Defining parameters
| Level: | \( N \) | \(=\) | \( 480 = 2^{5} \cdot 3 \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 480.b (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 24 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(192\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(480, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 112 | 16 | 96 |
| Cusp forms | 80 | 16 | 64 |
| Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(480, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 480.2.b.a | $8$ | $3.833$ | 8.0.1649659456.5 | None | \(0\) | \(0\) | \(-8\) | \(0\) | \(q-\beta _{1}q^{3}-q^{5}-\beta _{2}q^{7}+(-\beta _{3}-\beta _{5}+\cdots)q^{9}+\cdots\) |
| 480.2.b.b | $8$ | $3.833$ | 8.0.1649659456.5 | None | \(0\) | \(0\) | \(8\) | \(0\) | \(q-\beta _{1}q^{3}+q^{5}+\beta _{2}q^{7}+(-\beta _{3}-\beta _{5}+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(480, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(480, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 3}\)