Properties

Label 48.3.i.b.5.6
Level $48$
Weight $3$
Character 48.5
Analytic conductor $1.308$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 48.i (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.30790526893\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 2 x^{18} + 6 x^{16} - 24 x^{14} - 24 x^{12} + 1216 x^{10} - 384 x^{8} - 6144 x^{6} + 24576 x^{4} - 131072 x^{2} + 1048576\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{13} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 5.6
Root \(0.312316 - 1.97546i\) of defining polynomial
Character \(\chi\) \(=\) 48.5
Dual form 48.3.i.b.29.6

$q$-expansion

\(f(q)\) \(=\) \(q+(0.312316 + 1.97546i) q^{2} +(2.75602 + 1.18505i) q^{3} +(-3.80492 + 1.23394i) q^{4} +(0.00985921 - 0.00985921i) q^{5} +(-1.48026 + 5.81454i) q^{6} -6.42277i q^{7} +(-3.62594 - 7.13110i) q^{8} +(6.19134 + 6.53203i) q^{9} +O(q^{10})\) \(q+(0.312316 + 1.97546i) q^{2} +(2.75602 + 1.18505i) q^{3} +(-3.80492 + 1.23394i) q^{4} +(0.00985921 - 0.00985921i) q^{5} +(-1.48026 + 5.81454i) q^{6} -6.42277i q^{7} +(-3.62594 - 7.13110i) q^{8} +(6.19134 + 6.53203i) q^{9} +(0.0225557 + 0.0163973i) q^{10} +(-9.07186 + 9.07186i) q^{11} +(-11.9487 - 1.10823i) q^{12} +(12.6098 - 12.6098i) q^{13} +(12.6879 - 2.00593i) q^{14} +(0.0388558 - 0.0154886i) q^{15} +(12.9548 - 9.39007i) q^{16} -19.0155i q^{17} +(-10.9701 + 14.2708i) q^{18} +(-2.07165 + 2.07165i) q^{19} +(-0.0253478 + 0.0496792i) q^{20} +(7.61127 - 17.7013i) q^{21} +(-20.7544 - 15.0879i) q^{22} -19.5712 q^{23} +(-1.54250 - 23.9504i) q^{24} +24.9998i q^{25} +(28.8485 + 20.9720i) q^{26} +(9.32272 + 25.3394i) q^{27} +(7.92530 + 24.4381i) q^{28} +(11.1742 + 11.1742i) q^{29} +(0.0427325 + 0.0719210i) q^{30} -59.9385 q^{31} +(22.5957 + 22.6591i) q^{32} +(-35.7528 + 14.2517i) q^{33} +(37.5645 - 5.93886i) q^{34} +(-0.0633234 - 0.0633234i) q^{35} +(-31.6176 - 17.2141i) q^{36} +(9.32707 + 9.32707i) q^{37} +(-4.73948 - 3.44546i) q^{38} +(49.6962 - 19.8098i) q^{39} +(-0.106056 - 0.0345581i) q^{40} -47.2639 q^{41} +(37.3454 + 9.50739i) q^{42} +(24.1220 + 24.1220i) q^{43} +(23.3236 - 45.7118i) q^{44} +(0.125442 + 0.00335893i) q^{45} +(-6.11241 - 38.6623i) q^{46} -6.29702i q^{47} +(46.8314 - 10.5272i) q^{48} +7.74808 q^{49} +(-49.3862 + 7.80784i) q^{50} +(22.5343 - 52.4073i) q^{51} +(-32.4196 + 63.5391i) q^{52} +(-20.6409 + 20.6409i) q^{53} +(-47.1455 + 26.3306i) q^{54} +0.178883i q^{55} +(-45.8014 + 23.2886i) q^{56} +(-8.16452 + 3.25452i) q^{57} +(-18.5844 + 25.5642i) q^{58} +(60.3533 - 60.3533i) q^{59} +(-0.128731 + 0.106879i) q^{60} +(48.0230 - 48.0230i) q^{61} +(-18.7198 - 118.406i) q^{62} +(41.9537 - 39.7655i) q^{63} +(-37.7051 + 51.7138i) q^{64} -0.248646i q^{65} +(-39.3199 - 66.1774i) q^{66} +(-23.7768 + 23.7768i) q^{67} +(23.4640 + 72.3526i) q^{68} +(-53.9388 - 23.1928i) q^{69} +(0.105316 - 0.144870i) q^{70} -13.5743 q^{71} +(24.1311 - 67.8358i) q^{72} -31.4516i q^{73} +(-15.5123 + 21.3383i) q^{74} +(-29.6259 + 68.9001i) q^{75} +(5.32617 - 10.4387i) q^{76} +(58.2665 + 58.2665i) q^{77} +(54.6544 + 91.9862i) q^{78} +47.4718 q^{79} +(0.0351454 - 0.220303i) q^{80} +(-4.33472 + 80.8839i) q^{81} +(-14.7613 - 93.3681i) q^{82} +(70.3318 + 70.3318i) q^{83} +(-7.11793 + 76.7438i) q^{84} +(-0.187478 - 0.187478i) q^{85} +(-40.1185 + 55.1859i) q^{86} +(17.5545 + 44.0385i) q^{87} +(97.5864 + 31.7983i) q^{88} +95.1729 q^{89} +(0.0325422 + 0.248856i) q^{90} +(-80.9900 - 80.9900i) q^{91} +(74.4669 - 24.1497i) q^{92} +(-165.192 - 71.0298i) q^{93} +(12.4395 - 1.96666i) q^{94} +0.0408497i q^{95} +(35.4224 + 89.2259i) q^{96} +61.6218 q^{97} +(2.41985 + 15.3061i) q^{98} +(-115.425 - 3.09069i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 6q^{3} + 4q^{4} - 12q^{6} + O(q^{10}) \) \( 20q - 6q^{3} + 4q^{4} - 12q^{6} + 32q^{10} - 88q^{12} + 92q^{13} - 116q^{15} - 16q^{16} + 4q^{18} - 52q^{19} + 48q^{21} + 24q^{22} - 8q^{24} + 18q^{27} + 56q^{28} + 28q^{30} - 80q^{31} + 60q^{33} + 104q^{34} + 92q^{36} - 116q^{37} + 88q^{40} + 304q^{42} + 172q^{43} + 60q^{45} - 424q^{46} + 176q^{48} - 364q^{49} + 128q^{51} - 208q^{52} + 40q^{54} - 512q^{58} - 240q^{60} - 244q^{61} + 296q^{63} + 88q^{64} - 492q^{66} + 356q^{67} - 20q^{69} + 200q^{70} - 472q^{72} - 146q^{75} + 328q^{76} + 84q^{78} + 384q^{79} - 188q^{81} + 560q^{82} + 816q^{84} + 48q^{85} + 416q^{88} + 616q^{90} + 136q^{91} - 132q^{93} + 32q^{94} - 24q^{96} + 472q^{97} - 452q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/48\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(31\) \(37\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.312316 + 1.97546i 0.156158 + 0.987732i
\(3\) 2.75602 + 1.18505i 0.918675 + 0.395015i
\(4\) −3.80492 + 1.23394i −0.951229 + 0.308485i
\(5\) 0.00985921 0.00985921i 0.00197184 0.00197184i −0.706120 0.708092i \(-0.749556\pi\)
0.708092 + 0.706120i \(0.249556\pi\)
\(6\) −1.48026 + 5.81454i −0.246711 + 0.969089i
\(7\) 6.42277i 0.917538i −0.888556 0.458769i \(-0.848291\pi\)
0.888556 0.458769i \(-0.151709\pi\)
\(8\) −3.62594 7.13110i −0.453242 0.891387i
\(9\) 6.19134 + 6.53203i 0.687926 + 0.725781i
\(10\) 0.0225557 + 0.0163973i 0.00225557 + 0.00163973i
\(11\) −9.07186 + 9.07186i −0.824715 + 0.824715i −0.986780 0.162065i \(-0.948185\pi\)
0.162065 + 0.986780i \(0.448185\pi\)
\(12\) −11.9487 1.10823i −0.995726 0.0923529i
\(13\) 12.6098 12.6098i 0.969987 0.969987i −0.0295753 0.999563i \(-0.509415\pi\)
0.999563 + 0.0295753i \(0.00941548\pi\)
\(14\) 12.6879 2.00593i 0.906282 0.143281i
\(15\) 0.0388558 0.0154886i 0.00259039 0.00103257i
\(16\) 12.9548 9.39007i 0.809674 0.586879i
\(17\) 19.0155i 1.11856i −0.828978 0.559281i \(-0.811077\pi\)
0.828978 0.559281i \(-0.188923\pi\)
\(18\) −10.9701 + 14.2708i −0.609452 + 0.792823i
\(19\) −2.07165 + 2.07165i −0.109034 + 0.109034i −0.759519 0.650485i \(-0.774566\pi\)
0.650485 + 0.759519i \(0.274566\pi\)
\(20\) −0.0253478 + 0.0496792i −0.00126739 + 0.00248396i
\(21\) 7.61127 17.7013i 0.362441 0.842919i
\(22\) −20.7544 15.0879i −0.943383 0.685812i
\(23\) −19.5712 −0.850923 −0.425461 0.904977i \(-0.639888\pi\)
−0.425461 + 0.904977i \(0.639888\pi\)
\(24\) −1.54250 23.9504i −0.0642708 0.997932i
\(25\) 24.9998i 0.999992i
