Defining parameters
Level: | \( N \) | \(=\) | \( 48 = 2^{4} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 48.g (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 4 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(48, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 70 | 8 | 62 |
Cusp forms | 58 | 8 | 50 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(48, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
48.9.g.a | $2$ | $19.554$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(-180\) | \(0\) | \(q+3^{3}\zeta_{6}q^{3}-90q^{5}+532\zeta_{6}q^{7}-3^{7}q^{9}+\cdots\) |
48.9.g.b | $2$ | $19.554$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(1452\) | \(0\) | \(q-3\zeta_{6}q^{3}+726q^{5}-14^{2}\zeta_{6}q^{7}-3^{7}q^{9}+\cdots\) |
48.9.g.c | $4$ | $19.554$ | \(\Q(\sqrt{-3}, \sqrt{1801})\) | None | \(0\) | \(0\) | \(-264\) | \(0\) | \(q-3^{3}\beta _{1}q^{3}+(-66+\beta _{2})q^{5}+(772\beta _{1}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{9}^{\mathrm{old}}(48, [\chi])\) into lower level spaces
\( S_{9}^{\mathrm{old}}(48, [\chi]) \cong \) \(S_{9}^{\mathrm{new}}(4, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 2}\)