Newspace parameters
Level: | \( N \) | \(=\) | \( 48 = 2^{4} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 48.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(2.83209168028\) |
Analytic rank: | \(1\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 12) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | −3.00000 | 0 | −18.0000 | 0 | −8.00000 | 0 | 9.00000 | 0 | |||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(-1\) |
\(3\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 48.4.a.a | 1 | |
3.b | odd | 2 | 1 | 144.4.a.g | 1 | ||
4.b | odd | 2 | 1 | 12.4.a.a | ✓ | 1 | |
5.b | even | 2 | 1 | 1200.4.a.be | 1 | ||
5.c | odd | 4 | 2 | 1200.4.f.d | 2 | ||
7.b | odd | 2 | 1 | 2352.4.a.bk | 1 | ||
8.b | even | 2 | 1 | 192.4.a.l | 1 | ||
8.d | odd | 2 | 1 | 192.4.a.f | 1 | ||
12.b | even | 2 | 1 | 36.4.a.a | 1 | ||
16.e | even | 4 | 2 | 768.4.d.j | 2 | ||
16.f | odd | 4 | 2 | 768.4.d.g | 2 | ||
20.d | odd | 2 | 1 | 300.4.a.b | 1 | ||
20.e | even | 4 | 2 | 300.4.d.e | 2 | ||
24.f | even | 2 | 1 | 576.4.a.b | 1 | ||
24.h | odd | 2 | 1 | 576.4.a.a | 1 | ||
28.d | even | 2 | 1 | 588.4.a.c | 1 | ||
28.f | even | 6 | 2 | 588.4.i.e | 2 | ||
28.g | odd | 6 | 2 | 588.4.i.d | 2 | ||
36.f | odd | 6 | 2 | 324.4.e.h | 2 | ||
36.h | even | 6 | 2 | 324.4.e.a | 2 | ||
44.c | even | 2 | 1 | 1452.4.a.d | 1 | ||
52.b | odd | 2 | 1 | 2028.4.a.c | 1 | ||
52.f | even | 4 | 2 | 2028.4.b.c | 2 | ||
60.h | even | 2 | 1 | 900.4.a.g | 1 | ||
60.l | odd | 4 | 2 | 900.4.d.c | 2 | ||
84.h | odd | 2 | 1 | 1764.4.a.b | 1 | ||
84.j | odd | 6 | 2 | 1764.4.k.o | 2 | ||
84.n | even | 6 | 2 | 1764.4.k.b | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
12.4.a.a | ✓ | 1 | 4.b | odd | 2 | 1 | |
36.4.a.a | 1 | 12.b | even | 2 | 1 | ||
48.4.a.a | 1 | 1.a | even | 1 | 1 | trivial | |
144.4.a.g | 1 | 3.b | odd | 2 | 1 | ||
192.4.a.f | 1 | 8.d | odd | 2 | 1 | ||
192.4.a.l | 1 | 8.b | even | 2 | 1 | ||
300.4.a.b | 1 | 20.d | odd | 2 | 1 | ||
300.4.d.e | 2 | 20.e | even | 4 | 2 | ||
324.4.e.a | 2 | 36.h | even | 6 | 2 | ||
324.4.e.h | 2 | 36.f | odd | 6 | 2 | ||
576.4.a.a | 1 | 24.h | odd | 2 | 1 | ||
576.4.a.b | 1 | 24.f | even | 2 | 1 | ||
588.4.a.c | 1 | 28.d | even | 2 | 1 | ||
588.4.i.d | 2 | 28.g | odd | 6 | 2 | ||
588.4.i.e | 2 | 28.f | even | 6 | 2 | ||
768.4.d.g | 2 | 16.f | odd | 4 | 2 | ||
768.4.d.j | 2 | 16.e | even | 4 | 2 | ||
900.4.a.g | 1 | 60.h | even | 2 | 1 | ||
900.4.d.c | 2 | 60.l | odd | 4 | 2 | ||
1200.4.a.be | 1 | 5.b | even | 2 | 1 | ||
1200.4.f.d | 2 | 5.c | odd | 4 | 2 | ||
1452.4.a.d | 1 | 44.c | even | 2 | 1 | ||
1764.4.a.b | 1 | 84.h | odd | 2 | 1 | ||
1764.4.k.b | 2 | 84.n | even | 6 | 2 | ||
1764.4.k.o | 2 | 84.j | odd | 6 | 2 | ||
2028.4.a.c | 1 | 52.b | odd | 2 | 1 | ||
2028.4.b.c | 2 | 52.f | even | 4 | 2 | ||
2352.4.a.bk | 1 | 7.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5} + 18 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(48))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T \)
$3$
\( T + 3 \)
$5$
\( T + 18 \)
$7$
\( T + 8 \)
$11$
\( T + 36 \)
$13$
\( T + 10 \)
$17$
\( T - 18 \)
$19$
\( T - 100 \)
$23$
\( T + 72 \)
$29$
\( T + 234 \)
$31$
\( T - 16 \)
$37$
\( T + 226 \)
$41$
\( T - 90 \)
$43$
\( T + 452 \)
$47$
\( T + 432 \)
$53$
\( T - 414 \)
$59$
\( T - 684 \)
$61$
\( T - 422 \)
$67$
\( T + 332 \)
$71$
\( T - 360 \)
$73$
\( T - 26 \)
$79$
\( T + 512 \)
$83$
\( T - 1188 \)
$89$
\( T + 630 \)
$97$
\( T + 1054 \)
show more
show less