\(26\) 28.8485 + 20.9720i 1.10956 + 0.806616i
\(27\) 9.32272 + 25.3394i 0.345286 + 0.938497i
\(28\) 7.92530 + 24.4381i 0.283046 + 0.872789i
\(29\) 11.1742 + 11.1742i 0.385319 + 0.385319i 0.873014 0.487695i \(-0.162162\pi\)
−0.487695 + 0.873014i \(0.662162\pi\)
\(30\) 0.0427325 + 0.0719210i 0.00142442 + 0.00239737i
\(31\) −59.9385 −1.93350 −0.966750 0.255725i \(-0.917686\pi\)
−0.966750 + 0.255725i \(0.917686\pi\)
\(32\) 22.5957 + 22.6591i 0.706117 + 0.708096i
\(33\) −35.7528 + 14.2517i −1.08342 + 0.431870i
\(34\) 37.5645 5.93886i 1.10484 0.174672i
\(35\) −0.0633234 0.0633234i −0.00180924 0.00180924i
\(36\) −31.6176 17.2141i −0.878268 0.478169i
\(37\) 9.32707 + 9.32707i 0.252083 + 0.252083i 0.821824 0.569741i \(-0.192957\pi\)
−0.569741 + 0.821824i \(0.692957\pi\)
\(38\) −4.73948 3.44546i −0.124723 0.0906700i
\(39\) 49.6962 19.8098i 1.27426 0.507943i
\(40\) −0.106056 0.0345581i −0.00265140 0.000863953i
\(41\) −47.2639 −1.15278 −0.576389 0.817176i \(-0.695539\pi\)
−0.576389 + 0.817176i \(0.695539\pi\)
\(42\) 37.3454 + 9.50739i 0.889176 + 0.226366i
\(43\) 24.1220 + 24.1220i 0.560978 + 0.560978i 0.929585 0.368607i \(-0.120165\pi\)
−0.368607 + 0.929585i \(0.620165\pi\)
\(44\) 23.3236 45.7118i 0.530081 1.03890i
\(45\) 0.125442 + 0.00335893i 0.00278761 + 7.46430e-5i
\(46\) −6.11241 38.6623i −0.132878 0.840484i
\(47\) 6.29702i 0.133979i −0.997754 0.0669896i \(-0.978661\pi\)
0.997754 0.0669896i \(-0.0213394\pi\)
\(48\) 46.8314 10.5272i 0.975654 0.219317i
\(49\) 7.74808 0.158124
\(50\) −49.3862 + 7.80784i −0.987724 + 0.156157i
\(51\) 22.5343 52.4073i 0.441849 1.02759i
\(52\) −32.4196 + 63.5391i −0.623454 + 1.22191i
\(53\) −20.6409 + 20.6409i −0.389450 + 0.389450i −0.874491 0.485041i \(-0.838805\pi\)
0.485041 + 0.874491i \(0.338805\pi\)
\(54\) −47.1455 + 26.3306i −0.873065 + 0.487604i
\(55\) 0.178883i 0.00325242i
\(56\) −45.8014 + 23.2886i −0.817882 + 0.415867i
\(57\) −8.16452 + 3.25452i −0.143237 + 0.0570968i
\(58\) −18.5844 + 25.5642i −0.320421 + 0.440762i
\(59\) 60.3533 60.3533i 1.02294 1.02294i 0.0232062 0.999731i \(-0.492613\pi\)
0.999731 0.0232062i \(-0.00738742\pi\)
\(60\) −0.128731 + 0.106879i −0.00214552 + 0.00178131i
\(61\) 48.0230 48.0230i 0.787262 0.787262i −0.193782 0.981045i \(-0.562076\pi\)
0.981045 + 0.193782i \(0.0620755\pi\)
\(62\) −18.7198 118.406i −0.301931 1.90978i
\(63\) 41.9537 39.7655i 0.665931 0.631198i
\(64\) −37.7051 + 51.7138i −0.589143 + 0.808029i
\(65\) 0.248646i 0.00382532i
\(66\) −39.3199 66.1774i −0.595756 1.00269i
\(67\) −23.7768 + 23.7768i −0.354878 + 0.354878i −0.861921 0.507043i \(-0.830738\pi\)
0.507043 + 0.861921i \(0.330738\pi\)
\(68\) 23.4640 + 72.3526i 0.345059 + 1.06401i
\(69\) −53.9388 23.1928i −0.781721 0.336127i
\(70\) 0.105316 0.144870i 0.00150452 0.00206957i
\(71\) −13.5743 −0.191188 −0.0955938 0.995420i \(-0.530475\pi\)
−0.0955938 + 0.995420i \(0.530475\pi\)
\(72\) 24.1311 67.8358i 0.335154 0.942163i
\(73\) 31.4516i 0.430844i −0.976521 0.215422i \(-0.930887\pi\)
0.976521 0.215422i \(-0.0691127\pi\)
\(74\) −15.5123 + 21.3383i −0.209626 + 0.288355i
\(75\) −29.6259 + 68.9001i −0.395012 + 0.918668i
\(76\) 5.32617 10.4387i 0.0700812 0.137352i
\(77\) 58.2665 + 58.2665i 0.756707 + 0.756707i
\(78\) 54.6544 + 91.9862i 0.700698 + 1.17931i
\(79\) 47.4718 0.600909 0.300455 0.953796i \(-0.402862\pi\)
0.300455 + 0.953796i \(0.402862\pi\)
\(80\) 0.0351454 0.220303i 0.000439317 0.00275378i
\(81\) −4.33472 + 80.8839i −0.0535151 + 0.998567i
\(82\) −14.7613 93.3681i −0.180016 1.13864i
\(83\) 70.3318 + 70.3318i 0.847372 + 0.847372i 0.989804 0.142433i \(-0.0454925\pi\)
−0.142433 + 0.989804i \(0.545493\pi\)
\(84\) −7.11793 + 76.7438i −0.0847373 + 0.913617i
\(85\) −0.187478 0.187478i −0.00220563 0.00220563i
\(86\) −40.1185 + 55.1859i −0.466494 + 0.641697i
\(87\) 17.5545 + 44.0385i 0.201776 + 0.506189i
\(88\) 97.5864 + 31.7983i 1.10894 + 0.361345i
\(89\) 95.1729 1.06936 0.534679 0.845055i \(-0.320432\pi\)
0.534679 + 0.845055i \(0.320432\pi\)
\(90\) 0.0325422 + 0.248856i 0.000361580 + 0.00276507i
\(91\) −80.9900 80.9900i −0.890000 0.890000i
\(92\) 74.4669 24.1497i 0.809423 0.262497i
\(93\) −165.192 71.0298i −1.77626 0.763761i
\(94\) 12.4395 1.96666i 0.132335 0.0209219i
\(95\) 0.0408497i 0.000429997i
\(96\) 35.4224 + 89.2259i 0.368983 + 0.929436i
\(97\) 61.6218 0.635276 0.317638 0.948212i \(-0.397110\pi\)
0.317638 + 0.948212i \(0.397110\pi\)
\(98\) 2.41985 + 15.3061i 0.0246924 + 0.156184i
\(99\) −115.425 3.09069i −1.16591 0.0312191i
\(100\) −30.8482 95.1222i −0.308482 0.951222i
\(101\) −48.1867 + 48.1867i −0.477096 + 0.477096i −0.904202 0.427106i \(-0.859533\pi\)
0.427106 + 0.904202i \(0.359533\pi\)
\(102\) 110.567 + 28.1480i 1.08399 + 0.275961i
\(103\) 4.73669i 0.0459873i 0.999736 + 0.0229936i \(0.00731975\pi\)
−0.999736 + 0.0229936i \(0.992680\pi\)
\(104\) −135.644 44.1995i −1.30427 0.424995i
\(105\) −0.0994797 0.249562i −0.000947426 0.00237678i
\(106\) −47.2217 34.3288i −0.445488 0.323857i
\(107\) 40.9462 40.9462i 0.382674 0.382674i −0.489390 0.872065i \(-0.662781\pi\)
0.872065 + 0.489390i \(0.162781\pi\)
\(108\) −66.7395 84.9108i −0.617958 0.786211i
\(109\) −120.437 + 120.437i −1.10493 + 1.10493i −0.111123 + 0.993807i \(0.535445\pi\)
−0.993807 + 0.111123i \(0.964555\pi\)
\(110\) −0.353377 + 0.0558680i −0.00321252 + 0.000507891i
\(111\) 14.6526 + 36.7586i 0.132006 + 0.331159i
\(112\) −60.3102 83.2056i −0.538484 0.742907i
\(113\) 205.193i 1.81587i −0.419110 0.907936i \(-0.637658\pi\)
0.419110 0.907936i \(-0.362342\pi\)
\(114\) −8.97910 15.1123i −0.0787640 0.132564i
\(115\) −0.192957 + 0.192957i −0.00167789 + 0.00167789i
\(116\) −56.3054 28.7287i −0.485391 0.247662i
\(117\) 160.439 + 4.29604i 1.37128 + 0.0367183i
\(118\) 138.075 + 100.376i 1.17013 + 0.850648i
\(119\) −122.132 −1.02632
\(120\) −0.251340 0.220924i −0.00209450 0.00184103i
\(121\) 43.5974i 0.360309i
\(122\) 109.866 + 79.8694i 0.900542 + 0.654667i
\(123\) −130.260 56.0098i −1.05903 0.455365i
\(124\) 228.061 73.9604i 1.83920 0.596455i
\(125\) 0.492959 + 0.492959i 0.00394367 + 0.00394367i
\(126\) 91.6581 + 70.4586i 0.727445 + 0.559195i
\(127\) 54.1458 0.426345 0.213173 0.977015i \(-0.431620\pi\)
