Properties

Label 48.3.i.b.5.3
Level $48$
Weight $3$
Character 48.5
Analytic conductor $1.308$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [48,3,Mod(5,48)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(48, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("48.5");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 48.i (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.30790526893\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{18} + 6 x^{16} - 24 x^{14} - 24 x^{12} + 1216 x^{10} - 384 x^{8} - 6144 x^{6} + 24576 x^{4} - 131072 x^{2} + 1048576 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{13} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 5.3
Root \(-1.28499 + 1.53258i\) of defining polynomial
Character \(\chi\) \(=\) 48.5
Dual form 48.3.i.b.29.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.28499 - 1.53258i) q^{2} +(-2.06336 + 2.17774i) q^{3} +(-0.697601 + 3.93870i) q^{4} +(-3.17955 + 3.17955i) q^{5} +(5.98896 + 0.363879i) q^{6} +6.03979i q^{7} +(6.93278 - 3.99206i) q^{8} +(-0.485128 - 8.98692i) q^{9} +O(q^{10})\) \(q+(-1.28499 - 1.53258i) q^{2} +(-2.06336 + 2.17774i) q^{3} +(-0.697601 + 3.93870i) q^{4} +(-3.17955 + 3.17955i) q^{5} +(5.98896 + 0.363879i) q^{6} +6.03979i q^{7} +(6.93278 - 3.99206i) q^{8} +(-0.485128 - 8.98692i) q^{9} +(8.95859 + 0.787223i) q^{10} +(-13.0097 + 13.0097i) q^{11} +(-7.13808 - 9.64613i) q^{12} +(6.39520 - 6.39520i) q^{13} +(9.25646 - 7.76107i) q^{14} +(-0.363700 - 13.4848i) q^{15} +(-15.0267 - 5.49528i) q^{16} -4.39848i q^{17} +(-13.1498 + 12.2916i) q^{18} +(-3.21075 + 3.21075i) q^{19} +(-10.3052 - 14.7413i) q^{20} +(-13.1531 - 12.4622i) q^{21} +(36.6557 + 3.22107i) q^{22} +34.0396 q^{23} +(-5.61111 + 23.3349i) q^{24} +4.78097i q^{25} +(-18.0189 - 1.58339i) q^{26} +(20.5722 + 17.4867i) q^{27} +(-23.7889 - 4.21336i) q^{28} +(27.9597 + 27.9597i) q^{29} +(-20.1991 + 17.8852i) q^{30} -7.90993 q^{31} +(10.8872 + 30.0910i) q^{32} +(-1.48814 - 55.1754i) q^{33} +(-6.74102 + 5.65200i) q^{34} +(-19.2038 - 19.2038i) q^{35} +(35.7352 + 4.35851i) q^{36} +(20.0443 + 20.0443i) q^{37} +(9.04650 + 0.794947i) q^{38} +(0.731530 + 27.1227i) q^{39} +(-9.35016 + 34.7360i) q^{40} -45.1067 q^{41} +(-2.19775 + 36.1720i) q^{42} +(-36.0095 - 36.0095i) q^{43} +(-42.1657 - 60.3168i) q^{44} +(30.1168 + 27.0318i) q^{45} +(-43.7406 - 52.1684i) q^{46} +5.08935i q^{47} +(42.9727 - 21.3856i) q^{48} +12.5209 q^{49} +(7.32721 - 6.14349i) q^{50} +(9.57876 + 9.07563i) q^{51} +(20.7275 + 29.6501i) q^{52} +(20.7687 - 20.7687i) q^{53} +(0.364741 - 53.9988i) q^{54} -82.7299i q^{55} +(24.1112 + 41.8725i) q^{56} +(-0.367268 - 13.6171i) q^{57} +(6.92253 - 78.7784i) q^{58} +(-39.0656 + 39.0656i) q^{59} +(53.3662 + 7.97449i) q^{60} +(-49.8322 + 49.8322i) q^{61} +(10.1642 + 12.1226i) q^{62} +(54.2791 - 2.93007i) q^{63} +(32.1269 - 55.3522i) q^{64} +40.6677i q^{65} +(-82.6484 + 73.1805i) q^{66} +(44.9162 - 44.9162i) q^{67} +(17.3243 + 3.06838i) q^{68} +(-70.2358 + 74.1295i) q^{69} +(-4.75466 + 54.1080i) q^{70} +46.6947 q^{71} +(-39.2396 - 60.3677i) q^{72} +97.3523i q^{73} +(4.96275 - 56.4761i) q^{74} +(-10.4117 - 9.86483i) q^{75} +(-10.4063 - 14.8860i) q^{76} +(-78.5758 - 78.5758i) q^{77} +(40.6277 - 35.9735i) q^{78} -40.1637 q^{79} +(65.2506 - 30.3056i) q^{80} +(-80.5293 + 8.71960i) q^{81} +(57.9616 + 69.1296i) q^{82} +(-35.5451 - 35.5451i) q^{83} +(58.2606 - 43.1125i) q^{84} +(13.9852 + 13.9852i) q^{85} +(-8.91558 + 101.459i) q^{86} +(-118.580 + 3.19823i) q^{87} +(-38.2579 + 142.129i) q^{88} +69.6795 q^{89} +(2.72864 - 80.8920i) q^{90} +(38.6257 + 38.6257i) q^{91} +(-23.7461 + 134.072i) q^{92} +(16.3210 - 17.2258i) q^{93} +(7.79984 - 6.53977i) q^{94} -20.4174i q^{95} +(-87.9947 - 38.3789i) q^{96} +61.0939 q^{97} +(-16.0893 - 19.1893i) q^{98} +(123.228 + 110.606i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 6 q^{3} + 4 q^{4} - 12 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - 6 q^{3} + 4 q^{4} - 12 q^{6} + 32 q^{10} - 88 q^{12} + 92 q^{13} - 116 q^{15} - 16 q^{16} + 4 q^{18} - 52 q^{19} + 48 q^{21} + 24 q^{22} - 8 q^{24} + 18 q^{27} + 56 q^{28} + 28 q^{30} - 80 q^{31} + 60 q^{33} + 104 q^{34} + 92 q^{36} - 116 q^{37} + 88 q^{40} + 304 q^{42} + 172 q^{43} + 60 q^{45} - 424 q^{46} + 176 q^{48} - 364 q^{49} + 128 q^{51} - 208 q^{52} + 40 q^{54} - 512 q^{58} - 240 q^{60} - 244 q^{61} + 296 q^{63} + 88 q^{64} - 492 q^{66} + 356 q^{67} - 20 q^{69} + 200 q^{70} - 472 q^{72} - 146 q^{75} + 328 q^{76} + 84 q^{78} + 384 q^{79} - 188 q^{81} + 560 q^{82} + 816 q^{84} + 48 q^{85} + 416 q^{88} + 616 q^{90} + 136 q^{91} - 132 q^{93} + 32 q^{94} - 24 q^{96} + 472 q^{97} - 452 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/48\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(31\) \(37\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.28499 1.53258i −0.642495 0.766290i
\(3\) −2.06336 + 2.17774i −0.687785 + 0.725914i
\(4\) −0.697601 + 3.93870i −0.174400 + 0.984675i
\(5\) −3.17955 + 3.17955i −0.635909 + 0.635909i −0.949544 0.313634i \(-0.898453\pi\)
0.313634 + 0.949544i \(0.398453\pi\)
\(6\) 5.98896 + 0.363879i 0.998159 + 0.0606465i
\(7\) 6.03979i 0.862827i 0.902154 + 0.431414i \(0.141985\pi\)
−0.902154 + 0.431414i \(0.858015\pi\)
\(8\) 6.93278 3.99206i 0.866598 0.499008i
\(9\) −0.485128 8.98692i −0.0539031 0.998546i
\(10\) 8.95859 + 0.787223i 0.895859 + 0.0787223i
\(11\) −13.0097 + 13.0097i −1.18270 + 1.18270i −0.203657 + 0.979042i \(0.565283\pi\)
−0.979042 + 0.203657i \(0.934717\pi\)
\(12\) −7.13808 9.64613i −0.594840 0.803844i
\(13\) 6.39520 6.39520i 0.491939 0.491939i −0.416978 0.908917i \(-0.636911\pi\)
0.908917 + 0.416978i \(0.136911\pi\)
\(14\) 9.25646 7.76107i 0.661176 0.554362i
\(15\) −0.363700 13.4848i −0.0242466 0.898985i
\(16\) −15.0267 5.49528i −0.939169 0.343455i
\(17\) 4.39848i 0.258734i −0.991597 0.129367i \(-0.958705\pi\)
0.991597 0.129367i \(-0.0412945\pi\)
\(18\) −13.1498 + 12.2916i −0.730543 + 0.682866i
\(19\) −3.21075 + 3.21075i −0.168987 + 0.168987i −0.786534 0.617547i \(-0.788126\pi\)
0.617547 + 0.786534i \(0.288126\pi\)
