Properties

Label 48.7.e.c
Level 48
Weight 7
Character orbit 48.e
Analytic conductor 11.043
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 48.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(11.0425960138\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-5}) \)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 12)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 12\sqrt{-5}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 3 + \beta ) q^{3} -6 \beta q^{5} -242 q^{7} + ( -711 + 6 \beta ) q^{9} +O(q^{10})\) \( q + ( 3 + \beta ) q^{3} -6 \beta q^{5} -242 q^{7} + ( -711 + 6 \beta ) q^{9} -66 \beta q^{11} + 2618 q^{13} + ( 4320 - 18 \beta ) q^{15} -264 \beta q^{17} -5786 q^{19} + ( -726 - 242 \beta ) q^{21} -348 \beta q^{23} -10295 q^{25} + ( -6453 - 693 \beta ) q^{27} + 462 \beta q^{29} + 20446 q^{31} + ( 47520 - 198 \beta ) q^{33} + 1452 \beta q^{35} -46774 q^{37} + ( 7854 + 2618 \beta ) q^{39} -132 \beta q^{41} -68618 q^{43} + ( 25920 + 4266 \beta ) q^{45} -792 \beta q^{47} -59085 q^{49} + ( 190080 - 792 \beta ) q^{51} + 6402 \beta q^{53} -285120 q^{55} + ( -17358 - 5786 \beta ) q^{57} + 5574 \beta q^{59} + 24794 q^{61} + ( 172062 - 1452 \beta ) q^{63} -15708 \beta q^{65} + 84358 q^{67} + ( 250560 - 1044 \beta ) q^{69} -12084 \beta q^{71} -113806 q^{73} + ( -30885 - 10295 \beta ) q^{75} + 15972 \beta q^{77} + 159742 q^{79} + ( 479601 - 8532 \beta ) q^{81} -19206 \beta q^{83} -1140480 q^{85} + ( -332640 + 1386 \beta ) q^{87} -46812 \beta q^{89} -633556 q^{91} + ( 61338 + 20446 \beta ) q^{93} + 34716 \beta q^{95} + 899522 q^{97} + ( 285120 + 46926 \beta ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 6q^{3} - 484q^{7} - 1422q^{9} + O(q^{10}) \) \( 2q + 6q^{3} - 484q^{7} - 1422q^{9} + 5236q^{13} + 8640q^{15} - 11572q^{19} - 1452q^{21} - 20590q^{25} - 12906q^{27} + 40892q^{31} + 95040q^{33} - 93548q^{37} + 15708q^{39} - 137236q^{43} + 51840q^{45} - 118170q^{49} + 380160q^{51} - 570240q^{55} - 34716q^{57} + 49588q^{61} + 344124q^{63} + 168716q^{67} + 501120q^{69} - 227612q^{73} - 61770q^{75} + 319484q^{79} + 959202q^{81} - 2280960q^{85} - 665280q^{87} - 1267112q^{91} + 122676q^{93} + 1799044q^{97} + 570240q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/48\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(31\) \(37\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
17.1
2.23607i
2.23607i
0 3.00000 26.8328i 0 160.997i 0 −242.000 0 −711.000 160.997i 0
17.2 0 3.00000 + 26.8328i 0 160.997i 0 −242.000 0 −711.000 + 160.997i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 48.7.e.c 2
3.b odd 2 1 inner 48.7.e.c 2
4.b odd 2 1 12.7.c.a 2
8.b even 2 1 192.7.e.d 2
8.d odd 2 1 192.7.e.e 2
12.b even 2 1 12.7.c.a 2
20.d odd 2 1 300.7.g.e 2
20.e even 4 2 300.7.b.c 4
24.f even 2 1 192.7.e.e 2
24.h odd 2 1 192.7.e.d 2
28.d even 2 1 588.7.c.e 2
36.f odd 6 2 324.7.g.c 4
36.h even 6 2 324.7.g.c 4
60.h even 2 1 300.7.g.e 2
60.l odd 4 2 300.7.b.c 4
84.h odd 2 1 588.7.c.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
12.7.c.a 2 4.b odd 2 1
12.7.c.a 2 12.b even 2 1
48.7.e.c 2 1.a even 1 1 trivial
48.7.e.c 2 3.b odd 2 1 inner
192.7.e.d 2 8.b even 2 1
192.7.e.d 2 24.h odd 2 1
192.7.e.e 2 8.d odd 2 1
192.7.e.e 2 24.f even 2 1
300.7.b.c 4 20.e even 4 2
300.7.b.c 4 60.l odd 4 2
300.7.g.e 2 20.d odd 2 1
300.7.g.e 2 60.h even 2 1
324.7.g.c 4 36.f odd 6 2
324.7.g.c 4 36.h even 6 2
588.7.c.e 2 28.d even 2 1
588.7.c.e 2 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 25920 \) acting on \(S_{7}^{\mathrm{new}}(48, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 - 6 T + 729 T^{2} \)
$5$ \( 1 - 5330 T^{2} + 244140625 T^{4} \)
$7$ \( ( 1 + 242 T + 117649 T^{2} )^{2} \)
$11$ \( 1 - 406802 T^{2} + 3138428376721 T^{4} \)
$13$ \( ( 1 - 2618 T + 4826809 T^{2} )^{2} \)
$17$ \( 1 + 1905982 T^{2} + 582622237229761 T^{4} \)
$19$ \( ( 1 + 5786 T + 47045881 T^{2} )^{2} \)
$23$ \( 1 - 208876898 T^{2} + 21914624432020321 T^{4} \)
$29$ \( 1 - 1035966962 T^{2} + 353814783205469041 T^{4} \)
$31$ \( ( 1 - 20446 T + 887503681 T^{2} )^{2} \)
$37$ \( ( 1 + 46774 T + 2565726409 T^{2} )^{2} \)
$41$ \( 1 - 9487663202 T^{2} + 22563490300366186081 T^{4} \)
$43$ \( ( 1 + 68618 T + 6321363049 T^{2} )^{2} \)
$47$ \( 1 - 21106800578 T^{2} + \)\(11\!\cdots\!41\)\( T^{4} \)
$53$ \( 1 - 14819087378 T^{2} + \)\(49\!\cdots\!41\)\( T^{4} \)
$59$ \( 1 - 61991044562 T^{2} + \)\(17\!\cdots\!81\)\( T^{4} \)
$61$ \( ( 1 - 24794 T + 51520374361 T^{2} )^{2} \)
$67$ \( ( 1 - 84358 T + 90458382169 T^{2} )^{2} \)
$71$ \( 1 - 151063967522 T^{2} + \)\(16\!\cdots\!41\)\( T^{4} \)
$73$ \( ( 1 + 113806 T + 151334226289 T^{2} )^{2} \)
$79$ \( ( 1 - 159742 T + 243087455521 T^{2} )^{2} \)
$83$ \( 1 - 388294032818 T^{2} + \)\(10\!\cdots\!61\)\( T^{4} \)
$89$ \( 1 + 583819025758 T^{2} + \)\(24\!\cdots\!21\)\( T^{4} \)
$97$ \( ( 1 - 899522 T + 832972004929 T^{2} )^{2} \)
show more
show less