0.213173 + 0.977015i \(0.431620\pi\)
\(128\) −113.935 58.3341i −0.890115 0.455735i
\(129\) 37.8952 + 95.0666i 0.293761 + 0.736951i
\(130\) 0.491191 0.0776562i 0.00377840 0.000597355i
\(131\) −31.2584 31.2584i −0.238614 0.238614i 0.577662 0.816276i \(-0.303965\pi\)
−0.816276 + 0.577662i \(0.803965\pi\)
\(132\) 118.451 98.3434i 0.897355 0.745026i
\(133\) 13.3057 + 13.3057i 0.100043 + 0.100043i
\(134\) −54.3961 39.5443i −0.405941 0.295107i
\(135\) 0.341742 + 0.157912i 0.00253142 + 0.00116972i
\(136\) −135.602 + 68.9492i −0.997072 + 0.506979i
\(137\) −42.9176 −0.313267 −0.156633 0.987657i \(-0.550064\pi\)
−0.156633 + 0.987657i \(0.550064\pi\)
\(138\) 28.9706 113.798i 0.209932 0.824620i
\(139\) −47.0945 47.0945i −0.338809 0.338809i 0.517110 0.855919i \(-0.327008\pi\)
−0.855919 + 0.517110i \(0.827008\pi\)
\(140\) 0.319078 + 0.162803i 0.00227913 + 0.00116288i
\(141\) 7.46225 17.3547i 0.0529238 0.123083i
\(142\) −4.23948 26.8156i −0.0298555 0.188842i
\(143\) 228.789i 1.59993i
\(144\) 141.544 + 26.4840i 0.982942 + 0.183916i
\(145\) 0.220339 0.00151958
\(146\) 62.1316 9.82285i 0.425559 0.0672798i
\(147\) 21.3539 + 9.18183i 0.145265 + 0.0624614i
\(148\) −46.9978 23.9797i −0.317552 0.162025i
\(149\) 131.532 131.532i 0.882766 0.882766i −0.111049 0.993815i \(-0.535421\pi\)
0.993815 + 0.111049i \(0.0354210\pi\)
\(150\) −145.362 37.0063i −0.969082 0.246709i
\(151\) 145.908i 0.966281i 0.875543 + 0.483140i \(0.160504\pi\)
−0.875543 + 0.483140i \(0.839496\pi\)
\(152\) 22.2848 + 7.26147i 0.146611 + 0.0477728i
\(153\) 124.210 117.732i 0.811830 0.769488i
\(154\) −96.9057 + 133.301i −0.629258 + 0.865590i
\(155\) −0.590946 + 0.590946i −0.00381256 + 0.00381256i
\(156\) −164.646 + 136.697i −1.05542 + 0.876261i
\(157\) −55.2586 + 55.2586i −0.351966 + 0.351966i −0.860840 0.508875i \(-0.830062\pi\)
0.508875 + 0.860840i \(0.330062\pi\)
\(158\) 14.8262 + 93.7789i 0.0938368 + 0.593537i
\(159\) −81.3470 + 32.4263i −0.511617 + 0.203939i
\(160\) 0.446177 0.000624319i 0.00278860 3.90199e-6i
\(161\) 125.701i 0.780754i
\(162\) −161.137 + 16.6983i −0.994674 + 0.103076i
\(163\) 70.6156 70.6156i 0.433225 0.433225i −0.456499 0.889724i \(-0.650897\pi\)
0.889724 + 0.456499i \(0.150897\pi\)
\(164\) 179.835 58.3207i 1.09656 0.355614i
\(165\) −0.211984 + 0.493006i −0.00128475 + 0.00298791i
\(166\) −116.972 + 160.904i −0.704652 + 0.969300i
\(167\) −86.2013 −0.516176 −0.258088 0.966121i \(-0.583092\pi\)
−0.258088 + 0.966121i \(0.583092\pi\)
\(168\) −153.828 + 9.90711i −0.915641 + 0.0589709i
\(169\) 149.016i 0.881751i
\(170\) 0.311804 0.428909i 0.00183414 0.00252300i
\(171\) −26.3584 0.705790i −0.154142 0.00412743i
\(172\) −121.547 62.0173i −0.706671 0.360565i
\(173\) 58.2425 + 58.2425i 0.336662 + 0.336662i 0.855109 0.518448i \(-0.173490\pi\)
−0.518448 + 0.855109i \(0.673490\pi\)
\(174\) −81.5139 + 48.4322i −0.468470 + 0.278346i
\(175\) 160.568 0.917531
\(176\) −32.3387 + 202.710i −0.183743 + 1.15176i
\(177\) 237.856 94.8137i 1.34382 0.535671i
\(178\) 29.7240 + 188.011i 0.166989 + 1.05624i
\(179\) −18.9272 18.9272i −0.105738 0.105738i 0.652258 0.757997i \(-0.273822\pi\)
−0.757997 + 0.652258i \(0.773822\pi\)
\(180\) −0.481442 + 0.142008i −0.00267468 + 0.000788931i
\(181\) 24.5109 + 24.5109i 0.135420 + 0.135420i 0.771567 0.636148i \(-0.219473\pi\)
−0.636148 + 0.771567i \(0.719473\pi\)
\(182\) 134.698 185.287i 0.740101 1.01806i
\(183\) 189.262 75.4431i 1.03422 0.412257i
\(184\) 70.9641 + 139.564i 0.385674 + 0.758502i
\(185\) 0.183915 0.000994136
\(186\) 88.7247 348.514i 0.477015 1.87373i
\(187\) 172.506 + 172.506i 0.922494 + 0.922494i
\(188\) 7.77013 + 23.9596i 0.0413305 + 0.127445i
\(189\) 162.749 59.8777i 0.861107 0.316813i
\(190\) −0.0806971 + 0.0127580i −0.000424722 + 6.71475e-5i
\(191\) 156.422i 0.818962i −0.912319 0.409481i \(-0.865710\pi\)
0.912319 0.409481i \(-0.134290\pi\)
\(192\) −165.200 + 97.8423i −0.860414 + 0.509595i
\(193\) −217.972 −1.12939 −0.564695 0.825299i \(-0.691006\pi\)
−0.564695 + 0.825299i \(0.691006\pi\)
\(194\) 19.2455 + 121.732i 0.0992034 + 0.627482i
\(195\) 0.294657 0.685275i 0.00151106 0.00351423i
\(196\) −29.4808 + 9.56066i −0.150412 + 0.0487789i
\(197\) −245.945 + 245.945i −1.24845 + 1.24845i −0.292050 + 0.956403i \(0.594337\pi\)
−0.956403 + 0.292050i \(0.905663\pi\)
\(198\) −29.9434 228.982i −0.151229 1.15648i
\(199\) 233.190i 1.17181i −0.810379 0.585905i \(-0.800739\pi\)
0.810379 0.585905i \(-0.199261\pi\)
\(200\) 178.276 90.6478i 0.891380 0.453239i
\(201\) −93.7060 + 37.3528i −0.466199 + 0.185835i
\(202\) −110.240 80.1415i −0.545745 0.396740i
\(203\) 71.7695 71.7695i 0.353545 0.353545i
\(204\) −21.0737 + 227.211i −0.103302 + 1.11378i
\(205\) −0.465985 + 0.465985i −0.00227310 + 0.00227310i
\(206\) −9.35716 + 1.47934i −0.0454231 + 0.00718128i
\(207\) −121.172 127.840i −0.585372 0.617583i
\(208\) 44.9506 281.765i 0.216109 1.35464i
\(209\) 37.5875i 0.179844i
\(210\) 0.461932 0.274461i 0.00219967 0.00130696i
\(211\) −8.49504 + 8.49504i −0.0402609 + 0.0402609i −0.726951 0.686690i \(-0.759063\pi\)
0.686690 + 0.726951i \(0.259063\pi\)
\(212\) 53.0672 104.006i 0.250317 0.490596i
\(213\) −37.4111 16.0862i −0.175639 0.0755220i
\(214\) 93.6758 + 68.0995i 0.437737 + 0.318222i
\(215\) 0.475649 0.00221232
\(216\) 146.894 158.360i 0.680067 0.733150i
\(217\) 384.971i 1.77406i
\(218\) −275.534 200.305i −1.26392 0.918831i
\(219\) 37.2716 86.6814i 0.170190 0.395806i
\(220\) −0.220730 0.680635i −0.00100332 0.00309379i
\(221\) −239.783 239.783i −1.08499 1.08499i
\(222\) −68.0391 + 40.4260i −0.306482 + 0.182099i
\(223\) −10.9290 −0.0490090 −0.0245045 0.999700i \(-0.507801\pi\)
−0.0245045 + 0.999700i \(0.507801\pi\)
\(224\) 145.534 145.127i 0.649705 0.647889i
\(225\) −163.299 + 154.782i −0.725775 + 0.687921i
\(226\) 405.352 64.0852i 1.79359 0.283563i
\(227\) 99.9027 + 99.9027i 0.440100 + 0.440100i 0.892045 0.451946i \(-0.149270\pi\)
−0.451946 + 0.892045i \(0.649270\pi\)
\(228\) 27.0494 22.4577i 0.118638 0.0984986i
\(229\) −231.857 231.857i −1.01248 1.01248i −0.999921 0.0125555i \(-0.996003\pi\)
−0.0125555 0.999921i \(-0.503997\pi\)
\(230\) −0.441443 0.320916i −0.00191932 0.00139529i
\(231\) 91.5354 + 229.632i 0.396257 + 0.994079i
