906879i \(-0.638458\pi\)
−0.421391 + 0.906879i \(0.638458\pi\)
\(702\) 0 0
\(703\) 16936.0 0.908611
\(704\) 0 0
\(705\) −2760.00 −0.147443
\(706\) 0 0
\(707\) 30272.0 1.61032
\(708\) 0 0
\(709\) 36398.0 1.92801 0.964003 0.265893i \(-0.0856668\pi\)
0.964003 + 0.265893i \(0.0856668\pi\)
\(710\) 0 0
\(711\) −5364.00 −0.282933
\(712\) 0 0
\(713\) −19680.0 −1.03369
\(714\) 0 0
\(715\) 1920.00 0.100425
\(716\) 0 0
\(717\) −6600.00 −0.343768
\(718\) 0 0
\(719\) 36248.0 1.88014 0.940071 0.340978i \(-0.110758\pi\)
0.940071 + 0.340978i \(0.110758\pi\)
\(720\) 0 0
\(721\) 13568.0 0.700830
\(722\) 0 0
\(723\) 18522.0 0.952753
\(724\) 0 0
\(725\) −3050.00 −0.156240
\(726\) 0 0
\(727\) 4936.00 0.251810 0.125905 0.992042i \(-0.459816\pi\)
0.125905 + 0.992042i \(0.459816\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 5624.00 0.284557
\(732\) 0 0
\(733\) −23838.0 −1.20120 −0.600598 0.799551i \(-0.705071\pi\)
−0.600598 + 0.799551i \(0.705071\pi\)
\(734\) 0 0
\(735\) −10215.0 −0.512634
\(736\) 0 0
\(737\) −46848.0 −2.34148
\(738\) 0 0
\(739\) −31700.0 −1.57795 −0.788974 0.614427i \(-0.789387\pi\)
−0.788974 + 0.614427i \(0.789387\pi\)
\(740\) 0 0
\(741\) 2088.00 0.103515
\(742\) 0 0
\(743\) 13128.0 0.648209 0.324105 0.946021i \(-0.394937\pi\)
0.324105 + 0.946021i \(0.394937\pi\)
\(744\) 0 0
\(745\) −1690.00 −0.0831098
\(746\) 0 0
\(747\) 7956.00 0.389685
\(748\) 0 0
\(749\) −53376.0 −2.60389
\(750\) 0 0
\(751\) 15676.0 0.761685 0.380842 0.924640i \(-0.375634\pi\)
0.380842 + 0.924640i \(0.375634\pi\)
\(752\) 0 0
\(753\) 14424.0 0.698061
\(754\) 0 0
\(755\) 2140.00 0.103156
\(756\) 0 0
\(757\) −13238.0 −0.635592 −0.317796 0.948159i \(-0.602943\pi\)
−0.317796 + 0.948159i \(0.602943\pi\)
\(758\) 0 0
\(759\) 23040.0 1.10184
\(760\) 0 0
\(761\) −5270.00 −0.251035 −0.125517 0.992091i \(-0.540059\pi\)
−0.125517 + 0.992091i \(0.540059\pi\)
\(762\) 0 0
\(763\) 52288.0 2.48093
\(764\) 0 0
\(765\) 1710.00 0.0808172
\(766\) 0 0
\(767\) −1296.00 −0.0610115
\(768\) 0 0
\(769\) −8526.00 −0.399812 −0.199906 0.979815i \(-0.564064\pi\)
−0.199906 + 0.979815i \(0.564064\pi\)
\(770\) 0 0
\(771\) −11922.0 −0.556888
\(772\) 0 0
\(773\) 13606.0 0.633084 0.316542 0.948579i \(-0.397478\pi\)
0.316542 + 0.948579i \(0.397478\pi\)
\(774\) 0 0
\(775\) −4100.00 −0.190034
\(776\) 0 0
\(777\) 14016.0 0.647132
\(778\) 0 0
\(779\) −27608.0 −1.26978