\(20\) −10.3052 14.7413i −0.515261 0.737067i
\(21\) −13.1531 12.4622i −0.626339 0.593440i
\(22\) 36.6557 + 3.22107i 1.66617 + 0.146412i
\(23\) 34.0396 1.47998 0.739992 0.672616i \(-0.234829\pi\)
0.739992 + 0.672616i \(0.234829\pi\)
\(24\) −5.61111 + 23.3349i −0.233796 + 0.972286i
\(25\) 4.78097i 0.191239i
\(26\) −18.0189 1.58339i −0.693036 0.0608994i
\(27\) 20.5722 + 17.4867i 0.761933 + 0.647656i
\(28\) −23.7889 4.21336i −0.849604 0.150477i
\(29\) 27.9597 + 27.9597i 0.964128 + 0.964128i 0.999378 0.0352510i \(-0.0112231\pi\)
−0.0352510 + 0.999378i \(0.511223\pi\)
\(30\) −20.1991 + 17.8852i −0.673304 + 0.596173i
\(31\) −7.90993 −0.255159 −0.127580 0.991828i \(-0.540721\pi\)
−0.127580 + 0.991828i \(0.540721\pi\)
\(32\) 10.8872 + 30.0910i 0.340225 + 0.940344i
\(33\) −1.48814 55.1754i −0.0450952 1.67198i
\(34\) −6.74102 + 5.65200i −0.198265 + 0.166235i
\(35\) −19.2038 19.2038i −0.548680 0.548680i
\(36\) 35.7352 + 4.35851i 0.992644 + 0.121070i
\(37\) 20.0443 + 20.0443i 0.541736 + 0.541736i 0.924038 0.382301i \(-0.124868\pi\)
−0.382301 + 0.924038i \(0.624868\pi\)
\(38\) 9.04650 + 0.794947i 0.238066 + 0.0209197i
\(39\) 0.731530 + 27.1227i 0.0187572 + 0.695453i
\(40\) −9.35016 + 34.7360i −0.233754 + 0.868401i
\(41\) −45.1067 −1.10016 −0.550081 0.835111i \(-0.685403\pi\)
−0.550081 + 0.835111i \(0.685403\pi\)
\(42\) −2.19775 + 36.1720i −0.0523274 + 0.861239i
\(43\) −36.0095 36.0095i −0.837431 0.837431i 0.151089 0.988520i \(-0.451722\pi\)
−0.988520 + 0.151089i \(0.951722\pi\)
\(44\) −42.1657 60.3168i −0.958311 1.37084i
\(45\) 30.1168 + 27.0318i 0.669262 + 0.600707i
\(46\) −43.7406 52.1684i −0.950882 1.13410i
\(47\) 5.08935i 0.108284i 0.998533 + 0.0541421i \(0.0172424\pi\)
−0.998533 + 0.0541421i \(0.982758\pi\)
\(48\) 42.9727 21.3856i 0.895266 0.445533i
\(49\) 12.5209 0.255529
\(50\) 7.32721 6.14349i 0.146544 0.122870i
\(51\) 9.57876 + 9.07563i 0.187819 + 0.177953i
\(52\) 20.7275 + 29.6501i 0.398605 + 0.570194i
\(53\) 20.7687 20.7687i 0.391863 0.391863i −0.483488 0.875351i \(-0.660630\pi\)
0.875351 + 0.483488i \(0.160630\pi\)
\(54\) 0.364741 53.9988i 0.00675447 0.999977i
\(55\) 82.7299i 1.50418i
\(56\) 24.1112 + 41.8725i 0.430557 + 0.747724i
\(57\) −0.367268 13.6171i −0.00644331 0.238896i
\(58\) 6.92253 78.7784i 0.119354 1.35825i
\(59\) −39.0656 + 39.0656i −0.662129 + 0.662129i −0.955881 0.293753i \(-0.905096\pi\)
0.293753 + 0.955881i \(0.405096\pi\)
\(60\) 53.3662 + 7.97449i 0.889436 + 0.132908i
\(61\) −49.8322 + 49.8322i −0.816921 + 0.816921i −0.985661 0.168739i \(-0.946030\pi\)
0.168739 + 0.985661i \(0.446030\pi\)
\(62\) 10.1642 + 12.1226i 0.163938 + 0.195526i
\(63\) 54.2791 2.93007i 0.861573 0.0465090i
\(64\) 32.1269 55.3522i 0.501983 0.864878i
\(65\) 40.6677i 0.625657i
\(66\) −82.6484 + 73.1805i −1.25225 + 1.10880i
\(67\) 44.9162 44.9162i 0.670390 0.670390i −0.287416 0.957806i \(-0.592796\pi\)
0.957806 + 0.287416i \(0.0927961\pi\)
\(68\) 17.3243 + 3.06838i 0.254769 + 0.0451233i
\(69\) −70.2358 + 74.1295i −1.01791 + 1.07434i
\(70\) −4.75466 + 54.1080i −0.0679237 + 0.772972i
\(71\) 46.6947 0.657672 0.328836 0.944387i \(-0.393344\pi\)
0.328836 + 0.944387i \(0.393344\pi\)
\(72\) −39.2396 60.3677i −0.544994 0.838440i
\(73\) 97.3523i 1.33359i 0.745240 + 0.666797i \(0.232335\pi\)
−0.745240 + 0.666797i \(0.767665\pi\)
\(74\) 4.96275 56.4761i 0.0670642 0.763190i
\(75\) −10.4117 9.86483i −0.138823 0.131531i
\(76\) −10.4063 14.8860i −0.136926 0.195868i
\(77\) −78.5758 78.5758i −1.02047 1.02047i
\(78\) 40.6277 35.9735i 0.520867 0.461199i
\(79\) −40.1637 −0.508402 −0.254201 0.967151i \(-0.581812\pi\)
−0.254201 + 0.967151i \(0.581812\pi\)
\(80\) 65.2506 30.3056i 0.815633 0.378820i
\(81\) −80.5293 + 8.71960i −0.994189 + 0.107649i
\(82\) 57.9616 + 69.1296i 0.706849 + 0.843043i
\(83\) −35.5451 35.5451i −0.428254 0.428254i 0.459779 0.888033i \(-0.347929\pi\)
−0.888033 + 0.459779i \(0.847929\pi\)
\(84\) 58.2606 43.1125i 0.693579 0.513244i
\(85\) 13.9852 + 13.9852i 0.164531 + 0.164531i
\(86\) −8.91558 + 101.459i −0.103670 + 1.17976i
\(87\) −118.580 + 3.19823i −1.36299 + 0.0367613i
\(88\) −38.2579 + 142.129i −0.434749 + 1.61510i
\(89\) 69.6795 0.782916 0.391458 0.920196i \(-0.371971\pi\)
0.391458 + 0.920196i \(0.371971\pi\)
\(90\) 2.72864 80.8920i 0.0303182 0.898800i
\(91\) 38.6257 + 38.6257i 0.424458 + 0.424458i
\(92\) −23.7461 + 134.072i −0.258109 + 1.45730i
\(93\) 16.3210 17.2258i 0.175495 0.185224i
\(94\) 7.79984 6.53977i 0.0829770 0.0695720i
\(95\) 20.4174i 0.214920i
\(96\) −87.9947 38.3789i −0.916611 0.399780i
\(97\) 61.0939 0.629834 0.314917 0.949119i \(-0.398023\pi\)
0.314917 + 0.949119i \(0.398023\pi\)
\(98\) −16.0893 19.1893i −0.164176 0.195809i
\(99\) 123.228 + 110.606i 1.24473 + 1.11723i
\(100\) −18.8308 3.33521i −0.188308 0.0333521i
\(101\) 104.036 104.036i 1.03006 1.03006i 0.0305280 0.999534i \(-0.490281\pi\)
0.999534 0.0305280i \(-0.00971886\pi\)
\(102\) 1.60051 26.3423i 0.0156913 0.258258i
\(103\) 57.2961i 0.556272i 0.960542 + 0.278136i \(0.0897167\pi\)
−0.960542 + 0.278136i \(0.910283\pi\)
\(104\) 18.8065 69.8666i 0.180832 0.671794i
\(105\) 81.4452 2.19667i 0.775668 0.0209207i
\(106\) −58.5173 5.14212i −0.552050 0.0485105i
\(107\) 92.4468 92.4468i 0.863989 0.863989i −0.127810 0.991799i \(-0.540795\pi\)
0.991799 + 0.127810i \(0.0407947\pi\)
\(108\) −83.2261 + 68.8289i −0.770612 + 0.637305i
\(109\) 75.3749 75.3749i 0.691513 0.691513i −0.271052 0.962565i \(-0.587371\pi\)
0.962565 + 0.271052i \(0.0873714\pi\)
\(110\) −126.790 + 106.307i −1.15264 + 0.966428i
\(111\) −85.0096 + 2.29281i −0.765853 + 0.0206559i
\(112\) 33.1903 90.7581i 0.296342 0.810341i
\(113\) 112.254i 0.993401i 0.867922 + 0.496701i \(0.165455\pi\)
−0.867922 + 0.496701i \(0.834545\pi\)
\(114\) −20.3973 + 18.0607i −0.178924 + 0.158427i
\(115\) −108.231 + 108.231i −0.941135 + 0.941135i
\(116\) −129.630 + 90.6201i −1.11750 + 0.781208i
\(117\) −60.5756 54.3707i −0.517740 0.464706i
\(118\) 110.070 + 9.67223i 0.932797 + 0.0819681i
\(119\) 26.5659 0.223243
\(120\) −56.3535 92.0350i −0.469612 0.766959i
\(121\) 217.504i 1.79756i