\(232\) 39.1675 120.202i 0.168826 0.518111i
\(233\) −316.641 −1.35897 −0.679486 0.733688i \(-0.737797\pi\)
−0.679486 + 0.733688i \(0.737797\pi\)
\(234\) 41.6212 + 318.284i 0.177868 + 1.36019i
\(235\) −0.0620836 0.0620836i −0.000264186 0.000264186i
\(236\) −155.167 + 304.111i −0.657487 + 1.28861i
\(237\) 130.833 + 56.2562i 0.552040 + 0.237368i
\(238\) −38.1439 241.268i −0.160269 1.01373i
\(239\) 382.691i 1.60122i −0.599187 0.800609i \(-0.704509\pi\)
0.599187 0.800609i \(-0.295491\pi\)
\(240\) 0.357930 0.565511i 0.00149138 0.00235629i
\(241\) −91.3157 −0.378903 −0.189452 0.981890i \(-0.560671\pi\)
−0.189452 + 0.981890i \(0.560671\pi\)
\(242\) 86.1252 13.6162i 0.355889 0.0562652i
\(243\) −107.798 + 217.781i −0.443612 + 0.896219i
\(244\) −123.466 + 241.981i −0.506009 + 0.991725i
\(245\) 0.0763900 0.0763900i 0.000311796 0.000311796i
\(246\) 69.9630 274.818i 0.284402 1.11714i
\(247\) 52.2463i 0.211524i
\(248\) 217.333 + 427.427i 0.876344 + 1.72350i
\(249\) 110.490 + 277.183i 0.443734 + 1.11318i
\(250\) −0.819863 + 1.12778i −0.00327945 + 0.00451113i
\(251\) −128.768 + 128.768i −0.513021 + 0.513021i −0.915451 0.402430i \(-0.868166\pi\)
0.402430 + 0.915451i \(0.368166\pi\)
\(252\) −110.562 + 203.073i −0.438738 + 0.805844i
\(253\) 177.547 177.547i 0.701769 0.701769i
\(254\) 16.9106 + 106.963i 0.0665772 + 0.421115i
\(255\) −0.294524 0.738865i −0.00115500 0.00289751i
\(256\) 79.6532 243.293i 0.311145 0.950362i
\(257\) 123.915i 0.482159i 0.970505 + 0.241079i \(0.0775014\pi\)
−0.970505 + 0.241079i \(0.922499\pi\)
\(258\) −175.965 + 104.551i −0.682037 + 0.405238i
\(259\) 59.9056 59.9056i 0.231296 0.231296i
\(260\) 0.306814 + 0.946078i 0.00118005 + 0.00363876i
\(261\) −3.80695 + 142.174i −0.0145860 + 0.544728i
\(262\) 51.9874 71.5124i 0.198425 0.272948i
\(263\) 194.379 0.739085 0.369542 0.929214i \(-0.379514\pi\)
0.369542 + 0.929214i \(0.379514\pi\)
\(264\) 231.268 + 203.281i 0.876015 + 0.770005i
\(265\) 0.407005i 0.00153587i
\(266\) −22.1294 + 30.4406i −0.0831932 + 0.114438i
\(267\) 262.299 + 112.784i 0.982393 + 0.422413i
\(268\) 61.1296 119.808i 0.228096 0.447044i
\(269\) 296.636 + 296.636i 1.10274 + 1.10274i 0.994079 + 0.108658i \(0.0346555\pi\)
0.108658 + 0.994079i \(0.465345\pi\)
\(270\) −0.205218 + 0.724417i −0.000760068 + 0.00268303i
\(271\) −278.227 −1.02667 −0.513334 0.858189i \(-0.671590\pi\)
−0.513334 + 0.858189i \(0.671590\pi\)
\(272\) −178.557 246.342i −0.656461 0.905671i
\(273\) −127.234 319.187i −0.466057 1.16918i
\(274\) −13.4038 84.7821i −0.0489191 0.309424i
\(275\) −226.795 226.795i −0.824709 0.824709i
\(276\) 233.851 + 21.6895i 0.847286 + 0.0785852i
\(277\) −60.1513 60.1513i −0.217153 0.217153i 0.590145 0.807297i \(-0.299071\pi\)
−0.807297 + 0.590145i \(0.799071\pi\)
\(278\) 78.3251 107.742i 0.281745 0.387561i
\(279\) −371.099 391.520i −1.33010 1.40330i
\(280\) −0.221959 + 0.681172i −0.000792710 + 0.00243276i
\(281\) 313.645 1.11617 0.558087 0.829782i \(-0.311535\pi\)
0.558087 + 0.829782i \(0.311535\pi\)
\(282\) 36.6142 + 9.32125i 0.129838 + 0.0330541i
\(283\) 286.980 + 286.980i 1.01406 + 1.01406i 0.999900 + 0.0141627i \(0.00450829\pi\)
0.0141627 + 0.999900i \(0.495492\pi\)
\(284\) 51.6491 16.7499i 0.181863 0.0589784i
\(285\) −0.0484087 + 0.112583i −0.000169855 + 0.000395027i
\(286\) −451.965 + 71.4546i −1.58030 + 0.249841i
\(287\) 303.565i 1.05772i
\(288\) −8.11177 + 287.886i −0.0281659 + 0.999603i
\(289\) −72.5910 −0.251180
\(290\) 0.0688153 + 0.435271i 0.000237294 + 0.00150093i
\(291\) 169.831 + 73.0246i 0.583612 + 0.250944i
\(292\) 38.8094 + 119.671i 0.132909 + 0.409832i
\(293\) 176.501 176.501i 0.602394 0.602394i −0.338553 0.940947i \(-0.609938\pi\)
0.940947 + 0.338553i \(0.109938\pi\)
\(294\) −11.4692 + 45.0515i −0.0390109 + 0.153236i
\(295\) 1.19007i 0.00403414i
\(296\) 32.6929 100.332i 0.110449 0.338958i
\(297\) −314.450 145.301i −1.05876 0.489230i
\(298\) 300.917 + 218.757i 1.00979 + 0.734085i
\(299\) −246.790 + 246.790i −0.825384 + 0.825384i
\(300\) 27.7057 298.716i 0.0923522 0.995719i
\(301\) 154.930 154.930i 0.514718 0.514718i
\(302\) −288.237 + 45.5695i −0.954427 + 0.150893i
\(303\) −189.907 + 75.7002i −0.626756 + 0.249836i
\(304\) −7.38486 + 46.2907i −0.0242923 + 0.152272i
\(305\) 0.946938i 0.00310471i
\(306\) 271.367 + 208.603i 0.886822 + 0.681709i
\(307\) 63.9904 63.9904i 0.208438 0.208438i −0.595165 0.803603i \(-0.702913\pi\)
0.803603 + 0.595165i \(0.202913\pi\)
\(308\) −293.596 149.802i −0.953235 0.486370i
\(309\) −5.61319 + 13.0544i −0.0181657 + 0.0422473i
\(310\) −1.35196 0.982831i −0.00436115 0.00317042i
\(311\) 532.288 1.71154 0.855769 0.517359i \(-0.173085\pi\)
0.855769 + 0.517359i \(0.173085\pi\)
\(312\) −321.461 282.560i −1.03032 0.905640i
\(313\) 185.676i 0.593215i −0.954999 0.296607i \(-0.904145\pi\)
0.954999 0.296607i \(-0.0958553\pi\)
\(314\) −126.420 91.9032i −0.402610 0.292685i
\(315\) 0.0215736 0.805687i 6.84878e−5 0.00255774i
\(316\) −180.626 + 58.5773i −0.571602 + 0.185371i
\(317\) −168.127 168.127i −0.530370 0.530370i 0.390312 0.920683i \(-0.372367\pi\)
−0.920683 + 0.390312i \(0.872367\pi\)
\(318\) −89.4631 150.571i −0.281330 0.473493i
\(319\) −202.742 −0.635556
\(320\) 0.138115 + 0.881601i 0.000431609 + 0.00275500i
\(321\) 161.372 64.3256i 0.502715 0.200391i
\(322\) −248.319 + 39.2586i −0.771176 + 0.121921i
\(323\) 39.3936 + 39.3936i 0.121962 + 0.121962i
\(324\) −83.3125 313.105i −0.257137 0.966375i
\(325\) 315.243 + 315.243i 0.969980 + 0.969980i
\(326\) 161.553 + 117.444i 0.495562 + 0.360258i
\(327\) −474.652 + 189.204i −1.45153 + 0.578607i
\(328\) 171.376 + 337.043i 0.522488 + 1.02757i
\(329\) −40.4443 −0.122931
\(330\) −1.04012 0.264794i −0.00315188 0.000802406i
\(331\) −241.678 241.678i −0.730144 0.730144i 0.240504 0.970648i \(-0.422687\pi\)
−0.970648 + 0.240504i \(0.922687\pi\)
\(332\) −354.392 180.822i −1.06745 0.544644i
\(333\) −3.17764 + 118.672i −0.00954245 + 0.356371i
\(334\) −26.9221 170.288i −0.0806050 0.509843i
\(335\) 0.468841i 0.00139953i
\(336\) −67.6140 300.787i −0.201232 0.895199i
\(337\) 396.856 1.17762 0.588808 0.808273i \(-0.299598\pi\)
0.588808 + 0.808273i \(0.299598\pi\)
\(338\) 294.375 46.5401i 0.870933 0.137692i