\(780\) 0 0
\(781\) 16896.0 0.774118
\(782\) 0 0
\(783\) 3294.00 0.150342
\(784\) 0 0
\(785\) 15050.0 0.684277
\(786\) 0 0
\(787\) 8836.00 0.400215 0.200108 0.979774i \(-0.435871\pi\)
0.200108 + 0.979774i \(0.435871\pi\)
\(788\) 0 0
\(789\) 4224.00 0.190594
\(790\) 0 0
\(791\) −53952.0 −2.42517
\(792\) 0 0
\(793\) −4836.00 −0.216559
\(794\) 0 0
\(795\) −7050.00 −0.314513
\(796\) 0 0
\(797\) −29082.0 −1.29252 −0.646259 0.763118i \(-0.723668\pi\)
−0.646259 + 0.763118i \(0.723668\pi\)
\(798\) 0 0
\(799\) 6992.00 0.309586
\(800\) 0 0
\(801\) 8370.00 0.369213
\(802\) 0 0
\(803\) 40832.0 1.79443
\(804\) 0 0
\(805\) −19200.0 −0.840635
\(806\) 0 0
\(807\) 9774.00 0.426346
\(808\) 0 0
\(809\) 26994.0 1.17313 0.586563 0.809904i \(-0.300481\pi\)
0.586563 + 0.809904i \(0.300481\pi\)
\(810\) 0 0
\(811\) 9268.00 0.401287 0.200643 0.979664i \(-0.435697\pi\)
0.200643 + 0.979664i \(0.435697\pi\)
\(812\) 0 0
\(813\) 25836.0 1.11452
\(814\) 0 0
\(815\) 660.000 0.0283666
\(816\) 0 0
\(817\) 17168.0 0.735168
\(818\) 0 0
\(819\) 1728.00 0.0737255
\(820\) 0 0
\(821\) 6286.00 0.267214 0.133607 0.991034i \(-0.457344\pi\)
0.133607 + 0.991034i \(0.457344\pi\)
\(822\) 0 0
\(823\) −44088.0 −1.86733 −0.933664 0.358150i \(-0.883408\pi\)
−0.933664 + 0.358150i \(0.883408\pi\)
\(824\) 0 0
\(825\) 4800.00 0.202563
\(826\) 0 0
\(827\) −30100.0 −1.26563 −0.632817 0.774301i \(-0.718102\pi\)
−0.632817 + 0.774301i \(0.718102\pi\)
\(828\) 0 0
\(829\) 18254.0 0.764762 0.382381 0.924005i \(-0.375104\pi\)
0.382381 + 0.924005i \(0.375104\pi\)
\(830\) 0 0
\(831\) 12018.0 0.501684
\(832\) 0 0
\(833\) 25878.0 1.07637
\(834\) 0 0
\(835\) −10880.0 −0.450920
\(836\) 0 0
\(837\) 4428.00 0.182860
\(838\) 0 0
\(839\) −13008.0 −0.535263 −0.267632 0.963521i \(-0.586241\pi\)
−0.267632 + 0.963521i \(0.586241\pi\)
\(840\) 0 0
\(841\) −9505.00 −0.389725
\(842\) 0 0
\(843\) −18582.0 −0.759191
\(844\) 0 0
\(845\) −10805.0 −0.439886
\(846\) 0 0
\(847\) −88480.0 −3.58938
\(848\) 0 0
\(849\) 5172.00 0.209073
\(850\) 0 0
\(851\) 17520.0 0.705732
\(852\) 0 0
\(853\) −16094.0 −0.646012 −0.323006 0.946397i \(-0.604693\pi\)
−0.323006 + 0.946397i \(0.604693\pi\)
\(854\) 0 0
\(855\) 5220.00 0.208796
\(856\) 0 0
\(857\) −25938.0 −1.03387 −0.516934 0.856025i \(-0.672927\pi\)
−0.516934 + 0.856025i \(0.672927\pi\)
\(858\) 0 0