\(122\) 140.406 + 12.3379i 1.15087 + 0.101131i
\(123\) 93.0711 98.2307i 0.756676 0.798624i
\(124\) 5.51798 31.1548i 0.0444998 0.251249i
\(125\) −94.6900 94.6900i −0.757520 0.757520i
\(126\) −74.2386 79.4219i −0.589196 0.630333i
\(127\) 93.6335 0.737272 0.368636 0.929574i \(-0.379825\pi\)
0.368636 + 0.929574i \(0.379825\pi\)
\(128\) −126.114 + 21.8899i −0.985268 + 0.171015i
\(129\) 152.720 4.11903i 1.18388 0.0319305i
\(130\) 62.3265 52.2576i 0.479434 0.401981i
\(131\) −81.5208 81.5208i −0.622296 0.622296i 0.323822 0.946118i \(-0.395032\pi\)
−0.946118 + 0.323822i \(0.895032\pi\)
\(132\) 218.357 + 32.6291i 1.65422 + 0.247190i
\(133\) −19.3922 19.3922i −0.145806 0.145806i
\(134\) −126.554 11.1208i −0.944436 0.0829909i
\(135\) −121.010 + 9.81037i −0.896371 + 0.0726694i
\(136\) −17.5590 30.4937i −0.129110 0.224218i
\(137\) −24.5510 −0.179205 −0.0896023 0.995978i \(-0.528560\pi\)
−0.0896023 + 0.995978i \(0.528560\pi\)
\(138\) 203.862 + 12.3863i 1.47726 + 0.0897558i
\(139\) 3.06917 + 3.06917i 0.0220804 + 0.0220804i 0.718061 0.695980i \(-0.245030\pi\)
−0.695980 + 0.718061i \(0.745030\pi\)
\(140\) 89.0346 62.2414i 0.635961 0.444581i
\(141\) −11.0833 10.5011i −0.0786050 0.0744762i
\(142\) −60.0022 71.5633i −0.422551 0.503967i
\(143\) 166.399i 1.16363i
\(144\) −42.0958 + 137.710i −0.292332 + 0.956317i
\(145\) −177.798 −1.22620
\(146\) 149.200 125.097i 1.02192 0.856827i
\(147\) −25.8351 + 27.2674i −0.175749 + 0.185492i
\(148\) −92.9312 + 64.9654i −0.627913 + 0.438955i
\(149\) 5.86344 5.86344i 0.0393519 0.0393519i −0.687157 0.726509i \(-0.741142\pi\)
0.726509 + 0.687157i \(0.241142\pi\)
\(150\) −1.73969 + 28.6330i −0.0115980 + 0.190887i
\(151\) 179.561i 1.18914i 0.804043 + 0.594571i \(0.202678\pi\)
−0.804043 + 0.594571i \(0.797322\pi\)
\(152\) −9.44191 + 35.0769i −0.0621178 + 0.230769i
\(153\) −39.5288 + 2.13382i −0.258358 + 0.0139466i
\(154\) −19.4546 + 221.393i −0.126328 + 1.43762i
\(155\) 25.1500 25.1500i 0.162258 0.162258i
\(156\) −107.338 16.0395i −0.688067 0.102818i
\(157\) −14.8689 + 14.8689i −0.0947067 + 0.0947067i −0.752873 0.658166i \(-0.771332\pi\)
0.658166 + 0.752873i \(0.271332\pi\)
\(158\) 51.6100 + 61.5541i 0.326646 + 0.389583i
\(159\) 2.37568 + 88.0822i 0.0149414 + 0.553976i
\(160\) −130.292 61.0594i −0.814326 0.381621i
\(161\) 205.592i 1.27697i
\(162\) 116.843 + 112.213i 0.721252 + 0.692673i
\(163\) 66.1190 66.1190i 0.405638 0.405638i −0.474577 0.880214i \(-0.657399\pi\)
0.880214 + 0.474577i \(0.157399\pi\)
\(164\) 31.4665 177.662i 0.191869 1.08330i
\(165\) 180.164 + 170.701i 1.09191 + 1.03455i
\(166\) −8.80060 + 100.151i −0.0530156 + 0.603318i
\(167\) −158.709 −0.950353 −0.475176 0.879891i \(-0.657616\pi\)
−0.475176 + 0.879891i \(0.657616\pi\)
\(168\) −140.938 33.8899i −0.838914 0.201726i
\(169\) 87.2028i 0.515993i
\(170\) 3.46258 39.4042i 0.0203681 0.231789i
\(171\) 30.4123 + 27.2971i 0.177850 + 0.159632i
\(172\) 166.951 116.710i 0.970645 0.678549i
\(173\) 76.9955 + 76.9955i 0.445061 + 0.445061i 0.893709 0.448648i \(-0.148094\pi\)
−0.448648 + 0.893709i \(0.648094\pi\)
\(174\) 157.275 + 177.623i 0.903882 + 1.02082i
\(175\) −28.8760 −0.165006
\(176\) 266.985 124.001i 1.51696 0.704551i
\(177\) −4.46861 165.681i −0.0252464 0.936051i
\(178\) −89.5375 106.789i −0.503020 0.599941i
\(179\) 101.360 + 101.360i 0.566257 + 0.566257i 0.931078 0.364821i \(-0.118870\pi\)
−0.364821 + 0.931078i \(0.618870\pi\)
\(180\) −127.480 + 99.7636i −0.708221 + 0.554242i
\(181\) −212.373 212.373i −1.17333 1.17333i −0.981411 0.191920i \(-0.938529\pi\)
−0.191920 0.981411i \(-0.561471\pi\)
\(182\) 9.56332 108.831i 0.0525457 0.597970i
\(183\) −5.70017 211.343i −0.0311485 1.15488i
\(184\) 235.989 135.888i 1.28255 0.738523i
\(185\) −127.463 −0.688991
\(186\) −47.3722 2.87826i −0.254689 0.0154745i
\(187\) 57.2229 + 57.2229i 0.306005 + 0.306005i
\(188\) −20.0454 3.55034i −0.106625 0.0188848i
\(189\) −105.616 + 124.252i −0.558815 + 0.657416i
\(190\) −31.2913 + 26.2362i −0.164691 + 0.138085i
\(191\) 36.3314i 0.190217i 0.995467 + 0.0951083i \(0.0303197\pi\)
−0.995467 + 0.0951083i \(0.969680\pi\)
\(192\) 54.2535 + 184.175i 0.282571 + 0.959247i
\(193\) 47.1090 0.244088 0.122044 0.992525i \(-0.461055\pi\)
0.122044 + 0.992525i \(0.461055\pi\)
\(194\) −78.5050 93.6313i −0.404665 0.482635i
\(195\) −88.5638 83.9119i −0.454173 0.430317i
\(196\) −8.73462 + 49.3162i −0.0445644 + 0.251613i
\(197\) −32.2783 + 32.2783i −0.163849 + 0.163849i −0.784269 0.620420i \(-0.786962\pi\)
0.620420 + 0.784269i \(0.286962\pi\)
\(198\) 11.1647 330.984i 0.0563876 1.67164i
\(199\) 118.181i 0.593874i −0.954897 0.296937i \(-0.904035\pi\)
0.954897 0.296937i \(-0.0959651\pi\)
\(200\) 19.0859 + 33.1454i 0.0954295 + 0.165727i
\(201\) 5.13784 + 190.494i 0.0255614 + 0.947731i
\(202\) −293.129 25.7583i −1.45114 0.127516i
\(203\) −168.871 + 168.871i −0.831875 + 0.831875i
\(204\) −42.4283 + 31.3967i −0.207982 + 0.153905i
\(205\) 143.419 143.419i 0.699604 0.699604i
\(206\) 87.8108 73.6249i 0.426266 0.357402i
\(207\) −16.5136 305.911i −0.0797756 1.47783i
\(208\) −131.242 + 60.9554i −0.630972 + 0.293055i
\(209\) 83.5416i 0.399721i
\(210\) −108.023 121.999i −0.514394 0.580945i
\(211\) 63.8884 63.8884i 0.302789 0.302789i −0.539315 0.842104i \(-0.681317\pi\)
0.842104 + 0.539315i \(0.181317\pi\)
\(212\) 67.3134 + 96.2900i 0.317516 + 0.454198i
\(213\) −96.3478 + 101.689i −0.452337 + 0.477413i
\(214\) −260.475 22.8889i −1.21717 0.106957i
\(215\) 228.988 1.06506
\(216\) 212.430 + 39.1062i 0.983474 + 0.181047i
\(217\) 47.7743i 0.220158i
\(218\) −212.374 18.6621i −0.974193 0.0856057i
\(219\) −212.008 200.872i −0.968075 0.917226i
\(220\) 325.848 + 57.7124i 1.48113 + 0.262329i
\(221\) −28.1292 28.1292i −0.127281 0.127281i
\(222\) 112.750 + 127.338i 0.507885 + 0.573594i
\(223\) −42.8886 −0.192326 −0.0961628 0.995366i \(-0.530657\pi\)
−0.0961628 + 0.995366i \(0.530657\pi\)
\(224\) −181.743 + 65.7565i −0.811354 + 0.293556i
\(225\) 42.9661 2.31938i 0.190961 0.0103084i
\(226\) 172.039 144.246i 0.761233 0.638255i
\(227\) 23.0035 + 23.0035i 0.101337 + 0.101337i 0.755958 0.654621i \(-0.227172\pi\)