\(339\) 243.163 565.518i 0.717296 1.66819i
\(340\) 0.944676 + 0.482003i 0.00277846 + 0.00141766i
\(341\) 543.754 543.754i 1.59459 1.59459i
\(342\) −6.83788 52.2904i −0.0199938 0.152896i
\(343\) 364.480i 1.06262i
\(344\) 84.5516 259.482i 0.245790 0.754307i
\(345\) −0.760456 + 0.303131i −0.00220422 + 0.000878641i
\(346\) −96.8659 + 133.246i −0.279959 + 0.385104i
\(347\) −38.5699 + 38.5699i −0.111153 + 0.111153i −0.760496 0.649343i \(-0.775044\pi\)
0.649343 + 0.760496i \(0.275044\pi\)
\(348\) −121.134 145.902i −0.348087 0.419257i
\(349\) 10.4065 10.4065i 0.0298180 0.0298180i −0.692041 0.721859i \(-0.743288\pi\)
0.721859 + 0.692041i \(0.243288\pi\)
\(350\) 50.1479 + 317.196i 0.143280 + 0.906275i
\(351\) 437.084 + 201.968i 1.24525 + 0.575408i
\(352\) −410.545 0.574461i −1.16632 0.00163199i
\(353\) 209.294i 0.592900i 0.955048 + 0.296450i \(0.0958028\pi\)
−0.955048 + 0.296450i \(0.904197\pi\)
\(354\) 261.587 + 440.265i 0.738948 + 1.24369i
\(355\) −0.133832 + 0.133832i −0.000376992 + 0.000376992i
\(356\) −362.125 + 117.438i −1.01721 + 0.329881i
\(357\) −336.600 144.732i −0.942857 0.405413i
\(358\) 31.4787 43.3012i 0.0879293 0.120953i
\(359\) −42.6682 −0.118853 −0.0594264 0.998233i \(-0.518927\pi\)
−0.0594264 + 0.998233i \(0.518927\pi\)
\(360\) −0.430893 0.906721i −0.00119693 0.00251867i
\(361\) 352.417i 0.976223i
\(362\) −40.7653 + 56.0756i −0.112611 + 0.154905i
\(363\) 51.6649 120.156i 0.142328 0.331007i
\(364\) 408.097 + 208.224i 1.12115 + 0.572043i
\(365\) −0.310088 0.310088i −0.000849557 0.000849557i
\(366\) 208.145 + 350.318i 0.568701 + 0.957153i
\(367\) −16.2444 −0.0442627 −0.0221313 0.999755i \(-0.507045\pi\)
−0.0221313 + 0.999755i \(0.507045\pi\)
\(368\) −253.541 + 183.775i −0.688970 + 0.499389i
\(369\) −292.627 308.729i −0.793026 0.836664i
\(370\) 0.0574397 + 0.363318i 0.000155242 + 0.000981940i
\(371\) 132.571 + 132.571i 0.357335 + 0.357335i
\(372\) 716.188 + 66.4259i 1.92524 + 0.178564i
\(373\) 351.379 + 351.379i 0.942035 + 0.942035i 0.998410 0.0563743i \(-0.0179540\pi\)
−0.0563743 + 0.998410i \(0.517954\pi\)
\(374\) −286.904 + 394.657i −0.767122 + 1.05523i
\(375\) 0.774428 + 1.94278i 0.00206514 + 0.00518076i
\(376\) −44.9047 + 22.8326i −0.119427 + 0.0607250i
\(377\) 281.811 0.747509
\(378\) 169.115 + 302.805i 0.447395 + 0.801070i
\(379\) −170.505 170.505i −0.449880 0.449880i 0.445435 0.895315i \(-0.353049\pi\)
−0.895315 + 0.445435i \(0.853049\pi\)
\(380\) −0.0504060 0.155430i −0.000132647 0.000409025i
\(381\) 149.227 + 64.1653i 0.391673 + 0.168413i
\(382\) 309.005 48.8530i 0.808915 0.127887i
\(383\) 256.234i 0.669017i 0.942393 + 0.334509i \(0.108570\pi\)
−0.942393 + 0.334509i \(0.891430\pi\)
\(384\) −244.878 295.788i −0.637704 0.770281i
\(385\) 1.14892 0.00298422
\(386\) −68.0763 430.597i −0.176363 1.11554i
\(387\) −8.21813 + 306.913i −0.0212355 + 0.793058i
\(388\) −234.466 + 76.0375i −0.604293 + 0.195973i
\(389\) −376.214 + 376.214i −0.967130 + 0.967130i −0.999477 0.0323468i \(-0.989702\pi\)
0.0323468 + 0.999477i \(0.489702\pi\)
\(390\) 1.44576 + 0.368062i 0.00370708 + 0.000943748i
\(391\) 372.158i 0.951810i
\(392\) −28.0941 55.2523i −0.0716685 0.140950i
\(393\) −49.1063 123.192i −0.124953 0.313465i
\(394\) −562.669 409.043i −1.42809 1.03818i
\(395\) 0.468035 0.468035i 0.00118490 0.00118490i
\(396\) 442.995 130.667i 1.11867 0.329967i
\(397\) −312.905 + 312.905i −0.788174 + 0.788174i −0.981195 0.193021i \(-0.938172\pi\)
0.193021 + 0.981195i \(0.438172\pi\)
\(398\) 460.659 72.8291i 1.15744 0.182988i
\(399\) 20.9030 + 52.4388i 0.0523885 + 0.131426i
\(400\) 234.750 + 323.867i 0.586875 + 0.809668i
\(401\) 9.22373i 0.0230018i 0.999934 + 0.0115009i \(0.00366093\pi\)
−0.999934 + 0.0115009i \(0.996339\pi\)
\(402\) −103.055 173.447i −0.256356 0.431460i
\(403\) −755.814 + 755.814i −1.87547 + 1.87547i
\(404\) 123.887 242.806i 0.306651 0.601004i
\(405\) 0.754715 + 0.840189i 0.00186349 + 0.00207454i
\(406\) 164.193 + 119.363i 0.404416 + 0.293998i
\(407\) −169.228 −0.415793
\(408\) −455.430 + 29.3314i −1.11625 + 0.0718908i
\(409\) 322.436i 0.788352i −0.919035 0.394176i \(-0.871030\pi\)
0.919035 0.394176i \(-0.128970\pi\)
\(410\) −1.06607 0.775002i −0.00260017 0.00189025i
\(411\) −118.282 50.8592i −0.287790 0.123745i
\(412\) −5.84478 18.0227i −0.0141864 0.0437444i
\(413\) −387.635 387.635i −0.938583 0.938583i
\(414\) 214.699 279.297i 0.518596 0.674631i
\(415\) 1.38683 0.00334177
\(416\) 570.655 + 0.798498i 1.37177 + 0.00191947i
\(417\) −73.9845 185.603i −0.177421 0.445090i
\(418\) 74.2527 11.7392i 0.177638 0.0280841i
\(419\) −226.569 226.569i −0.540738 0.540738i 0.383007 0.923745i \(-0.374888\pi\)
−0.923745 + 0.383007i \(0.874888\pi\)
\(420\) 0.686456 + 0.826811i 0.00163442 + 0.00196860i
\(421\) −498.861 498.861i −1.18494 1.18494i −0.978448 0.206495i \(-0.933794\pi\)
−0.206495 0.978448i \(-0.566206\pi\)
\(422\) −19.4348 14.1285i −0.0460540 0.0334799i
\(423\) 41.1323 38.9870i 0.0972394 0.0921677i
\(424\) 222.034 + 72.3495i 0.523666 + 0.170636i
\(425\) 475.385 1.11855
\(426\) 20.0936 78.9283i 0.0471680 0.185278i
\(427\) −308.440 308.440i −0.722343 0.722343i
\(428\) −105.272 + 206.322i −0.245962 + 0.482060i
\(429\) −271.126 + 630.549i −0.631995 + 1.46981i
\(430\) 0.148553 + 0.939627i 0.000345472 + 0.00218518i
\(431\) 452.283i 1.04938i −0.851293 0.524690i \(-0.824181\pi\)
0.851293 0.524690i \(-0.175819\pi\)
\(432\) 358.713 + 240.726i 0.830354 + 0.557236i
\(433\) 379.557 0.876574 0.438287 0.898835i \(-0.355585\pi\)
0.438287 + 0.898835i \(0.355585\pi\)
\(434\) −760.496 + 120.233i −1.75229 + 0.277034i
\(435\) 0.607258 + 0.261111i 0.00139600 + 0.000600255i
\(436\) 309.642 606.866i 0.710188 1.39190i
\(437\) 40.5447 40.5447i 0.0927797 0.0927797i
\(438\) 182.877 + 46.5567i 0.417527 + 0.106294i
\(439\) 689.509i 1.57063i 0.619094 + 0.785317i \(0.287500\pi\)
−0.619094 + 0.785317i \(0.712500\pi\)
\(440\) 1.27563 0.648618i 0.00289916 0.00147413i
\(441\) 47.9710 + 50.6107i 0.108778 + 0.114763i
\(442\) 398.794 548.571i 0.902250 1.24111i
\(443\) −97.5600 + 97.5600i −0.220226 + 0.220226i −0.808593 0.588368i \(-0.799771\pi\)
0.588368 + 0.808593i \(0.299771\pi\)
\(444\) −101.110 121.783i −0.227725 0.274286i
