Properties

Label 480.2.b
Level $480$
Weight $2$
Character orbit 480.b
Rep. character $\chi_{480}(431,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $2$
Sturm bound $192$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 480 = 2^{5} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 480.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 24 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(192\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(23\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(480, [\chi])\).

Total New Old
Modular forms 112 16 96
Cusp forms 80 16 64
Eisenstein series 32 0 32

Trace form

\( 16 q + 8 q^{19} + 16 q^{25} + 24 q^{27} - 8 q^{33} - 32 q^{49} - 40 q^{51} - 8 q^{57} + 64 q^{67} - 16 q^{73} + 16 q^{81} - 48 q^{91} + 16 q^{97} - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(480, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
480.2.b.a 480.b 24.f $8$ $3.833$ 8.0.1649659456.5 None 120.2.b.a \(0\) \(0\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{3}-q^{5}-\beta _{2}q^{7}+(-\beta _{3}-\beta _{5}+\cdots)q^{9}+\cdots\)
480.2.b.b 480.b 24.f $8$ $3.833$ 8.0.1649659456.5 None 120.2.b.a \(0\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{3}+q^{5}+\beta _{2}q^{7}+(-\beta _{3}-\beta _{5}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(480, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(480, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 3}\)