−0.654621 + 0.755958i \(0.727172\pi\)
\(228\) 53.8898 + 8.05273i 0.236359 + 0.0353190i
\(229\) 241.282 + 241.282i 1.05363 + 1.05363i 0.998478 + 0.0551571i \(0.0175660\pi\)
0.0551571 + 0.998478i \(0.482434\pi\)
\(230\) 304.947 + 26.7968i 1.32586 + 0.116508i
\(231\) 333.248 8.98807i 1.44263 0.0389094i
\(232\) 305.455 + 82.2217i 1.31662 + 0.354404i
\(233\) 240.310 1.03137 0.515687 0.856777i \(-0.327537\pi\)
0.515687 + 0.856777i \(0.327537\pi\)
\(234\) −5.48827 + 162.703i −0.0234542 + 0.695311i
\(235\) −16.1818 16.1818i −0.0688589 0.0688589i
\(236\) −126.615 181.120i −0.536506 0.767457i
\(237\) 82.8721 87.4663i 0.349671 0.369056i
\(238\) −34.1369 40.7143i −0.143432 0.171069i
\(239\) 218.171i 0.912851i −0.889762 0.456425i \(-0.849130\pi\)
0.889762 0.456425i \(-0.150870\pi\)
\(240\) −68.6374 + 204.630i −0.285989 + 0.852626i
\(241\) −88.9611 −0.369133 −0.184567 0.982820i \(-0.559088\pi\)
−0.184567 + 0.982820i \(0.559088\pi\)
\(242\) −333.343 + 279.491i −1.37745 + 1.15492i
\(243\) 147.172 193.364i 0.605644 0.795736i
\(244\) −161.511 231.037i −0.661931 0.946873i
\(245\) −39.8109 + 39.8109i −0.162493 + 0.162493i
\(246\) −270.142 16.4134i −1.09814 0.0667210i
\(247\) 41.0667i 0.166262i
\(248\) −54.8378 + 31.5769i −0.221120 + 0.127326i
\(249\) 150.750 4.06591i 0.605423 0.0163289i
\(250\) −23.4443 + 266.796i −0.0937770 + 1.06718i
\(251\) −169.225 + 169.225i −0.674205 + 0.674205i −0.958683 0.284478i \(-0.908180\pi\)
0.284478 + 0.958683i \(0.408180\pi\)
\(252\) −26.3245 + 215.833i −0.104462 + 0.856480i
\(253\) −442.845 + 442.845i −1.75038 + 1.75038i
\(254\) −120.318 143.501i −0.473693 0.564964i
\(255\) −59.3125 + 1.59973i −0.232598 + 0.00627343i
\(256\) 195.604 + 165.152i 0.764077 + 0.645125i
\(257\) 393.109i 1.52961i −0.644262 0.764804i \(-0.722836\pi\)
0.644262 0.764804i \(-0.277164\pi\)
\(258\) −202.556 228.763i −0.785102 0.886676i
\(259\) −121.063 + 121.063i −0.467425 + 0.467425i
\(260\) −160.178 28.3698i −0.616068 0.109115i
\(261\) 237.707 264.835i 0.910756 1.01470i
\(262\) −20.1837 + 229.690i −0.0770370 + 0.876681i
\(263\) 179.865 0.683897 0.341948 0.939719i \(-0.388913\pi\)
0.341948 + 0.939719i \(0.388913\pi\)
\(264\) −230.580 376.578i −0.873411 1.42643i
\(265\) 132.070i 0.498378i
\(266\) −4.80131 + 54.6390i −0.0180501 + 0.205410i
\(267\) −143.774 + 151.744i −0.538478 + 0.568330i
\(268\) 145.578 + 208.245i 0.543200 + 0.777033i
\(269\) 290.530 + 290.530i 1.08004 + 1.08004i 0.996505 + 0.0835324i \(0.0266202\pi\)
0.0835324 + 0.996505i \(0.473380\pi\)
\(270\) 170.532 + 172.851i 0.631600 + 0.640190i
\(271\) 496.550 1.83229 0.916144 0.400849i \(-0.131285\pi\)
0.916144 + 0.400849i \(0.131285\pi\)
\(272\) −24.1709 + 66.0947i −0.0888635 + 0.242995i
\(273\) −163.815 + 4.41829i −0.600056 + 0.0161842i
\(274\) 31.5478 + 37.6264i 0.115138 + 0.137323i
\(275\) −62.1989 62.1989i −0.226178 0.226178i
\(276\) −242.977 328.351i −0.880353 1.18968i
\(277\) −93.0101 93.0101i −0.335776 0.335776i 0.518999 0.854775i \(-0.326305\pi\)
−0.854775 + 0.518999i \(0.826305\pi\)
\(278\) 0.759895 8.64760i 0.00273343 0.0311065i
\(279\) 3.83733 + 71.0859i 0.0137539 + 0.254788i
\(280\) −209.798 56.4730i −0.749280 0.201689i
\(281\) −300.875 −1.07073 −0.535365 0.844621i \(-0.679826\pi\)
−0.535365 + 0.844621i \(0.679826\pi\)
\(282\) −1.85191 + 30.4799i −0.00656705 + 0.108085i
\(283\) 101.469 + 101.469i 0.358549 + 0.358549i 0.863278 0.504729i \(-0.168408\pi\)
−0.504729 + 0.863278i \(0.668408\pi\)
\(284\) −32.5743 + 183.916i −0.114698 + 0.647593i
\(285\) 44.4639 + 42.1284i 0.156014 + 0.147819i
\(286\) 255.020 213.821i 0.891679 0.747627i
\(287\) 272.435i 0.949250i
\(288\) 265.144 112.440i 0.920638 0.390418i
\(289\) 269.653 0.933057
\(290\) 228.469 + 272.490i 0.787824 + 0.939621i
\(291\) −126.058 + 133.047i −0.433190 + 0.457205i
\(292\) −383.442 67.9131i −1.31316 0.232579i
\(293\) −321.104 + 321.104i −1.09592 + 1.09592i −0.101037 + 0.994883i \(0.532216\pi\)
−0.994883 + 0.101037i \(0.967784\pi\)
\(294\) 74.9873 + 4.55610i 0.255059 + 0.0154970i
\(295\) 248.422i 0.842107i
\(296\) 218.980 + 58.9445i 0.739798 + 0.199137i
\(297\) −495.135 + 40.1409i −1.66712 + 0.135155i
\(298\) −16.5206 1.45173i −0.0554384 0.00487156i
\(299\) 217.690 217.690i 0.728061 0.728061i
\(300\) 46.1178 34.1269i 0.153726 0.113756i
\(301\) 217.490 217.490i 0.722558 0.722558i
\(302\) 275.191 230.733i 0.911228 0.764018i
\(303\) 11.9004 + 441.228i 0.0392753 + 1.45620i
\(304\) 65.8909 30.6030i 0.216746 0.100668i
\(305\) 316.888i 1.03898i
\(306\) 54.0643 + 57.8390i 0.176681 + 0.189016i
\(307\) 94.2282 94.2282i 0.306932 0.306932i −0.536786 0.843718i \(-0.680362\pi\)
0.843718 + 0.536786i \(0.180362\pi\)
\(308\) 364.301 254.672i 1.18280 0.826857i
\(309\) −124.776 118.222i −0.403806 0.382596i
\(310\) −70.8619 6.22688i −0.228587 0.0200867i
\(311\) −245.712 −0.790070 −0.395035 0.918666i \(-0.629268\pi\)
−0.395035 + 0.918666i \(0.629268\pi\)
\(312\) 113.347 + 185.115i 0.363291 + 0.593318i
\(313\) 353.841i 1.13048i −0.824925 0.565242i \(-0.808783\pi\)
0.824925 0.565242i \(-0.191217\pi\)
\(314\) 41.8943 + 3.68140i 0.133421 + 0.0117242i
\(315\) −163.267 + 181.899i −0.518307 + 0.577458i
\(316\) 28.0183 158.193i 0.0886654 0.500610i
\(317\) 234.024 + 234.024i 0.738245 + 0.738245i 0.972238 0.233994i \(-0.0751795\pi\)
−0.233994 + 0.972238i \(0.575179\pi\)
\(318\) 131.940 116.826i 0.414906 0.367376i
\(319\) −727.494 −2.28055
\(320\) 73.8458 + 278.144i 0.230768 + 0.869199i
\(321\) 10.5747 + 392.076i 0.0329431 + 1.22142i
\(322\) 315.086 264.184i 0.978529 0.820447i
\(323\) 14.1224 + 14.1224i 0.0437226 + 0.0437226i
\(324\) 21.8334 323.264i 0.0673871 0.997727i
\(325\) 30.5752 + 30.5752i 0.0940777 + 0.0940777i
\(326\) −186.295 16.3704i −0.571456 0.0502158i
\(327\) 8.62193 + 319.673i 0.0263668 + 0.977592i
\(328\) −312.715 + 180.069i −0.953398 + 0.548989i
\(329\) −30.7386 −0.0934305
\(330\) 30.1037 495.465i 0.0912232 1.50141i
\(331\) −32.5392 32.5392i −0.0983058 0.0983058i 0.656243 0.754549i \(-0.272144\pi\)
−0.754549 + 0.656243i \(0.772144\pi\)