\(445\) 0.938330 0.938330i 0.00210861 0.00210861i
\(446\) −3.41330 21.5899i −0.00765315 0.0484078i
\(447\) 518.377 206.634i 1.15968 0.462269i
\(448\) 332.146 + 242.171i 0.741397 + 0.540561i
\(449\) 718.711i 1.60069i 0.599538 + 0.800347i \(0.295351\pi\)
−0.599538 + 0.800347i \(0.704649\pi\)
\(450\) −356.768 274.251i −0.792817 0.609447i
\(451\) 428.772 428.772i 0.950713 0.950713i
\(452\) 253.196 + 780.744i 0.560168 + 1.72731i
\(453\) −172.908 + 402.127i −0.381695 + 0.887698i
\(454\) −166.153 + 228.555i −0.365976 + 0.503426i
\(455\) −1.59700 −0.00350988
\(456\) 52.8123 + 46.4213i 0.115817 + 0.101801i
\(457\) 489.021i 1.07007i −0.844830 0.535034i \(-0.820299\pi\)
0.844830 0.535034i \(-0.179701\pi\)
\(458\) 385.613 530.438i 0.841949 1.15816i
\(459\) 481.843 177.277i 1.04977 0.386224i
\(460\) 0.496088 0.972282i 0.00107845 0.00211366i
\(461\) −459.082 459.082i −0.995840 0.995840i 0.00415179 0.999991i \(-0.498678\pi\)
−0.999991 + 0.00415179i \(0.998678\pi\)
\(462\) −425.042 + 252.543i −0.920005 + 0.546629i
\(463\) 587.611 1.26914 0.634569 0.772866i \(-0.281178\pi\)
0.634569 + 0.772866i \(0.281178\pi\)
\(464\) 249.687 + 39.8331i 0.538118 + 0.0858472i
\(465\) −2.32896 + 0.928364i −0.00500852 + 0.00199648i
\(466\) −98.8919 625.512i −0.212214 1.34230i
\(467\) −89.5077 89.5077i −0.191665 0.191665i 0.604750 0.796415i \(-0.293273\pi\)
−0.796415 + 0.604750i \(0.793273\pi\)
\(468\) −615.760 + 181.626i −1.31573 + 0.388091i
\(469\) 152.713 + 152.713i 0.325614 + 0.325614i
\(470\) 0.103254 0.142034i 0.000219690 0.000302199i
\(471\) −217.778 + 86.8101i −0.462374 + 0.184310i
\(472\) −649.222 211.548i −1.37547 0.448195i
\(473\) −437.664 −0.925293
\(474\) −70.2708 + 276.027i −0.148251 + 0.582334i
\(475\) −51.7909 51.7909i −0.109033 0.109033i
\(476\) 464.704 150.704i 0.976268 0.316605i
\(477\) −262.621 7.03213i −0.550568 0.0147424i
\(478\) 755.993 119.521i 1.58157 0.250043i
\(479\) 439.291i 0.917101i −0.888668 0.458550i \(-0.848369\pi\)
0.888668 0.458550i \(-0.151631\pi\)
\(480\) 1.22893 + 0.530460i 0.00256028 + 0.00110513i
\(481\) 235.226 0.489034
\(482\) −28.5194 180.391i −0.0591688 0.374255i
\(483\) −148.962 + 346.436i −0.308410 + 0.717259i
\(484\) 53.7966 + 165.885i 0.111150 + 0.342737i
\(485\) 0.607542 0.607542i 0.00125266 0.00125266i
\(486\) −463.886 144.934i −0.954498 0.298218i
\(487\) 499.716i 1.02611i −0.858355 0.513056i \(-0.828513\pi\)
0.858355 0.513056i \(-0.171487\pi\)
\(488\) −516.585 168.328i −1.05858 0.344935i
\(489\) 278.301 110.936i 0.569123 0.226862i
\(490\) 0.174764 + 0.127048i 0.000356660 + 0.000259281i
\(491\) 359.246 359.246i 0.731663 0.731663i −0.239286 0.970949i \(-0.576913\pi\)
0.970949 + 0.239286i \(0.0769134\pi\)
\(492\) 564.743 + 52.3795i 1.14785 + 0.106462i
\(493\) 212.484 212.484i 0.431003 0.431003i
\(494\) −103.211 + 16.3174i −0.208929 + 0.0330311i
\(495\) −1.16847 + 1.10752i −0.00236054 + 0.00223742i
\(496\) −776.490 + 562.826i −1.56550 + 1.13473i
\(497\) 87.1846i 0.175422i
\(498\) −513.057 + 304.837i −1.03023 + 0.612123i
\(499\) −64.4682 + 64.4682i −0.129195 + 0.129195i −0.768747 0.639553i \(-0.779120\pi\)
0.639553 + 0.768747i \(0.279120\pi\)
\(500\) −2.48395 1.26739i −0.00496790 0.00253477i
\(501\) −237.573 102.152i −0.474197 0.203897i
\(502\) −294.594 214.161i −0.586840 0.426615i
\(503\) 597.277 1.18743 0.593714 0.804676i \(-0.297661\pi\)
0.593714 + 0.804676i \(0.297661\pi\)
\(504\) −435.693 154.989i −0.864470 0.307517i
\(505\) 0.950165i 0.00188151i
\(506\) 406.190 + 295.288i 0.802746 + 0.583573i
\(507\) 176.591 410.691i 0.348305 0.810042i
\(508\) −206.020 + 66.8127i −0.405552 + 0.131521i
\(509\) 359.574 + 359.574i 0.706433 + 0.706433i 0.965783 0.259350i \(-0.0835084\pi\)
−0.259350 + 0.965783i \(0.583508\pi\)
\(510\) 1.36762 0.812582i 0.00268160 0.00159330i
\(511\) −202.006 −0.395316
\(512\) 505.493 + 81.3679i 0.987291 + 0.158922i
\(513\) −71.8079 33.1810i −0.139976 0.0646804i
\(514\) −244.789 + 38.7006i −0.476244 + 0.0752930i
\(515\) 0.0467000 + 0.0467000i 9.06796e−5 + 9.06796e-5i
\(516\) −261.495 314.960i −0.506772 0.610388i
\(517\) 57.1257 + 57.1257i 0.110495 + 0.110495i
\(518\) 137.051 + 99.6318i 0.264577 + 0.192339i
\(519\) 91.4977 + 229.538i 0.176296 + 0.442269i
\(520\) −1.77312 + 0.901575i −0.00340985 + 0.00173380i
\(521\) −862.399 −1.65528 −0.827639 0.561261i \(-0.810316\pi\)
−0.827639 + 0.561261i \(0.810316\pi\)
\(522\) −282.049 + 36.8827i −0.540323 + 0.0706565i
\(523\) −256.574 256.574i −0.490581 0.490581i 0.417908 0.908489i \(-0.362763\pi\)
−0.908489 + 0.417908i \(0.862763\pi\)
\(524\) 157.507 + 80.3648i 0.300585 + 0.153368i
\(525\) 442.529 + 190.280i 0.842912 + 0.362438i
\(526\) 60.7078 + 383.989i 0.115414 + 0.730018i
\(527\) 1139.76i 2.16274i
\(528\) −329.346 + 520.350i −0.623762 + 0.985510i
\(529\) −145.967 −0.275930
\(530\) −0.804024 + 0.127114i −0.00151703 + 0.000239838i
\(531\) 767.897 + 20.5617i 1.44613 + 0.0387227i
\(532\) −67.0456 34.2087i −0.126026 0.0643021i
\(533\) −595.990 + 595.990i −1.11818 + 1.11818i
\(534\) −140.881 + 553.386i −0.263822 + 1.03630i
\(535\) 0.807394i 0.00150915i
\(536\) 255.768 + 83.3415i 0.477179 + 0.155488i
\(537\) −29.7342 74.5933i −0.0553709 0.138907i
\(538\) −493.350 + 678.639i −0.917008 + 1.26141i
\(539\) −70.2895 + 70.2895i −0.130407 + 0.130407i
\(540\) −1.49515 0.179155i −0.00276880 0.000331768i
\(541\) −431.469 + 431.469i −0.797540 + 0.797540i −0.982707 0.185167i \(-0.940717\pi\)
0.185167 + 0.982707i \(0.440717\pi\)
\(542\) −86.8947 549.627i −0.160322 1.01407i
\(543\) 38.5062 + 96.5993i 0.0709137 + 0.177899i
\(544\) 430.874 429.670i 0.792048 0.789835i
\(545\) 2.37483i 0.00435749i
\(546\) 590.806 351.033i 1.08206 0.642917i
\(547\) 335.381 335.381i 0.613127 0.613127i −0.330632 0.943760i \(-0.607262\pi\)
0.943760 + 0.330632i \(0.107262\pi\)
\(548\) 163.298 52.9576i 0.297989 0.0966380i
\(549\) 611.014 + 16.3609i 1.11296 + 0.0298014i
\(550\) 377.193 518.857i 0.685806 0.943376i
\(551\) −46.2983 −0.0840259
\(552\) 30.1886 + 468.738i 0.0546895 + 0.849164i
\(553\) 304.900i 0.551357i
\(554\) 100.041 137.613i 0.180579 0.248399i
\(555\) 0.506874 + 0.217948i 0.000913287 + 0.000392699i
