# Properties

 Label 48.4.a.c Level $48$ Weight $4$ Character orbit 48.a Self dual yes Analytic conductor $2.832$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [48,4,Mod(1,48)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(48, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("48.1");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$48 = 2^{4} \cdot 3$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 48.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$2.83209168028$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 6) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + 3 q^{3} + 6 q^{5} + 16 q^{7} + 9 q^{9}+O(q^{10})$$ q + 3 * q^3 + 6 * q^5 + 16 * q^7 + 9 * q^9 $$q + 3 q^{3} + 6 q^{5} + 16 q^{7} + 9 q^{9} - 12 q^{11} + 38 q^{13} + 18 q^{15} - 126 q^{17} - 20 q^{19} + 48 q^{21} - 168 q^{23} - 89 q^{25} + 27 q^{27} + 30 q^{29} + 88 q^{31} - 36 q^{33} + 96 q^{35} + 254 q^{37} + 114 q^{39} + 42 q^{41} + 52 q^{43} + 54 q^{45} + 96 q^{47} - 87 q^{49} - 378 q^{51} + 198 q^{53} - 72 q^{55} - 60 q^{57} + 660 q^{59} - 538 q^{61} + 144 q^{63} + 228 q^{65} - 884 q^{67} - 504 q^{69} - 792 q^{71} + 218 q^{73} - 267 q^{75} - 192 q^{77} + 520 q^{79} + 81 q^{81} + 492 q^{83} - 756 q^{85} + 90 q^{87} + 810 q^{89} + 608 q^{91} + 264 q^{93} - 120 q^{95} + 1154 q^{97} - 108 q^{99}+O(q^{100})$$ q + 3 * q^3 + 6 * q^5 + 16 * q^7 + 9 * q^9 - 12 * q^11 + 38 * q^13 + 18 * q^15 - 126 * q^17 - 20 * q^19 + 48 * q^21 - 168 * q^23 - 89 * q^25 + 27 * q^27 + 30 * q^29 + 88 * q^31 - 36 * q^33 + 96 * q^35 + 254 * q^37 + 114 * q^39 + 42 * q^41 + 52 * q^43 + 54 * q^45 + 96 * q^47 - 87 * q^49 - 378 * q^51 + 198 * q^53 - 72 * q^55 - 60 * q^57 + 660 * q^59 - 538 * q^61 + 144 * q^63 + 228 * q^65 - 884 * q^67 - 504 * q^69 - 792 * q^71 + 218 * q^73 - 267 * q^75 - 192 * q^77 + 520 * q^79 + 81 * q^81 + 492 * q^83 - 756 * q^85 + 90 * q^87 + 810 * q^89 + 608 * q^91 + 264 * q^93 - 120 * q^95 + 1154 * q^97 - 108 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 3.00000 0 6.00000 0 16.0000 0 9.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 48.4.a.c 1
3.b odd 2 1 144.4.a.c 1
4.b odd 2 1 6.4.a.a 1
5.b even 2 1 1200.4.a.b 1
5.c odd 4 2 1200.4.f.j 2
7.b odd 2 1 2352.4.a.e 1
8.b even 2 1 192.4.a.c 1
8.d odd 2 1 192.4.a.i 1
12.b even 2 1 18.4.a.a 1
16.e even 4 2 768.4.d.c 2
16.f odd 4 2 768.4.d.n 2
20.d odd 2 1 150.4.a.i 1
20.e even 4 2 150.4.c.d 2
24.f even 2 1 576.4.a.q 1
24.h odd 2 1 576.4.a.r 1
28.d even 2 1 294.4.a.e 1
28.f even 6 2 294.4.e.g 2
28.g odd 6 2 294.4.e.h 2
36.f odd 6 2 162.4.c.f 2
36.h even 6 2 162.4.c.c 2
44.c even 2 1 726.4.a.f 1
52.b odd 2 1 1014.4.a.g 1
52.f even 4 2 1014.4.b.d 2
60.h even 2 1 450.4.a.h 1
60.l odd 4 2 450.4.c.e 2
68.d odd 2 1 1734.4.a.d 1
76.d even 2 1 2166.4.a.i 1
84.h odd 2 1 882.4.a.n 1
84.j odd 6 2 882.4.g.f 2
84.n even 6 2 882.4.g.i 2
132.d odd 2 1 2178.4.a.e 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.4.a.a 1 4.b odd 2 1
18.4.a.a 1 12.b even 2 1
48.4.a.c 1 1.a even 1 1 trivial
144.4.a.c 1 3.b odd 2 1
150.4.a.i 1 20.d odd 2 1
150.4.c.d 2 20.e even 4 2
162.4.c.c 2 36.h even 6 2
162.4.c.f 2 36.f odd 6 2
192.4.a.c 1 8.b even 2 1
192.4.a.i 1 8.d odd 2 1
294.4.a.e 1 28.d even 2 1
294.4.e.g 2 28.f even 6 2
294.4.e.h 2 28.g odd 6 2
450.4.a.h 1 60.h even 2 1
450.4.c.e 2 60.l odd 4 2
576.4.a.q 1 24.f even 2 1
576.4.a.r 1 24.h odd 2 1
726.4.a.f 1 44.c even 2 1
768.4.d.c 2 16.e even 4 2
768.4.d.n 2 16.f odd 4 2
882.4.a.n 1 84.h odd 2 1
882.4.g.f 2 84.j odd 6 2
882.4.g.i 2 84.n even 6 2
1014.4.a.g 1 52.b odd 2 1
1014.4.b.d 2 52.f even 4 2
1200.4.a.b 1 5.b even 2 1
1200.4.f.j 2 5.c odd 4 2
1734.4.a.d 1 68.d odd 2 1
2166.4.a.i 1 76.d even 2 1
2178.4.a.e 1 132.d odd 2 1
2352.4.a.e 1 7.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{5} - 6$$ acting on $$S_{4}^{\mathrm{new}}(\Gamma_0(48))$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T - 3$$
$5$ $$T - 6$$
$7$ $$T - 16$$
$11$ $$T + 12$$
$13$ $$T - 38$$
$17$ $$T + 126$$
$19$ $$T + 20$$
$23$ $$T + 168$$
$29$ $$T - 30$$
$31$ $$T - 88$$
$37$ $$T - 254$$
$41$ $$T - 42$$
$43$ $$T - 52$$
$47$ $$T - 96$$
$53$ $$T - 198$$
$59$ $$T - 660$$
$61$ $$T + 538$$
$67$ $$T + 884$$
$71$ $$T + 792$$
$73$ $$T - 218$$
$79$ $$T - 520$$
$83$ $$T - 492$$
$89$ $$T - 810$$
$97$ $$T - 1154$$