\(859\) 38564.0 1.53177 0.765883 0.642980i \(-0.222302\pi\)
0.765883 + 0.642980i \(0.222302\pi\)
\(860\) 0 0
\(861\) −22848.0 −0.904364
\(862\) 0 0
\(863\) −10216.0 −0.402963 −0.201481 0.979492i \(-0.564576\pi\)
−0.201481 + 0.979492i \(0.564576\pi\)
\(864\) 0 0
\(865\) −13890.0 −0.545982
\(866\) 0 0
\(867\) 10407.0 0.407659
\(868\) 0 0
\(869\) 38144.0 1.48901
\(870\) 0 0
\(871\) −4392.00 −0.170858
\(872\) 0 0
\(873\) 2898.00 0.112351
\(874\) 0 0
\(875\) −4000.00 −0.154542
\(876\) 0 0
\(877\) −17006.0 −0.654791 −0.327396 0.944887i \(-0.606171\pi\)
−0.327396 + 0.944887i \(0.606171\pi\)
\(878\) 0 0
\(879\) −7506.00 −0.288022
\(880\) 0 0
\(881\) 43898.0 1.67873 0.839365 0.543568i \(-0.182927\pi\)
0.839365 + 0.543568i \(0.182927\pi\)
\(882\) 0 0
\(883\) −29180.0 −1.11210 −0.556051 0.831149i \(-0.687684\pi\)
−0.556051 + 0.831149i \(0.687684\pi\)
\(884\) 0 0
\(885\) −3240.00 −0.123064
\(886\) 0 0
\(887\) 14752.0 0.558426 0.279213 0.960229i \(-0.409926\pi\)
0.279213 + 0.960229i \(0.409926\pi\)
\(888\) 0 0
\(889\) 84480.0 3.18714
\(890\) 0 0
\(891\) −5184.00 −0.194916
\(892\) 0 0
\(893\) 21344.0 0.799832
\(894\) 0 0
\(895\) 19440.0 0.726042
\(896\) 0 0
\(897\) 2160.00 0.0804017
\(898\) 0 0
\(899\) 20008.0 0.742274
\(900\) 0 0
\(901\) 17860.0 0.660381
\(902\) 0 0
\(903\) 14208.0 0.523602
\(904\) 0 0
\(905\) 6750.00 0.247931
\(906\) 0 0
\(907\) 12020.0 0.440041 0.220021 0.975495i \(-0.429388\pi\)
0.220021 + 0.975495i \(0.429388\pi\)
\(908\) 0 0
\(909\) −8514.00 −0.310662
\(910\) 0 0
\(911\) 18560.0 0.674995 0.337497 0.941326i \(-0.390420\pi\)
0.337497 + 0.941326i \(0.390420\pi\)
\(912\) 0 0
\(913\) −56576.0 −2.05081
\(914\) 0 0
\(915\) −12090.0 −0.436812
\(916\) 0 0
\(917\) −81152.0 −2.92244
\(918\) 0 0
\(919\) 10244.0 0.367702 0.183851 0.982954i \(-0.441144\pi\)
0.183851 + 0.982954i \(0.441144\pi\)
\(920\) 0 0
\(921\) −19212.0 −0.687358
\(922\) 0 0
\(923\) 1584.00 0.0564875
\(924\) 0 0
\(925\) 3650.00 0.129742
\(926\) 0 0
\(927\) −3816.00 −0.135204
\(928\) 0 0
\(929\) 1266.00 0.0447106 0.0223553 0.999750i \(-0.492884\pi\)
0.0223553 + 0.999750i \(0.492884\pi\)
\(930\) 0 0
\(931\) 78996.0 2.78087
\(932\) 0 0
\(933\) 2688.00 0.0943207
\(934\) 0 0
\(935\) −12160.0 −0.425320
\(936\) 0 0
\(937\) 47626.0 1.66048 0.830242 0.557403i \(-0.188202\pi\)
0.830242 + 0.557403i \(0.188202\pi\)
\(938\) 0 0
\(939\) 12330.0 0.428514
\(940\) 0 0