\(556\) 237.302 + 121.079i 0.426803 + 0.217768i
\(557\) 118.642 + 118.642i 0.213001 + 0.213001i 0.805541 0.592540i \(-0.201875\pi\)
−0.592540 + 0.805541i \(0.701875\pi\)
\(558\) 657.533 855.371i 1.17837 1.53292i
\(559\) 608.350 1.08828
\(560\) −1.41495 0.225730i −0.00252670 0.000403090i
\(561\) 271.004 + 679.860i 0.483073 + 1.21187i
\(562\) 97.9564 + 619.595i 0.174300 + 1.10248i
\(563\) −290.766 290.766i −0.516459 0.516459i 0.400039 0.916498i \(-0.368997\pi\)
−0.916498 + 0.400039i \(0.868997\pi\)
\(564\) −6.97857 + 75.2413i −0.0123734 + 0.133407i
\(565\) −2.02305 2.02305i −0.00358061 0.00358061i
\(566\) −477.290 + 656.546i −0.843268 + 1.15998i
\(567\) 519.499 + 27.8409i 0.916223 + 0.0491021i
\(568\) 49.2196 + 96.7998i 0.0866543 + 0.170422i
\(569\) 669.398 1.17645 0.588223 0.808699i \(-0.299828\pi\)
0.588223 + 0.808699i \(0.299828\pi\)
\(570\) −0.237522 0.0604683i −0.000416705 0.000106085i
\(571\) 454.971 + 454.971i 0.796798 + 0.796798i 0.982589 0.185792i \(-0.0594849\pi\)
−0.185792 + 0.982589i \(0.559485\pi\)
\(572\) −282.312 870.525i −0.493553 1.52190i
\(573\) 185.367 431.102i 0.323502 0.752359i
\(574\) −599.681 + 94.8082i −1.04474 + 0.165171i
\(575\) 489.277i 0.850916i
\(576\) −571.241 + 73.8868i −0.991739 + 0.128276i
\(577\) −288.393 −0.499814 −0.249907 0.968270i \(-0.580400\pi\)
−0.249907 + 0.968270i \(0.580400\pi\)
\(578\) −22.6713 143.401i −0.0392238 0.248098i
\(579\) −600.737 258.307i −1.03754 0.446126i
\(580\) −0.838370 + 0.271884i −0.00144547 + 0.000468766i
\(581\) 451.725 451.725i 0.777496 0.777496i
\(582\) −91.2164 + 358.302i −0.156729 + 0.615639i
\(583\) 374.502i 0.642371i
\(584\) −224.285 + 114.042i −0.384049 + 0.195277i
\(585\) 1.62416 1.53945i 0.00277635 0.00263154i
\(586\) 403.796 + 293.548i 0.689072 + 0.500935i
\(587\) −393.610 + 393.610i −0.670545 + 0.670545i −0.957842 0.287297i \(-0.907243\pi\)
0.287297 + 0.957842i \(0.407243\pi\)
\(588\) −92.5796 8.58669i −0.157448 0.0146032i
\(589\) 124.172 124.172i 0.210818 0.210818i
\(590\) 2.35094 0.371679i 0.00398465 0.000629964i
\(591\) −969.287 + 386.375i −1.64008 + 0.653764i
\(592\) 208.412 + 33.2484i 0.352047 + 0.0561629i
\(593\) 707.638i 1.19332i −0.802495 0.596659i \(-0.796494\pi\)
0.802495 0.596659i \(-0.203506\pi\)
\(594\) 188.830 666.565i 0.317895 1.12216i
\(595\) −1.20413 + 1.20413i −0.00202375 + 0.00202375i
\(596\) −338.166 + 662.772i −0.567393 + 1.11203i
\(597\) 276.341 642.678i 0.462883 1.07651i
\(598\) −564.601 410.448i −0.944149 0.686368i
\(599\) −996.581 −1.66374 −0.831870 0.554970i \(-0.812730\pi\)
−0.831870 + 0.554970i \(0.812730\pi\)
\(600\) 598.755 38.5622i 0.997925 0.0642703i
\(601\) 214.386i 0.356716i 0.983966 + 0.178358i \(0.0570785\pi\)
−0.983966 + 0.178358i \(0.942921\pi\)
\(602\) 354.446 + 257.672i 0.588781 + 0.428026i
\(603\) −302.521 8.10051i −0.501693 0.0134337i
\(604\) −180.042 555.169i −0.298083 0.919155i
\(605\) −0.429836 0.429836i −0.000710474 0.000710474i
\(606\) −208.854 351.512i −0.344644 0.580053i
\(607\) −989.981 −1.63094 −0.815470 0.578799i \(-0.803522\pi\)
−0.815470 + 0.578799i \(0.803522\pi\)
\(608\) −93.7521 0.131184i −0.154198 0.000215763i
\(609\) 282.849 112.748i 0.464448 0.185137i
\(610\) 1.87064 0.295744i 0.00306663 0.000484826i
\(611\) −79.4044 79.4044i −0.129958 0.129958i
\(612\) −327.335 + 601.227i −0.534862 + 0.982397i
\(613\) 277.427 + 277.427i 0.452572 + 0.452572i 0.896207 0.443636i \(-0.146312\pi\)
−0.443636 + 0.896207i \(0.646312\pi\)
\(614\) 146.396 + 106.425i 0.238430 + 0.173331i
\(615\) −1.83648 + 0.732052i −0.00298614 + 0.00119033i
\(616\) 204.233 626.774i 0.331548 1.01749i
\(617\) −294.951 −0.478040 −0.239020 0.971015i \(-0.576826\pi\)
−0.239020 + 0.971015i \(0.576826\pi\)
\(618\) −27.5416 7.01155i −0.0445658 0.0113455i
\(619\) 717.374 + 717.374i 1.15892 + 1.15892i 0.984707 + 0.174218i \(0.0557396\pi\)
0.174218 + 0.984707i \(0.444260\pi\)
\(620\) 1.51931 2.97769i 0.00245050 0.00480273i
\(621\) −182.457 495.924i −0.293812 0.798589i
\(622\) 166.242 + 1051.52i 0.267270 + 1.69054i
\(623\) 611.273i 0.981177i
\(624\) 457.789 723.283i 0.733636 1.15911i
\(625\) −624.985 −0.999977
\(626\) 366.797 57.9897i 0.585937 0.0926353i
\(627\) 44.5428 103.592i 0.0710412 0.165218i
\(628\) 142.069 278.440i 0.226224 0.443376i
\(629\) 177.359 177.359i 0.281970 0.281970i
\(630\) 1.59834 0.209011i 0.00253705 0.000331763i
\(631\) 526.114i 0.833779i 0.908957 + 0.416889i \(0.136880\pi\)
−0.908957 + 0.416889i \(0.863120\pi\)
\(632\) −172.130 338.526i −0.272357 0.535643i
\(633\) −33.4795 + 13.3455i −0.0528903 + 0.0210830i
\(634\) 279.621 384.639i 0.441042 0.606685i
\(635\) 0.533835 0.533835i 0.000840686 0.000840686i
\(636\) 269.507 223.757i 0.423753 0.351819i
\(637\) 97.7020 97.7020i 0.153378 0.153378i
\(638\) −63.3197 400.510i −0.0992472 0.627759i
\(639\) −84.0431 88.6678i −0.131523 0.138760i
\(640\) −1.69844 + 0.548179i −0.00265381 + 0.000856530i
\(641\) 1025.84i 1.60037i −0.599754 0.800184i \(-0.704735\pi\)
0.599754 0.800184i \(-0.295265\pi\)
\(642\) 177.472 + 298.694i 0.276436 + 0.465255i
\(643\) −366.197 + 366.197i −0.569514 + 0.569514i −0.931992 0.362479i \(-0.881931\pi\)
0.362479 + 0.931992i \(0.381931\pi\)
\(644\) −155.108 478.283i −0.240851 0.742676i
\(645\) 1.31090 + 0.563665i 0.00203240 + 0.000873900i
\(646\) −65.5173 + 90.1238i −0.101420 + 0.139511i
\(647\) −90.9084 −0.140508 −0.0702538 0.997529i \(-0.522381\pi\)
−0.0702538 + 0.997529i \(0.522381\pi\)
\(648\) 592.509 262.369i 0.914365 0.404890i
\(649\) 1095.03i 1.68726i
\(650\) −524.296 + 721.208i −0.806610 + 1.10955i
\(651\) −456.208 + 1060.99i −0.700780 + 1.62978i
\(652\) −181.551 + 355.822i −0.278453 + 0.545739i
\(653\) 291.274 + 291.274i 0.446056 + 0.446056i 0.894041 0.447985i \(-0.147858\pi\)
−0.447985 + 0.894041i \(0.647858\pi\)
\(654\) −522.008 878.566i −0.798177 1.34337i
\(655\) −0.616367 −0.000941019
\(656\) −612.294 + 443.811i −0.933375 + 0.676541i
\(657\) 205.443 194.728i 0.312698 0.296389i
\(658\) −12.6314 79.8962i −0.0191967 0.121423i
\(659\) 817.853 + 817.853i 1.24105 + 1.24105i 0.959565 + 0.281486i \(0.0908273\pi\)
0.281486 + 0.959565i \(0.409173\pi\)
\(660\) 0.198244 2.13742i 0.000300370 0.00323852i