\(332\) 164.798 115.205i 0.496379 0.347004i
\(333\) 170.412 189.860i 0.511748 0.570150i
\(334\) 203.939 + 243.234i 0.610597 + 0.728246i
\(335\) 285.626i 0.852615i
\(336\) 129.164 + 259.546i 0.384418 + 0.772459i
\(337\) −185.573 −0.550660 −0.275330 0.961350i \(-0.588787\pi\)
−0.275330 + 0.961350i \(0.588787\pi\)
\(338\) 133.645 112.055i 0.395400 0.331523i
\(339\) −244.461 231.621i −0.721124 0.683247i
\(340\) −64.8395 + 45.3273i −0.190704 + 0.133316i
\(341\) 102.906 102.906i 0.301776 0.301776i
\(342\) 2.75542 81.6858i 0.00805678 0.238847i
\(343\) 371.574i 1.08330i
\(344\) −393.398 105.894i −1.14360 0.307831i
\(345\) −12.3802 459.016i −0.0358846 1.33048i
\(346\) 19.0633 216.940i 0.0550962 0.626995i
\(347\) 51.9585 51.9585i 0.149736 0.149736i −0.628264 0.778000i \(-0.716234\pi\)
0.778000 + 0.628264i \(0.216234\pi\)
\(348\) 70.1245 469.281i 0.201507 1.34851i
\(349\) 378.719 378.719i 1.08515 1.08515i 0.0891344 0.996020i \(-0.471590\pi\)
0.996020 0.0891344i \(-0.0284101\pi\)
\(350\) 37.1054 + 44.2548i 0.106015 + 0.126442i
\(351\) 243.394 19.7322i 0.693431 0.0562170i
\(352\) −533.114 249.835i −1.51453 0.709760i
\(353\) 326.435i 0.924744i −0.886686 0.462372i \(-0.846998\pi\)
0.886686 0.462372i \(-0.153002\pi\)
\(354\) −248.177 + 219.747i −0.701066 + 0.620754i
\(355\) −148.468 + 148.468i −0.418220 + 0.418220i
\(356\) −48.6085 + 274.447i −0.136541 + 0.770918i
\(357\) −54.8149 + 57.8537i −0.153543 + 0.162055i
\(358\) 25.0957 285.589i 0.0700997 0.797734i
\(359\) −254.927 −0.710103 −0.355051 0.934847i \(-0.615537\pi\)
−0.355051 + 0.934847i \(0.615537\pi\)
\(360\) 316.706 + 67.1777i 0.879739 + 0.186605i
\(361\) 340.382i 0.942887i
\(362\) −52.5813 + 598.375i −0.145252 + 1.65297i
\(363\) 473.668 + 448.789i 1.30487 + 1.23633i
\(364\) −179.080 + 125.190i −0.491979 + 0.343928i
\(365\) −309.536 309.536i −0.848045 0.848045i
\(366\) −316.576 + 280.310i −0.864961 + 0.765874i
\(367\) −124.247 −0.338548 −0.169274 0.985569i \(-0.554142\pi\)
−0.169274 + 0.985569i \(0.554142\pi\)
\(368\) −511.503 187.057i −1.38995 0.508308i
\(369\) 21.8825 + 405.370i 0.0593021 + 1.09856i
\(370\) 163.789 + 195.348i 0.442673 + 0.527966i
\(371\) 125.439 + 125.439i 0.338110 + 0.338110i
\(372\) 56.4617 + 76.3002i 0.151779 + 0.205108i
\(373\) −201.674 201.674i −0.540680 0.540680i 0.383048 0.923728i \(-0.374874\pi\)
−0.923728 + 0.383048i \(0.874874\pi\)
\(374\) 14.1678 161.229i 0.0378818 0.431095i
\(375\) 401.589 10.8313i 1.07091 0.0288835i
\(376\) 20.3170 + 35.2834i 0.0540346 + 0.0938388i
\(377\) 357.616 0.948583
\(378\) 326.141 + 2.20296i 0.862807 + 0.00582794i
\(379\) −227.541 227.541i −0.600372 0.600372i 0.340040 0.940411i \(-0.389560\pi\)
−0.940411 + 0.340040i \(0.889560\pi\)
\(380\) 80.4181 + 14.2432i 0.211627 + 0.0374822i
\(381\) −193.199 + 203.910i −0.507084 + 0.535196i
\(382\) 55.6807 46.6854i 0.145761 0.122213i
\(383\) 128.933i 0.336641i −0.985732 0.168320i \(-0.946166\pi\)
0.985732 0.168320i \(-0.0538343\pi\)
\(384\) 212.548 319.811i 0.553511 0.832842i
\(385\) 499.671 1.29785
\(386\) −60.5346 72.1982i −0.156825 0.187042i
\(387\) −306.145 + 341.084i −0.791073 + 0.881353i
\(388\) −42.6192 + 240.630i −0.109843 + 0.620182i
\(389\) 107.474 107.474i 0.276283 0.276283i −0.555340 0.831623i \(-0.687412\pi\)
0.831623 + 0.555340i \(0.187412\pi\)
\(390\) −14.7981 + 243.557i −0.0379439 + 0.624505i
\(391\) 149.723i 0.382922i
\(392\) 86.8049 49.9843i 0.221441 0.127511i
\(393\) 345.738 9.32494i 0.879739 0.0237276i
\(394\) 90.9463 + 7.99176i 0.230828 + 0.0202837i
\(395\) 127.702 127.702i 0.323297 0.323297i
\(396\) −521.607 + 408.201i −1.31719 + 1.03081i
\(397\) −259.306 + 259.306i −0.653163 + 0.653163i −0.953753 0.300591i \(-0.902816\pi\)
0.300591 + 0.953753i \(0.402816\pi\)
\(398\) −181.122 + 151.861i −0.455080 + 0.381561i
\(399\) 82.2444 2.21822i 0.206126 0.00555946i
\(400\) 26.2728 71.8422i 0.0656819 0.179605i
\(401\) 335.810i 0.837431i 0.908117 + 0.418716i \(0.137520\pi\)
−0.908117 + 0.418716i \(0.862480\pi\)
\(402\) 285.345 252.657i 0.709813 0.628500i
\(403\) −50.5856 + 50.5856i −0.125523 + 0.125523i
\(404\) 337.192 + 482.343i 0.834633 + 1.19392i
\(405\) 228.322 283.771i 0.563759 0.700669i
\(406\) 475.805 + 41.8106i 1.17193 + 0.102982i
\(407\) −521.539 −1.28142
\(408\) 102.638 + 24.6804i 0.251563 + 0.0604911i
\(409\) 66.3618i 0.162254i 0.996704 + 0.0811269i \(0.0258519\pi\)
−0.996704 + 0.0811269i \(0.974148\pi\)
\(410\) −404.092 35.5090i −0.985591 0.0866073i
\(411\) 50.6575 53.4658i 0.123254 0.130087i
\(412\) −225.672 39.9698i −0.547747 0.0970140i
\(413\) −235.948 235.948i −0.571303 0.571303i
\(414\) −447.613 + 418.401i −1.08119 + 1.01063i
\(415\) 226.035 0.544662
\(416\) 262.064 + 122.812i 0.629961 + 0.295222i
\(417\) −13.0167 + 0.351074i −0.0312150 + 0.000841904i
\(418\) −128.034 + 107.350i −0.306302 + 0.256819i
\(419\) 371.566 + 371.566i 0.886792 + 0.886792i 0.994214 0.107422i \(-0.0342596\pi\)
−0.107422 + 0.994214i \(0.534260\pi\)
\(420\) −48.1642 + 322.320i −0.114677 + 0.767430i
\(421\) 487.629 + 487.629i 1.15826 + 1.15826i 0.984849 + 0.173416i \(0.0554806\pi\)
0.173416 + 0.984849i \(0.444519\pi\)
\(422\) −180.010 15.8181i −0.426564 0.0374837i
\(423\) 45.7376 2.46899i 0.108127 0.00583685i
\(424\) 61.0750 226.895i 0.144045 0.535129i
\(425\) 21.0290 0.0494800
\(426\) 279.652 + 16.9912i 0.656461 + 0.0398855i
\(427\) −300.976 300.976i −0.704862 0.704862i
\(428\) 299.629 + 428.611i 0.700068 + 1.00143i
\(429\) −362.375 343.341i −0.844696 0.800328i
\(430\) −294.247 350.942i −0.684296 0.816145i
\(431\) 505.901i 1.17378i −0.809665 0.586892i \(-0.800351\pi\)
0.809665 0.586892i \(-0.199649\pi\)
\(432\) −213.038 375.818i −0.493143 0.869948i
\(433\) −758.226 −1.75110 −0.875550 0.483128i \(-0.839500\pi\)
−0.875550 + 0.483128i \(0.839500\pi\)
\(434\) −73.2180 + 61.3895i −0.168705 + 0.141451i
\(435\) 366.861 387.199i 0.843359 0.890113i
\(436\) 244.298 + 349.461i 0.560316 + 0.801516i
\(437\) −109.293 + 109.293i −0.250097 + 0.250097i
\(438\) −35.4245 + 583.039i −0.0808778 + 1.33114i
\(439\) 145.760i 0.332026i −0.986124 0.166013i \(-0.946911\pi\)
