Defining parameters
Level: | \( N \) | \(=\) | \( 48 = 2^{4} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 48.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(64\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(48))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 62 | 7 | 55 |
Cusp forms | 50 | 7 | 43 |
Eisenstein series | 12 | 0 | 12 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(2\) |
\(+\) | \(-\) | \(-\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(2\) |
Plus space | \(+\) | \(4\) | |
Minus space | \(-\) | \(3\) |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(48))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | |||||||
48.8.a.a | $1$ | $14.994$ | \(\Q\) | None | \(0\) | \(-27\) | \(-530\) | \(-120\) | $+$ | $+$ | \(q-3^{3}q^{3}-530q^{5}-120q^{7}+3^{6}q^{9}+\cdots\) | |
48.8.a.b | $1$ | $14.994$ | \(\Q\) | None | \(0\) | \(-27\) | \(-114\) | \(1576\) | $-$ | $+$ | \(q-3^{3}q^{3}-114q^{5}+1576q^{7}+3^{6}q^{9}+\cdots\) | |
48.8.a.c | $1$ | $14.994$ | \(\Q\) | None | \(0\) | \(-27\) | \(110\) | \(-504\) | $+$ | $+$ | \(q-3^{3}q^{3}+110q^{5}-504q^{7}+3^{6}q^{9}+\cdots\) | |
48.8.a.d | $1$ | $14.994$ | \(\Q\) | None | \(0\) | \(-27\) | \(270\) | \(-1112\) | $-$ | $+$ | \(q-3^{3}q^{3}+270q^{5}-1112q^{7}+3^{6}q^{9}+\cdots\) | |
48.8.a.e | $1$ | $14.994$ | \(\Q\) | None | \(0\) | \(27\) | \(-378\) | \(832\) | $-$ | $-$ | \(q+3^{3}q^{3}-378q^{5}+832q^{7}+3^{6}q^{9}+\cdots\) | |
48.8.a.f | $1$ | $14.994$ | \(\Q\) | None | \(0\) | \(27\) | \(-26\) | \(-1056\) | $+$ | $-$ | \(q+3^{3}q^{3}-26q^{5}-1056q^{7}+3^{6}q^{9}+\cdots\) | |
48.8.a.g | $1$ | $14.994$ | \(\Q\) | None | \(0\) | \(27\) | \(390\) | \(64\) | $-$ | $-$ | \(q+3^{3}q^{3}+390q^{5}+2^{6}q^{7}+3^{6}q^{9}+\cdots\) |
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(48))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_0(48)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 2}\)