\(661\) −673.995 673.995i −1.01966 1.01966i −0.999803 0.0198568i \(-0.993679\pi\)
−0.0198568 0.999803i \(-0.506321\pi\)
\(662\) 401.946 552.905i 0.607169 0.835205i
\(663\) −376.694 945.001i −0.568166 1.42534i
\(664\) 246.524 756.562i 0.371272 1.13940i
\(665\) 0.262368 0.000394538
\(666\) −235.424 + 30.7858i −0.353490 + 0.0462249i
\(667\) −218.694 218.694i −0.327877 0.327877i
\(668\) 327.989 106.367i 0.491001 0.159232i
\(669\) −30.1206 12.9514i −0.0450233 0.0193593i
\(670\) −0.926179 + 0.146427i −0.00138236 + 0.000218547i
\(671\) 871.316i 1.29853i
\(672\) 573.077 227.510i 0.852793 0.338556i
\(673\) −526.059 −0.781662 −0.390831 0.920462i \(-0.627812\pi\)
−0.390831 + 0.920462i \(0.627812\pi\)
\(674\) 123.945 + 783.975i 0.183894 + 1.16317i
\(675\) −633.481 + 233.066i −0.938490 + 0.345283i
\(676\) 183.876 + 566.993i 0.272007 + 0.838747i
\(677\) 143.663 143.663i 0.212205 0.212205i −0.592998 0.805204i \(-0.702056\pi\)
0.805204 + 0.592998i \(0.202056\pi\)
\(678\) 1193.10 + 303.740i 1.75974 + 0.447995i
\(679\) 395.782i 0.582890i
\(680\) −0.657142 + 2.01671i −0.000966385 + 0.00296575i
\(681\) 156.945 + 393.723i 0.230462 + 0.578155i
\(682\) 1243.99 + 904.343i 1.82403 + 1.32602i
\(683\) 50.6262 50.6262i 0.0741232 0.0741232i −0.669073 0.743196i \(-0.733309\pi\)
0.743196 + 0.669073i \(0.233309\pi\)
\(684\) 101.162 29.8391i 0.147898 0.0436244i
\(685\) −0.423133 + 0.423133i −0.000617713 + 0.000617713i
\(686\) 720.016 113.833i 1.04959 0.165937i
\(687\) −364.243 913.765i −0.530193 1.33008i
\(688\) 539.004 + 85.9884i 0.783436 + 0.124983i
\(689\) 520.556i 0.755523i
\(690\) −0.836328 1.40758i −0.00121207 0.00203997i
\(691\) 396.186 396.186i 0.573351 0.573351i −0.359712 0.933063i \(-0.617125\pi\)
0.933063 + 0.359712i \(0.117125\pi\)
\(692\) −293.475 149.740i −0.424097 0.216388i
\(693\) −19.8508 + 741.345i −0.0286447 + 1.06976i
\(694\) −88.2395 64.1475i −0.127146 0.0924316i
\(695\) −0.928629 −0.00133616
\(696\) 250.391 284.864i 0.359757 0.409287i
\(697\) 898.749i 1.28945i
\(698\) 23.8078 + 17.3075i 0.0341086 + 0.0247959i
\(699\) −872.669 375.233i −1.24845 0.536815i
\(700\) −610.948 + 198.131i −0.872782 + 0.283044i
\(701\) 525.886 + 525.886i 0.750195 + 0.750195i 0.974515 0.224321i \(-0.0720164\pi\)
−0.224321 + 0.974515i \(0.572016\pi\)
\(702\) −262.472 + 926.522i −0.373892 + 1.31983i
\(703\) −38.6449 −0.0549713
\(704\) −127.085 811.197i −0.180519 1.15227i
\(705\) −0.0975321 0.244676i −0.000138343 0.000347058i
\(706\) −413.452 + 65.3658i −0.585627 + 0.0925861i
\(707\) 309.492 + 309.492i 0.437753 + 0.437753i
\(708\) −788.030 + 654.259i −1.11304 + 0.924094i
\(709\) −99.4062 99.4062i −0.140206 0.140206i 0.633520 0.773726i \(-0.281609\pi\)
−0.773726 + 0.633520i \(0.781609\pi\)
\(710\) −0.306178 0.222583i −0.000431237 0.000313497i
\(711\) 293.914 + 310.087i 0.413381 + 0.436128i
\(712\) −345.091 678.688i −0.484679 0.953213i
\(713\) 1173.07 1.64526
\(714\) 180.788 710.143i 0.253205 0.994598i
\(715\) 2.25568 + 2.25568i 0.00315480 + 0.00315480i
\(716\) 95.3713 + 48.6613i 0.133200 + 0.0679628i
\(717\) 453.506 1054.71i 0.632505 1.47100i
\(718\) −13.3260 84.2894i −0.0185598 0.117395i
\(719\) 551.765i 0.767406i 0.923456 + 0.383703i \(0.125351\pi\)
−0.923456 + 0.383703i \(0.874649\pi\)
\(720\) 1.65662 1.13440i 0.00230086 0.00157555i
\(721\) 30.4226 0.0421951
\(722\) −696.186 + 110.065i −0.964247 + 0.152445i
\(723\) −251.668 108.213i −0.348089 0.149673i
\(724\) −123.507 63.0171i −0.170590 0.0870402i
\(725\) −279.354 + 279.354i −0.385316 + 0.385316i
\(726\) 253.499 + 64.5357i 0.349172 + 0.0888922i
\(727\) 75.0947i 0.103294i 0.998665 + 0.0516470i \(0.0164471\pi\)
−0.998665 + 0.0516470i \(0.983553\pi\)
\(728\) −283.883 + 871.213i −0.389949 + 1.19672i
\(729\) −555.174 + 472.465i −0.761555 + 0.648100i
\(730\) 0.515723 0.709414i 0.000706470 0.000971800i
\(731\) 458.694 458.694i 0.627488 0.627488i
\(732\) −627.034 + 520.592i −0.856604 + 0.711192i
\(733\) 442.709 442.709i 0.603968 0.603968i −0.337395 0.941363i \(-0.609546\pi\)
0.941363 + 0.337395i \(0.109546\pi\)
\(734\) −5.07339 32.0902i −0.00691197 0.0437197i
\(735\) 0.301058 0.120007i 0.000409603 0.000163275i
\(736\) −442.226 443.465i −0.600851 0.602535i
\(737\) 431.400i 0.585346i
\(738\) 518.491 674.494i 0.702562 0.913949i
\(739\) 283.395 283.395i 0.383485 0.383485i −0.488871 0.872356i \(-0.662591\pi\)
0.872356 + 0.488871i \(0.162591\pi\)
\(740\) −0.699782 + 0.226940i −0.000945651 + 0.000306676i
\(741\) −61.9143 + 143.992i −0.0835550 + 0.194321i
\(742\) −220.486 + 303.294i −0.297151 + 0.408752i
\(743\) 835.949 1.12510 0.562550 0.826763i \(-0.309820\pi\)
0.562550 + 0.826763i \(0.309820\pi\)
\(744\) 92.4550 + 1435.55i 0.124267 + 1.92950i
\(745\) 2.59361i 0.00348135i
\(746\) −584.396 + 803.878i −0.783372 + 1.07758i
\(747\) −23.9613 + 894.857i −0.0320768 + 1.19794i
\(748\) −869.235 443.510i −1.16208 0.592928i
\(749\) −262.988 262.988i −0.351118 0.351118i
\(750\) −3.59603 + 2.13662i −0.00479471 + 0.00284882i
\(751\) 753.712 1.00361 0.501806 0.864980i \(-0.332669\pi\)
0.501806 + 0.864980i \(0.332669\pi\)
\(752\) −59.1294 81.5766i −0.0786296 0.108479i
\(753\) −507.485 + 202.292i −0.673951 + 0.268648i
\(754\) 88.0140 + 556.707i 0.116729 + 0.738338i
\(755\) 1.43854 + 1.43854i 0.00190535 + 0.00190535i
\(756\) −545.362 + 428.652i −0.721378 + 0.567000i
\(757\) −335.789 335.789i −0.443578 0.443578i 0.449634 0.893213i \(-0.351554\pi\)
−0.893213 + 0.449634i \(0.851554\pi\)
\(758\) 283.574 390.077i 0.374109 0.514613i
\(759\) 699.727 278.923i 0.921906 0.367488i
\(760\) 0.291303 0.148118i 0.000383294 0.000194893i
\(761\) −1094.53 −1.43828 −0.719138 0.694868i \(-0.755463\pi\)
−0.719138 + 0.694868i \(0.755463\pi\)
\(762\) −80.1501 + 314.833i −0.105184 + 0.413167i
\(763\) 773.541 + 773.541i 1.01381 + 1.01381i
\(764\) 193.015 + 595.172i 0.252637 + 0.779020i
\(765\) 0.0638720 2.38535i 8.34928e−5 0.00311811i
\(766\) −506.180 + 80.0259i −0.660810 + 0.104472i
\(767\) 1522.09i 1.98447i
\(768\) 507.839 576.128i 0.661249 0.750167i
\(769\) 290.367 0.377590 0.188795 0.982016i \(-0.439542\pi\)
0.188795 + 0.982016i \(0.439542\pi\)
\(770\) 0.358827 + 2.26966i 0.000466009 + 0.00294761i
\(771\) −146.845 + 341.512i −0.190460 + <