Properties

Label 48.4.j.a
Level 48
Weight 4
Character orbit 48.j
Analytic conductor 2.832
Analytic rank 0
Dimension 24
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 48.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.83209168028\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24q - 20q^{4} + 84q^{8} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 24q - 20q^{4} + 84q^{8} + 72q^{10} - 40q^{11} - 24q^{12} - 348q^{14} + 120q^{15} - 192q^{16} - 36q^{18} + 24q^{19} + 80q^{20} + 704q^{22} + 228q^{24} - 20q^{26} - 344q^{28} + 400q^{29} - 408q^{30} - 744q^{31} - 960q^{32} - 704q^{34} - 456q^{35} + 108q^{36} + 16q^{37} + 1256q^{38} + 1744q^{40} + 660q^{42} + 1240q^{43} - 200q^{44} - 1432q^{46} - 528q^{48} - 1176q^{49} + 708q^{50} + 744q^{51} + 1008q^{52} + 752q^{53} + 108q^{54} + 1344q^{56} + 1936q^{58} - 1376q^{59} - 1224q^{60} - 912q^{61} - 996q^{62} - 504q^{63} - 56q^{64} + 976q^{65} - 1368q^{66} - 2256q^{67} - 1568q^{68} - 528q^{69} - 1760q^{70} - 612q^{72} - 2740q^{74} + 1104q^{75} - 1880q^{76} + 1904q^{77} + 1692q^{78} + 5992q^{79} + 712q^{80} - 1944q^{81} - 40q^{82} + 2680q^{83} + 1800q^{84} - 240q^{85} - 1712q^{86} - 3936q^{88} + 648q^{90} - 3496q^{91} + 5296q^{92} + 5272q^{94} - 7728q^{95} + 2880q^{96} + 6760q^{98} - 360q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
13.1 −2.77551 + 0.544550i −2.12132 2.12132i 7.40693 3.02281i −3.72414 + 3.72414i 7.04291 + 4.73259i 20.2675i −18.9120 + 12.4233i 9.00000i 8.30842 12.3644i
13.2 −2.24080 + 1.72593i 2.12132 + 2.12132i 2.04234 7.73491i 14.6111 14.6111i −8.41470 1.09220i 26.8889i 8.77342 + 20.8573i 9.00000i −7.52282 + 57.9584i
13.3 −1.92738 2.07008i 2.12132 + 2.12132i −0.570442 + 7.97964i −7.29121 + 7.29121i 0.302715 8.47988i 22.1610i 17.6179 14.1989i 9.00000i 29.1463 + 1.04047i
13.4 −1.40656 + 2.45389i −2.12132 2.12132i −4.04315 6.90311i 3.22588 3.22588i 8.18926 2.22171i 24.6080i 22.6264 0.211795i 9.00000i 3.37855 + 12.4534i
13.5 −0.987020 + 2.65062i 2.12132 + 2.12132i −6.05158 5.23243i −11.8955 + 11.8955i −7.71660 + 3.52903i 0.485059i 19.8422 10.8759i 9.00000i −19.7893 43.2714i
13.6 −0.716137 2.73627i −2.12132 2.12132i −6.97430 + 3.91908i −11.7719 + 11.7719i −4.28534 + 7.32365i 14.7089i 15.7182 + 16.2769i 9.00000i 40.6415 + 23.7808i
13.7 −0.220074 2.81985i 2.12132 + 2.12132i −7.90313 + 1.24115i 10.2951 10.2951i 5.51496 6.44866i 32.8369i 5.23914 + 22.0125i 9.00000i −31.2964 26.7650i
13.8 0.954009 + 2.66268i −2.12132 2.12132i −6.17974 + 5.08044i −8.83384 + 8.83384i 3.62464 7.67216i 29.4760i −19.4231 11.6079i 9.00000i −31.9493 15.0941i
13.9 1.94824 2.05046i −2.12132 2.12132i −0.408732 7.98955i 2.24191 2.24191i −8.48251 + 0.216833i 9.00196i −17.1785 14.7275i 9.00000i −0.229160 8.96471i