\(941\) 31958.0 1.10712 0.553561 0.832809i \(-0.313269\pi\)
0.553561 + 0.832809i \(0.313269\pi\)
\(942\) 0 0
\(943\) −28560.0 −0.986258
\(944\) 0 0
\(945\) 4320.00 0.148709
\(946\) 0 0
\(947\) −25196.0 −0.864583 −0.432291 0.901734i \(-0.642295\pi\)
−0.432291 + 0.901734i \(0.642295\pi\)
\(948\) 0 0
\(949\) 3828.00 0.130940
\(950\) 0 0
\(951\) −20778.0 −0.708489
\(952\) 0 0
\(953\) 51574.0 1.75304 0.876519 0.481367i \(-0.159859\pi\)
0.876519 + 0.481367i \(0.159859\pi\)
\(954\) 0 0
\(955\) 23800.0 0.806440
\(956\) 0 0
\(957\) −23424.0 −0.791213
\(958\) 0 0
\(959\) 20288.0 0.683143
\(960\) 0 0
\(961\) −2895.00 −0.0971770
\(962\) 0 0
\(963\) 15012.0 0.502342
\(964\) 0 0
\(965\) 5170.00 0.172464
\(966\) 0 0
\(967\) −48296.0 −1.60610 −0.803048 0.595914i \(-0.796790\pi\)
−0.803048 + 0.595914i \(0.796790\pi\)
\(968\) 0 0
\(969\) −13224.0 −0.438407
\(970\) 0 0
\(971\) 27288.0 0.901868 0.450934 0.892557i \(-0.351091\pi\)
0.450934 + 0.892557i \(0.351091\pi\)
\(972\) 0 0
\(973\) 95360.0 3.14193
\(974\) 0 0
\(975\) 450.000 0.0147811
\(976\) 0 0
\(977\) 14406.0 0.471739 0.235869 0.971785i \(-0.424206\pi\)
0.235869 + 0.971785i \(0.424206\pi\)
\(978\) 0 0
\(979\) −59520.0 −1.94307
\(980\) 0 0
\(981\) −14706.0 −0.478620
\(982\) 0 0
\(983\) −18952.0 −0.614929 −0.307464 0.951560i \(-0.599480\pi\)
−0.307464 + 0.951560i \(0.599480\pi\)
\(984\) 0 0
\(985\) −6770.00 −0.218995
\(986\) 0 0
\(987\) 17664.0 0.569657
\(988\) 0 0
\(989\) 17760.0 0.571016
\(990\) 0 0
\(991\) 44308.0 1.42027 0.710136 0.704064i \(-0.248633\pi\)
0.710136 + 0.704064i \(0.248633\pi\)
\(992\) 0 0
\(993\) −8076.00 −0.258091
\(994\) 0 0
\(995\) 11620.0 0.370230
\(996\) 0 0
\(997\) 954.000 0.0303044 0.0151522 0.999885i \(-0.495177\pi\)
0.0151522 + 0.999885i \(0.495177\pi\)
\(998\) 0 0
\(999\) −3942.00 −0.124844
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 480.4.a.c.1.1 1
3.2 odd 2 1440.4.a.a.1.1 1
4.3 odd 2 480.4.a.l.1.1 yes 1
5.4 even 2 2400.4.a.v.1.1 1
8.3 odd 2 960.4.a.i.1.1 1
8.5 even 2 960.4.a.t.1.1 1
12.11 even 2 1440.4.a.j.1.1 1
20.19 odd 2 2400.4.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
480.4.a.c.1.1 1 1.1 even 1 trivial
480.4.a.l.1.1 yes 1 4.3 odd 2
960.4.a.i.1.1 1 8.3 odd 2
960.4.a.t.1.1 1 8.5 even 2
1440.4.a.a.1.1 1 3.2 odd 2
1440.4.a.j.1.1 1 12.11 even 2
2400.4.a.a.1.1 1 20.19 odd 2
2400.4.a.v.1.1 1 5.4 even 2