Properties

Label 48.4.a.c
Level $48$
Weight $4$
Character orbit 48.a
Self dual yes
Analytic conductor $2.832$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 48.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(2.83209168028\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 6)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 3q^{3} + 6q^{5} + 16q^{7} + 9q^{9} + O(q^{10}) \) \( q + 3q^{3} + 6q^{5} + 16q^{7} + 9q^{9} - 12q^{11} + 38q^{13} + 18q^{15} - 126q^{17} - 20q^{19} + 48q^{21} - 168q^{23} - 89q^{25} + 27q^{27} + 30q^{29} + 88q^{31} - 36q^{33} + 96q^{35} + 254q^{37} + 114q^{39} + 42q^{41} + 52q^{43} + 54q^{45} + 96q^{47} - 87q^{49} - 378q^{51} + 198q^{53} - 72q^{55} - 60q^{57} + 660q^{59} - 538q^{61} + 144q^{63} + 228q^{65} - 884q^{67} - 504q^{69} - 792q^{71} + 218q^{73} - 267q^{75} - 192q^{77} + 520q^{79} + 81q^{81} + 492q^{83} - 756q^{85} + 90q^{87} + 810q^{89} + 608q^{91} + 264q^{93} - 120q^{95} + 1154q^{97} - 108q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 0 6.00000 0 16.0000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 48.4.a.c 1
3.b odd 2 1 144.4.a.c 1
4.b odd 2 1 6.4.a.a 1
5.b even 2 1 1200.4.a.b 1
5.c odd 4 2 1200.4.f.j 2
7.b odd 2 1 2352.4.a.e 1
8.b even 2 1 192.4.a.c 1
8.d odd 2 1 192.4.a.i 1
12.b even 2 1 18.4.a.a 1
16.e even 4 2 768.4.d.c 2
16.f odd 4 2 768.4.d.n 2
20.d odd 2 1 150.4.a.i 1
20.e even 4 2 150.4.c.d 2
24.f even 2 1 576.4.a.q 1
24.h odd 2 1 576.4.a.r 1
28.d even 2 1 294.4.a.e 1
28.f even 6 2 294.4.e.g 2
28.g odd 6 2 294.4.e.h 2
36.f odd 6 2 162.4.c.f 2
36.h even 6 2 162.4.c.c 2
44.c even 2 1 726.4.a.f 1
52.b odd 2 1 1014.4.a.g 1
52.f even 4 2 1014.4.b.d 2
60.h even 2 1 450.4.a.h 1
60.l odd 4 2 450.4.c.e 2
68.d odd 2 1 1734.4.a.d 1
76.d even 2 1 2166.4.a.i 1
84.h odd 2 1 882.4.a.n 1
84.j odd 6 2 882.4.g.f 2
84.n even 6 2 882.4.g.i 2
132.d odd 2 1 2178.4.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.4.a.a 1 4.b odd 2 1
18.4.a.a 1 12.b even 2 1
48.4.a.c 1 1.a even 1 1 trivial
144.4.a.c 1 3.b odd 2 1
150.4.a.i 1 20.d odd 2 1
150.4.c.d 2 20.e even 4 2
162.4.c.c 2 36.h even 6 2
162.4.c.f 2 36.f odd 6 2
192.4.a.c 1 8.b even 2 1
192.4.a.i 1 8.d odd 2 1
294.4.a.e 1 28.d even 2 1
294.4.e.g 2 28.f even 6 2
294.4.e.h 2 28.g odd 6 2
450.4.a.h 1 60.h even 2 1
450.4.c.e 2 60.l odd 4 2
576.4.a.q 1 24.f even 2 1
576.4.a.r 1 24.h odd 2 1
726.4.a.f 1 44.c even 2 1
768.4.d.c 2 16.e even 4 2
768.4.d.n 2 16.f odd 4 2
882.4.a.n 1 84.h odd 2 1
882.4.g.f 2 84.j odd 6 2
882.4.g.i 2 84.n even 6 2
1014.4.a.g 1 52.b odd 2 1
1014.4.b.d 2 52.f even 4 2
1200.4.a.b 1 5.b even 2 1
1200.4.f.j 2 5.c odd 4 2
1734.4.a.d 1 68.d odd 2 1
2166.4.a.i 1 76.d even 2 1
2178.4.a.e 1 132.d odd 2 1
2352.4.a.e 1 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} - 6 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(48))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( -3 + T \)
$5$ \( -6 + T \)
$7$ \( -16 + T \)
$11$ \( 12 + T \)
$13$ \( -38 + T \)
$17$ \( 126 + T \)
$19$ \( 20 + T \)
$23$ \( 168 + T \)
$29$ \( -30 + T \)
$31$ \( -88 + T \)
$37$ \( -254 + T \)
$41$ \( -42 + T \)
$43$ \( -52 + T \)
$47$ \( -96 + T \)
$53$ \( -198 + T \)
$59$ \( -660 + T \)
$61$ \( 538 + T \)
$67$ \( 884 + T \)
$71$ \( 792 + T \)
$73$ \( -218 + T \)
$79$ \( -520 + T \)
$83$ \( -492 + T \)
$89$ \( -810 + T \)
$97$ \( -1154 + T \)
show more
show less