Properties

Label 48.8.a
Level $48$
Weight $8$
Character orbit 48.a
Rep. character $\chi_{48}(1,\cdot)$
Character field $\Q$
Dimension $7$
Newform subspaces $7$
Sturm bound $64$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 48.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(64\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(48))\).

Total New Old
Modular forms 62 7 55
Cusp forms 50 7 43
Eisenstein series 12 0 12

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeDim
\(+\)\(+\)\(+\)\(2\)
\(+\)\(-\)\(-\)\(1\)
\(-\)\(+\)\(-\)\(2\)
\(-\)\(-\)\(+\)\(2\)
Plus space\(+\)\(4\)
Minus space\(-\)\(3\)

Trace form

\( 7 q - 27 q^{3} - 278 q^{5} - 320 q^{7} + 5103 q^{9} - 1204 q^{11} + 6554 q^{13} + 6750 q^{15} + 1454 q^{17} - 61868 q^{19} + 230984 q^{23} + 127681 q^{25} - 19683 q^{27} - 112110 q^{29} + 366520 q^{31}+ \cdots - 877716 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(48))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
48.8.a.a 48.a 1.a $1$ $14.994$ \(\Q\) None 24.8.a.b \(0\) \(-27\) \(-530\) \(-120\) $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}-530q^{5}-120q^{7}+3^{6}q^{9}+\cdots\)
48.8.a.b 48.a 1.a $1$ $14.994$ \(\Q\) None 6.8.a.a \(0\) \(-27\) \(-114\) \(1576\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}-114q^{5}+1576q^{7}+3^{6}q^{9}+\cdots\)
48.8.a.c 48.a 1.a $1$ $14.994$ \(\Q\) None 24.8.a.c \(0\) \(-27\) \(110\) \(-504\) $+$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+110q^{5}-504q^{7}+3^{6}q^{9}+\cdots\)
48.8.a.d 48.a 1.a $1$ $14.994$ \(\Q\) None 12.8.a.b \(0\) \(-27\) \(270\) \(-1112\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3^{3}q^{3}+270q^{5}-1112q^{7}+3^{6}q^{9}+\cdots\)
48.8.a.e 48.a 1.a $1$ $14.994$ \(\Q\) None 12.8.a.a \(0\) \(27\) \(-378\) \(832\) $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}-378q^{5}+832q^{7}+3^{6}q^{9}+\cdots\)
48.8.a.f 48.a 1.a $1$ $14.994$ \(\Q\) None 24.8.a.a \(0\) \(27\) \(-26\) \(-1056\) $+$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}-26q^{5}-1056q^{7}+3^{6}q^{9}+\cdots\)
48.8.a.g 48.a 1.a $1$ $14.994$ \(\Q\) None 3.8.a.a \(0\) \(27\) \(390\) \(64\) $-$ $-$ $\mathrm{SU}(2)$ \(q+3^{3}q^{3}+390q^{5}+2^{6}q^{7}+3^{6}q^{9}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(48))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(48)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 5}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 2}\)