0.986124 0.166013i \(-0.0530895\pi\)
\(440\) −330.263 573.548i −0.750597 1.30352i
\(441\) −6.07425 112.525i −0.0137738 0.255158i
\(442\) −6.96449 + 79.2559i −0.0157568 + 0.179312i
\(443\) 607.046 607.046i 1.37031 1.37031i 0.510323 0.859983i \(-0.329526\pi\)
0.859983 0.510323i \(-0.170474\pi\)
\(444\) 50.2721 336.427i 0.113226 0.757718i
\(445\) −221.549 + 221.549i −0.497864 + 0.497864i
\(446\) 55.1114 + 65.7302i 0.123568 + 0.147377i
\(447\) 0.670702 + 24.8674i 0.00150045 + 0.0556318i
\(448\) 334.315 + 194.040i 0.746240 + 0.433124i
\(449\) 190.654i 0.424620i 0.977202 + 0.212310i \(0.0680986\pi\)
−0.977202 + 0.212310i \(0.931901\pi\)
\(450\) −58.7657 62.8687i −0.130590 0.139708i
\(451\) 586.824 586.824i 1.30116 1.30116i
\(452\) −442.136 78.3087i −0.978177 0.173249i
\(453\) −391.037 370.497i −0.863216 0.817875i
\(454\) 5.69542 64.8139i 0.0125450 0.142762i
\(455\) −245.624 −0.539834
\(456\) −56.9064 92.9381i −0.124795 0.203812i
\(457\) 128.091i 0.280287i 0.990131 + 0.140143i \(0.0447563\pi\)
−0.990131 + 0.140143i \(0.955244\pi\)
\(458\) 59.7390 679.830i 0.130435 1.48434i
\(459\) 76.9150 90.4863i 0.167571 0.197138i
\(460\) −350.786 501.789i −0.762578 1.09085i
\(461\) −74.2060 74.2060i −0.160968 0.160968i 0.622028 0.782995i \(-0.286309\pi\)
−0.782995 + 0.622028i \(0.786309\pi\)
\(462\) −441.995 499.179i −0.956699 1.08047i
\(463\) 620.192 1.33951 0.669753 0.742584i \(-0.266400\pi\)
0.669753 + 0.742584i \(0.266400\pi\)
\(464\) −266.496 573.789i −0.574344 1.23661i
\(465\) 2.87684 + 106.664i 0.00618675 + 0.229384i
\(466\) −308.796 368.294i −0.662653 0.790331i
\(467\) 331.708 + 331.708i 0.710296 + 0.710296i 0.966597 0.256301i \(-0.0825038\pi\)
−0.256301 + 0.966597i \(0.582504\pi\)
\(468\) 256.407 200.660i 0.547879 0.428761i
\(469\) 271.284 + 271.284i 0.578431 + 0.578431i
\(470\) −4.00646 + 45.5935i −0.00852437 + 0.0970074i
\(471\) −1.70082 63.0607i −0.00361108 0.133887i
\(472\) −114.881 + 426.785i −0.243392 + 0.904206i
\(473\) 936.946 1.98086
\(474\) −240.539 14.6147i −0.507466 0.0308328i
\(475\) −15.3505 15.3505i −0.0323168 0.0323168i
\(476\) −18.5324 + 104.635i −0.0389336 + 0.219822i
\(477\) −196.722 176.571i −0.412415 0.370170i
\(478\) −334.365 + 280.348i −0.699508 + 0.586502i
\(479\) 867.941i 1.81198i 0.423294 + 0.905992i \(0.360874\pi\)
−0.423294 + 0.905992i \(0.639126\pi\)
\(480\) 401.811 157.756i 0.837105 0.328658i
\(481\) 256.374 0.533002
\(482\) 114.314 + 136.340i 0.237166 + 0.282863i
\(483\) −447.727 424.210i −0.926970 0.878281i
\(484\) 856.684 + 151.731i 1.77001 + 0.313494i
\(485\) −194.251 + 194.251i −0.400517 + 0.400517i
\(486\) −485.459 + 22.9184i −0.998887 + 0.0471572i
\(487\) 815.778i 1.67511i −0.546354 0.837554i \(-0.683985\pi\)
0.546354 0.837554i \(-0.316015\pi\)
\(488\) −146.543 + 544.409i −0.300292 + 1.11559i
\(489\) 7.56317 + 280.417i 0.0154666 + 0.573450i
\(490\) 112.170 + 9.85676i 0.228918 + 0.0201158i
\(491\) −337.746 + 337.746i −0.687874 + 0.687874i −0.961762 0.273888i \(-0.911690\pi\)
0.273888 + 0.961762i \(0.411690\pi\)
\(492\) 321.975 + 435.105i 0.654420 + 0.884360i
\(493\) 122.980 122.980i 0.249453 0.249453i
\(494\) 62.9380 52.7703i 0.127405 0.106823i
\(495\) −743.486 + 40.1345i −1.50199 + 0.0810799i
\(496\) 118.860 + 43.4673i 0.239637 + 0.0876357i
\(497\) 282.026i 0.567457i
\(498\) −199.944 225.812i −0.401494 0.453438i
\(499\) −515.289 + 515.289i −1.03264 + 1.03264i −0.0331940 + 0.999449i \(0.510568\pi\)
−0.999449 + 0.0331940i \(0.989432\pi\)
\(500\) 439.011 306.900i 0.878022 0.613799i
\(501\) 327.473 345.627i 0.653639 0.689875i
\(502\) 476.805 + 41.8985i 0.949810 + 0.0834631i
\(503\) −196.781 −0.391215 −0.195607 0.980682i \(-0.562668\pi\)
−0.195607 + 0.980682i \(0.562668\pi\)
\(504\) 364.608 236.999i 0.723429 0.470236i
\(505\) 661.576i 1.31005i
\(506\) 1247.75 + 109.644i 2.46590 + 0.216687i
\(507\) −189.905 179.930i −0.374567 0.354892i
\(508\) −65.3188 + 368.794i −0.128580 + 0.725973i
\(509\) 29.3054 + 29.3054i 0.0575744 + 0.0575744i 0.735308 0.677733i \(-0.237038\pi\)
−0.677733 + 0.735308i \(0.737038\pi\)
\(510\) 78.6677 + 88.8455i 0.154250 + 0.174207i
\(511\) −587.988 −1.15066
\(512\) 1.75962 511.997i 0.00343675 0.999994i
\(513\) −122.197 + 9.90664i −0.238202 + 0.0193112i
\(514\) −602.472 + 505.142i −1.17212 + 0.982766i
\(515\) −182.175 182.175i −0.353739 0.353739i
\(516\) −90.3139 + 604.391i −0.175027 + 1.17130i
\(517\) −66.2109 66.2109i −0.128068 0.128068i
\(518\) 341.104 + 29.9740i 0.658501 + 0.0578648i
\(519\) −326.546 + 8.80731i −0.629182 + 0.0169698i
\(520\) 162.348 + 281.940i 0.312207 + 0.542193i
\(521\) −770.641 −1.47916 −0.739578 0.673071i \(-0.764975\pi\)
−0.739578 + 0.673071i \(0.764975\pi\)
\(522\) −711.333 23.9946i −1.36271 0.0459667i
\(523\) 258.725 + 258.725i 0.494694 + 0.494694i 0.909782 0.415087i \(-0.136249\pi\)
−0.415087 + 0.909782i \(0.636249\pi\)
\(524\) 377.955 264.217i 0.721288 0.504231i
\(525\) 59.5815 62.8846i 0.113489 0.119780i
\(526\) −231.125 275.657i −0.439400 0.524063i
\(527\) 34.7917i 0.0660183i
\(528\) −280.842 + 837.282i −0.531899 + 1.58576i
\(529\) 629.695 1.19035
\(530\) 202.408 169.709i 0.381902 0.320205i
\(531\) 370.031 + 332.127i 0.696857 + 0.625475i
\(532\) 89.9082 62.8521i 0.169000 0.118143i
\(533\) −288.466 + 288.466i −0.541212 + 0.541212i
\(534\) 417.308 + 25.3549i 0.781475 + 0.0474811i
\(535\) 587.878i 1.09884i
\(536\) 132.086 490.702i 0.246429 0.915489i
\(537\) −429.878 + 11.5943i −0.800517 + 0.0215909i
\(538\) 71.9322 818.589i 0.133703 1.52154i
\(539\) −162.894 + 162.894i −0.302214 + 0.302214i
\(540\) 45.7766 483.466i 0.0847715 0.895307i
\(541\) −122.667 + 122.667i −0.226742 + 0.226742i −0.811330 0.584588i \(-0.801256\pi\)
0.584588 + 0.811330i \(0.301256\pi\)
\(542\) −638.062 761.003i −1.17724 1.40406i
\(543\) 900.694 24.2927i 1.65874 0.0447380i
\(544\) 132.355 47.8872i 0.243299 0.0880279i
\(545\) 479.316i 0.879479i
\(546\) 217.272 + 245.383i 0.397935 + 0.449419i
\(547\) 334.075 334.075i 0.610740 0.610740i −0.332399 0.943139i \(-0.607858\pi\)
0.943139 + 0.332399i \(0.107858\pi\)
\(548\) 17.1268 96.6991i 0.0312533 0.176458i