13.10 2.07099 + 1.92640i 2.12132 + 2.12132i 0.577966 + 7.97909i 0.644922 0.644922i 0.306713 + 8.47974i 7.13926i −14.1740 + 17.6380i 9.00000i 2.57800 0.0932465i
13.11 2.59717 1.12013i 2.12132 + 2.12132i 5.49064 5.81833i 0.706564 0.706564i 7.88559 + 3.13329i 4.44122i 7.74288 21.2614i 9.00000i 1.04363 2.62651i
13.12 2.70307 + 0.832707i −2.12132 2.12132i 6.61320 + 4.50173i 11.7911 11.7911i −3.96764 7.50052i 12.5754i 14.1273 + 17.6754i 9.00000i 41.6906 22.0536i
37.1 −2.77551 0.544550i −2.12132 + 2.12132i 7.40693 + 3.02281i −3.72414 3.72414i 7.04291 4.73259i 20.2675i −18.9120 12.4233i 9.00000i 8.30842 + 12.3644i
37.2 −2.24080 1.72593i 2.12132 2.12132i 2.04234 + 7.73491i 14.6111 + 14.6111i −8.41470 + 1.09220i 26.8889i 8.77342 20.8573i 9.00000i −7.52282 57.9584i
37.3 −1.92738 + 2.07008i 2.12132 2.12132i −0.570442 7.97964i −7.29121 7.29121i 0.302715 + 8.47988i 22.1610i 17.6179 + 14.1989i 9.00000i 29.1463 1.04047i
37.4 −1.40656 2.45389i −2.12132 + 2.12132i −4.04315 + 6.90311i 3.22588 + 3.22588i 8.18926 + 2.22171i 24.6080i 22.6264 + 0.211795i 9.00000i 3.37855 12.4534i
37.5 −0.987020 2.65062i 2.12132 2.12132i −6.05158 + 5.23243i −11.8955 11.8955i −7.71660 3.52903i 0.485059i 19.8422 + 10.8759i 9.00000i −19.7893 + 43.2714i
37.6 −0.716137 + 2.73627i −2.12132 + 2.12132i −6.97430 3.91908i −11.7719 11.7719i −4.28534 7.32365i 14.7089i 15.7182 16.2769i 9.00000i 40.6415 23.7808i
37.7 −0.220074 + 2.81985i 2.12132 2.12132i −7.90313 1.24115i 10.2951 + 10.2951i 5.51496 + 6.44866i 32.8369i 5.23914 22.0125i 9.00000i −31.2964 + 26.7650i
37.8 0.954009 2.66268i −2.12132 + 2.12132i −6.17974 5.08044i −8.83384 8.83384i 3.62464 + 7.67216i 29.4760i −19.4231 + 11.6079i 9.00000i −31.9493 + 15.0941i
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 37.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
16.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 48.4.j.a 24
3.b odd 2 1 144.4.k.b 24
4.b odd 2 1 192.4.j.a 24
8.b even 2 1 384.4.j.b 24
8.d odd 2 1 384.4.j.a 24
12.b even 2 1 576.4.k.b 24
16.e even 4 1 inner 48.4.j.a 24
16.e even 4 1 384.4.j.b 24
16.f odd 4 1 192.4.j.a 24
16.f odd 4 1 384.4.j.a 24
48.i odd 4 1 144.4.k.b 24
48.k even 4 1 576.4.k.b 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
48.4.j.a 24 1.a even 1 1 trivial
48.4.j.a 24 16.e even 4 1 inner
144.4.k.b 24 3.b odd 2 1
144.4.k.b 24 48.i odd 4 1
192.4.j.a 24 4.b odd 2 1
192.4.j.a 24 16.f odd 4 1
384.4.j.a 24 8.d odd 2 1
384.4.j.a 24 16.f odd 4 1
384.4.j.b 24 8.b even 2 1
384.4.j.b 24 16.e even 4 1
576.4.k.b 24 12.b even 2 1
576.4.k.b 24 48.k even 4 1

Hecke kernels

This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(48, [\chi])\).

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database