\(549\) 472.013 + 423.663i 0.859768 + 0.771699i
\(550\) −15.3998 + 175.250i −0.0279996 + 0.318636i
\(551\) −179.543 −0.325849
\(552\) −191.000 + 794.309i −0.346015 + 1.43897i
\(553\) 242.581i 0.438663i
\(554\) −23.0283 + 262.062i −0.0415674 + 0.473037i
\(555\) 263.002 277.582i 0.473878 0.500148i
\(556\) −14.2296 + 9.94748i −0.0255928 + 0.0178912i
\(557\) 159.480 + 159.480i 0.286320 + 0.286320i 0.835623 0.549303i \(-0.185107\pi\)
−0.549303 + 0.835623i \(0.685107\pi\)
\(558\) 104.014 97.2257i 0.186405 0.174240i
\(559\) −460.576 −0.823929
\(560\) 183.040 + 394.100i 0.326856 + 0.703750i
\(561\) −242.688 + 6.54557i −0.432599 + 0.0116677i
\(562\) 386.621 + 461.115i 0.687938 + 0.820489i
\(563\) −341.226 341.226i −0.606086 0.606086i 0.335835 0.941921i \(-0.390982\pi\)
−0.941921 + 0.335835i \(0.890982\pi\)
\(564\) 49.0926 36.3282i 0.0870436 0.0644117i
\(565\) −356.918 356.918i −0.631713 0.631713i
\(566\) 25.1227 285.897i 0.0443865 0.505118i
\(567\) −52.6646 486.380i −0.0928828 0.857813i
\(568\) 323.724 186.408i 0.569937 0.328183i
\(569\) −882.975 −1.55180 −0.775901 0.630855i \(-0.782704\pi\)
−0.775901 + 0.630855i \(0.782704\pi\)
\(570\) 7.42947 122.279i 0.0130342 0.214525i
\(571\) 370.112 + 370.112i 0.648181 + 0.648181i 0.952553 0.304372i \(-0.0984466\pi\)
−0.304372 + 0.952553i \(0.598447\pi\)
\(572\) −655.397 116.080i −1.14580 0.202938i
\(573\) −79.1204 74.9645i −0.138081 0.130828i
\(574\) −417.528 + 350.076i −0.727401 + 0.609889i
\(575\) 162.742i 0.283030i
\(576\) −513.031 261.869i −0.890679 0.454634i
\(577\) −698.607 −1.21076 −0.605378 0.795938i \(-0.706978\pi\)
−0.605378 + 0.795938i \(0.706978\pi\)
\(578\) −346.502 413.265i −0.599484 0.714992i
\(579\) −97.2025 + 102.591i −0.167880 + 0.177187i
\(580\) 124.032 700.294i 0.213849 1.20740i
\(581\) 214.685 214.685i 0.369509 0.369509i
\(582\) 365.889 + 22.2308i 0.628675 + 0.0381972i
\(583\) 540.389i 0.926911i
\(584\) 388.636 + 674.922i 0.665473 + 1.15569i
\(585\) 365.477 19.7290i 0.624747 0.0337248i
\(586\) 904.734 + 79.5021i 1.54392 + 0.135669i
\(587\) 196.072 196.072i 0.334024 0.334024i −0.520088 0.854112i \(-0.674101\pi\)
0.854112 + 0.520088i \(0.174101\pi\)
\(588\) −89.3754 120.779i −0.151999 0.205406i
\(589\) 25.3968 25.3968i 0.0431185 0.0431185i
\(590\) −380.726 + 319.219i −0.645298 + 0.541050i
\(591\) −3.69222 136.895i −0.00624742 0.231633i
\(592\) −191.050 411.348i −0.322720 0.694844i
\(593\) 774.011i 1.30525i −0.757683 0.652623i \(-0.773669\pi\)
0.757683 0.652623i \(-0.226331\pi\)
\(594\) 697.762 + 707.253i 1.17468 + 1.19066i
\(595\) −84.4675 + 84.4675i −0.141962 + 0.141962i
\(596\) 19.0040 + 27.1847i 0.0318859 + 0.0456118i
\(597\) 257.368 + 243.849i 0.431102 + 0.408458i
\(598\) −613.357 53.8978i −1.02568 0.0901301i
\(599\) 783.533 1.30807 0.654034 0.756465i \(-0.273075\pi\)
0.654034 + 0.756465i \(0.273075\pi\)
\(600\) −111.563 26.8265i −0.185939 0.0447109i
\(601\) 797.210i 1.32647i −0.748410 0.663236i \(-0.769182\pi\)
0.748410 0.663236i \(-0.230818\pi\)
\(602\) −612.793 53.8482i −1.01793 0.0894489i
\(603\) −425.448 381.868i −0.705552 0.633280i
\(604\) −707.235 125.262i −1.17092 0.207387i
\(605\) 691.565 + 691.565i 1.14308 + 1.14308i
\(606\) 660.925 585.212i 1.09064 0.965696i
\(607\) 433.576 0.714293 0.357146 0.934048i \(-0.383750\pi\)
0.357146 + 0.934048i \(0.383750\pi\)
\(608\) −131.571 61.6585i −0.216399 0.101412i
\(609\) −19.3167 716.197i −0.0317186 1.17602i
\(610\) −485.656 + 407.197i −0.796157 + 0.667537i
\(611\) 32.5475 + 32.5475i 0.0532692 + 0.0532692i
\(612\) 19.1708 157.180i 0.0313249 0.256831i
\(613\) −493.642 493.642i −0.805289 0.805289i 0.178628 0.983917i \(-0.442834\pi\)
−0.983917 + 0.178628i \(0.942834\pi\)
\(614\) −265.494 23.3299i −0.432401 0.0379966i
\(615\) 16.4053 + 608.253i 0.0266752 + 0.989029i
\(616\) −858.428 231.070i −1.39355 0.375113i
\(617\) 685.069 1.11032 0.555161 0.831743i \(-0.312657\pi\)
0.555161 + 0.831743i \(0.312657\pi\)
\(618\) −20.8488 + 343.144i −0.0337360 + 0.555248i
\(619\) −379.995 379.995i −0.613885 0.613885i 0.330071 0.943956i \(-0.392927\pi\)
−0.943956 + 0.330071i \(0.892927\pi\)
\(620\) 81.5136 + 116.603i 0.131474 + 0.188069i
\(621\) 700.269 + 595.241i 1.12765 + 0.958520i
\(622\) 315.737 + 376.573i 0.507616 + 0.605422i
\(623\) 420.850i 0.675521i
\(624\) 138.054 411.585i 0.221241 0.659591i
\(625\) 482.618 0.772189
\(626\) −542.290 + 454.683i −0.866278 + 0.726330i
\(627\) 181.932 + 172.376i 0.290163 + 0.274922i
\(628\) −48.1917 68.9369i −0.0767384 0.109772i
\(629\) 88.1642 88.1642i 0.140166 0.140166i
\(630\) 488.571 + 16.4804i 0.775509 + 0.0261594i
\(631\) 489.285i 0.775412i −0.921783 0.387706i \(-0.873268\pi\)
0.921783 0.387706i \(-0.126732\pi\)
\(632\) −278.446 + 160.336i −0.440580 + 0.253696i
\(633\) 7.30802 + 270.957i 0.0115451 + 0.428052i
\(634\) 57.9418 659.378i 0.0913908 1.04003i
\(635\) −297.712 + 297.712i −0.468838 + 0.468838i
\(636\) −348.586 52.0891i −0.548092 0.0819011i
\(637\) 80.0739 80.0739i 0.125705 0.125705i
\(638\) 934.823 + 1114.94i 1.46524 + 1.74756i
\(639\) −22.6529 419.641i −0.0354505 0.656716i
\(640\) 331.386 470.587i 0.517791 0.735291i
\(641\) 492.158i 0.767797i −0.923375 0.383898i \(-0.874581\pi\)
0.923375 0.383898i \(-0.125419\pi\)
\(642\) 587.299 520.020i 0.914796 0.810001i
\(643\) −169.985 + 169.985i −0.264362 + 0.264362i −0.826823 0.562462i \(-0.809854\pi\)
0.562462 + 0.826823i \(0.309854\pi\)
\(644\) −809.766 143.421i −1.25740 0.222704i
\(645\) −472.483 + 498.677i −0.732532 + 0.773142i
\(646\) 3.49656 39.7908i 0.00541263 0.0615957i
\(647\) 1003.50 1.55101 0.775503 0.631343i \(-0.217496\pi\)
0.775503 + 0.631343i \(0.217496\pi\)
\(648\) −523.483 + 381.929i −0.807844 + 0.589397i
\(649\) 1016.46i 1.56620i
\(650\) 7.57011 86.1479i 0.0116463 0.132535i
\(651\) 104.040 + 98.5754i 0.159816 + 0.151422i
\(652\) 214.298 + 306.547i 0.328678 + 0.470165i
\(653\) −407.090 407.090i −0.623415 0.623415i 0.322988 0.946403i \(-0.395313\pi\)
−0.946403 + 0.322988i \(0.895313\pi\)
\(654\) 478.845 423.990i 0.732178 0.648303i
\(655\) 518.398 0.791448
\(656\) 677.805 + 247.874i 1.03324 + 0.377856i
\(657\) 874.897 47.2283i 1.33165 0.0718848i
\(658\) 39.4988 + 47.1094i 0.0600286 + 0.0715948i
\(659\) −635.355 635.355i −0.964119 0.964119i 0.0352587 0.999378i \(-0.488774\pi\)
−0.999378 + 0.0352587i \(0.988774\pi\)
\(660\) −798.023 + 590.532i −1.20913 + 0.894745i
\(661\) −196.325 196.325i −0.297013 0.297013i 0.542830 0.839843i \(-0.317353\pi\)
−0.839843 + 0.542830i \(0.817353\pi\)
\(662\) −8.05637 + 91.6815i −0.0121697 + 0.138492i
\(663\) 119.299 3.21762i 0.179937 0.00485312i
\(664\) −388.325 104.528i −0.584826 0.157422i
\(665\) 123.317 0.185439
\(666\) −509.953 17.2017i −0.765696 0.0258284i
\(667\) 951.737 + 951.737i 1.42689 + 1.42689i
\(668\) 110.715 625.107i 0.165742 0.935788i
\(669\) 88.4944 93.4003i 0.132279 0.139612i
\(670\) 437.745 367.027i 0.653350 0.547801i
\(671\) 1296.60i 1.93234i
\(672\) 231.800 531.469i 0.344941 0.790877i
\(673\) −489.653 −0.727568 −0.363784 0.931483i \(-0.618515\pi\)
−0.363784 + 0.931483i \(0.618515\pi\)
\(674\) 238.459 + 284.405i 0.353797 + 0.421966i
\(675\) −83.6034 + 98.3549i −0.123857 + 0.145711i
\(676\) −343.466 60.8327i −0.508085 0.0899893i
\(677\) 832.940 832.940i 1.23034 1.23034i 0.266507 0.963833i \(-0.414131\pi\)
0.963833 0.266507i \(-0.0858695\pi\)
\(678\) −40.8470 + 672.286i −0.0602463 + 0.991573i
\(679\) 368.994i 0.543438i
\(680\) 152.786 + 41.1265i 0.224685 + 0.0604801i
\(681\) −97.5600 + 2.63131i −0.143260 + 0.00386388i
\(682\) −289.944 25.4784i −0.425138 0.0373584i
\(683\) −773.804 + 773.804i −1.13295 + 1.13295i −0.143264 + 0.989684i \(0.545760\pi\)
−0.989684 + 0.143264i \(0.954240\pi\)
\(684\) −128.731 + 100.743i −0.188203 + 0.147284i
\(685\) 78.0611 78.0611i 0.113958 0.113958i
\(686\) 569.466 477.468i 0.830125 0.696018i
\(687\) −1023.30 + 27.5996i −1.48952 + 0.0401741i
\(688\) 343.222 + 738.987i 0.498869 + 1.07411i
\(689\) 265.640i 0.385545i
\(690\) −687.571 + 608.805i −0.996479 + 0.882326i
\(691\) −840.306 + 840.306i −1.21607 + 1.21607i −0.247077 + 0.968996i \(0.579470\pi\)
−0.968996 + 0.247077i \(0.920530\pi\)
\(692\) −356.974 + 249.550i −0.515859 + 0.360622i
\(693\) −668.035 + 744.274i −0.963975 + 1.07399i
\(694\) −146.397 12.8644i −0.210946 0.0185366i
\(695\) −19.5171 −0.0280822
\(696\) −809.320 + 495.551i −1.16282 + 0.711998i
\(697\) 198.401i 0.284650i
\(698\) −1067.07 93.7668i −1.52875 0.134336i
\(699\) −495.845 + 523.334i −0.709364 + 0.748689i
\(700\) 20.1440 113.734i 0.0287771 0.162477i
\(701\) −529.432 529.432i −0.755253 0.755253i 0.220201 0.975454i \(-0.429329\pi\)
−0.975454 + 0.220201i \(0.929329\pi\)
\(702\) −343.000 347.666i −0.488605 0.495250i
\(703\) −128.714 −0.183092
\(704\) 302.153 + 1138.08i 0.429195 + 1.61659i
\(705\) 68.6288 1.85100i 0.0973458 0.00262553i
\(706\) −500.287 + 419.465i −0.708622 + 0.594144i
\(707\) 628.357 + 628.357i 0.888765 + 0.888765i
\(708\) 655.685 + 97.9787i 0.926109 + 0.138388i
\(709\) −56.2182 56.2182i −0.0792923 0.0792923i 0.666348 0.745641i \(-0.267856\pi\)
−0.745641 + 0.666348i \(0.767856\pi\)
\(710\) 418.319 + 36.7591i 0.589181 + 0.0517734i
\(711\) 19.4845 + 360.948i 0.0274044 + 0.507663i
\(712\) 483.073 278.165i 0.678473 0.390681i
\(713\) −269.251 −0.377631
\(714\) 159.102 + 9.66677i 0.222832 + 0.0135389i
\(715\) −529.074 529.074i −0.739964 0.739964i
\(716\) −469.936 + 328.518i −0.656335 + 0.458824i
\(717\) 475.121 + 450.165i 0.662651 + 0.627845i
\(718\) 327.578 + 390.696i 0.456237 + 0.544144i
\(719\) 966.944i 1.34485i −0.740167 0.672423i \(-0.765254\pi\)
0.740167 0.672423i \(-0.234746\pi\)
\(720\) −304.009 571.700i −0.422234 0.794027i
\(721\) −346.056 −0.479967
\(722\) 521.663 437.388i 0.722525 0.605800i
\(723\) 183.558 193.734i 0.253884 0.267959i
\(724\) 984.624 688.321i 1.35998 0.950720i
\(725\) −133.674 + 133.674i −0.184378 + 0.184378i
\(726\) 79.1452 1302.62i 0.109015 1.79425i
\(727\) 1338.18i 1.84069i 0.391110 + 0.920344i \(0.372091\pi\)
−0.391110 + 0.920344i \(0.627909\pi\)
\(728\) 421.979 + 113.587i 0.579642 + 0.156027i
\(729\) 117.429 + 719.480i 0.161083 + 0.986941i
\(730\) −76.6380 + 872.140i −0.104984 + 1.19471i
\(731\) −158.387 + 158.387i −0.216672 + 0.216672i
\(732\) 836.394 + 124.982i 1.14261 + 0.170740i
\(733\) 757.046 757.046i 1.03280 1.03280i 0.0333615 0.999443i \(-0.489379\pi\)
0.999443 0.0333615i \(-0.0106213\pi\)
\(734\) 159.656 + 190.418i 0.217515 + 0.259426i
\(735\) −4.55386 168.842i −0.00619573 0.229717i
\(736\) 370.596 + 1024.29i 0.503528 + 1.39169i
\(737\) 1168.69i 1.58574i
\(738\) 593.143 554.433i 0.803716 0.751264i
\(739\) 495.335 495.335i 0.670278 0.670278i −0.287502 0.957780i \(-0.592825\pi\)
0.957780 + 0.287502i \(0.0928249\pi\)
\(740\) 88.9185 502.039i 0.120160 0.678432i
\(741\) −89.4328 84.7353i −0.120692 0.114353i
\(742\) 31.0573 353.432i 0.0418562 0.476324i
\(743\) 1421.01 1.91253 0.956266 0.292500i \(-0.0944872\pi\)
0.956266 + 0.292500i \(0.0944872\pi\)
\(744\) 44.3835 184.577i 0.0596552 0.248087i
\(745\) 37.2861i 0.0500485i
\(746\) −49.9323 + 568.230i −0.0669334 + 0.761702i
\(747\) −302.197 + 336.685i −0.404547 + 0.450716i
\(748\) −265.302 + 185.465i −0.354682 + 0.247948i
\(749\) 558.359 + 558.359i 0.745473 + 0.745473i
\(750\) −532.638 601.550i −0.710185 0.802066i
\(751\) −143.509 −0.191090 −0.0955452 0.995425i \(-0.530459\pi\)
−0.0955452 + 0.995425i \(0.530459\pi\)
\(752\) 27.9674 76.4762i 0.0371907 0.101697i
\(753\) −19.3572 717.702i −0.0257068 0.953123i
\(754\) −459.533 548.075i −0.609460 0.726890i
\(755\) −570.921 570.921i −0.756187 0.756187i
\(756\) −415.712 502.668i −0.549884 0.664905i
\(757\) 651.883 + 651.883i 0.861140 + 0.861140i 0.991471 0.130331i \(-0.0416040\pi\)
−0.130331 + 0.991471i \(0.541604\pi\)
\(758\) −56.3367 + 641.112i −0.0743229 + 0.845794i
\(759\) −50.6558 1878.15i −0.0667402 2.47450i
\(760\) −81.5076 141.550i −0.107247 0.186249i
\(761\) −434.623 −0.571122 −0.285561 0.958361i \(-0.592180\pi\)
−0.285561 + 0.958361i \(0.592180\pi\)
\(762\) 560.767 + 34.0712i 0.735914 + 0.0447129i
\(763\) 455.249 + 455.249i 0.596656 + 0.596656i
\(764\) −143.098 25.3448i −0.187301 0.0331738i
\(765\) 118.899