Properties

Label 48.3.i.b.29.5
Level $48$
Weight $3$
Character 48.29
Analytic conductor $1.308$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 48.i (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.30790526893\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 2 x^{18} + 6 x^{16} - 24 x^{14} - 24 x^{12} + 1216 x^{10} - 384 x^{8} - 6144 x^{6} + 24576 x^{4} - 131072 x^{2} + 1048576\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{13} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 29.5
Root \(-0.312316 - 1.97546i\) of defining polynomial
Character \(\chi\) \(=\) 48.29
Dual form 48.3.i.b.5.5

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.312316 + 1.97546i) q^{2} +(-1.18505 + 2.75602i) q^{3} +(-3.80492 - 1.23394i) q^{4} +(-0.00985921 - 0.00985921i) q^{5} +(-5.07432 - 3.20176i) q^{6} +6.42277i q^{7} +(3.62594 - 7.13110i) q^{8} +(-6.19134 - 6.53203i) q^{9} +O(q^{10})\) \(q+(-0.312316 + 1.97546i) q^{2} +(-1.18505 + 2.75602i) q^{3} +(-3.80492 - 1.23394i) q^{4} +(-0.00985921 - 0.00985921i) q^{5} +(-5.07432 - 3.20176i) q^{6} +6.42277i q^{7} +(3.62594 - 7.13110i) q^{8} +(-6.19134 - 6.53203i) q^{9} +(0.0225557 - 0.0163973i) q^{10} +(9.07186 + 9.07186i) q^{11} +(7.90976 - 9.02417i) q^{12} +(12.6098 + 12.6098i) q^{13} +(-12.6879 - 2.00593i) q^{14} +(0.0388558 - 0.0154886i) q^{15} +(12.9548 + 9.39007i) q^{16} -19.0155i q^{17} +(14.8374 - 10.1907i) q^{18} +(-2.07165 - 2.07165i) q^{19} +(0.0253478 + 0.0496792i) q^{20} +(-17.7013 - 7.61127i) q^{21} +(-20.7544 + 15.0879i) q^{22} +19.5712 q^{23} +(15.3566 + 18.4438i) q^{24} -24.9998i q^{25} +(-28.8485 + 20.9720i) q^{26} +(25.3394 - 9.32272i) q^{27} +(7.92530 - 24.4381i) q^{28} +(-11.1742 + 11.1742i) q^{29} +(0.0184619 + 0.0815957i) q^{30} -59.9385 q^{31} +(-22.5957 + 22.6591i) q^{32} +(-35.7528 + 14.2517i) q^{33} +(37.5645 + 5.93886i) q^{34} +(0.0633234 - 0.0633234i) q^{35} +(15.4974 + 32.4935i) q^{36} +(9.32707 - 9.32707i) q^{37} +(4.73948 - 3.44546i) q^{38} +(-49.6962 + 19.8098i) q^{39} +(-0.106056 + 0.0345581i) q^{40} +47.2639 q^{41} +(20.5642 - 32.5912i) q^{42} +(24.1220 - 24.1220i) q^{43} +(-23.3236 - 45.7118i) q^{44} +(-0.00335893 + 0.125442i) q^{45} +(-6.11241 + 38.6623i) q^{46} -6.29702i q^{47} +(-41.2313 + 24.5761i) q^{48} +7.74808 q^{49} +(49.3862 + 7.80784i) q^{50} +(52.4073 + 22.5343i) q^{51} +(-32.4196 - 63.5391i) q^{52} +(20.6409 + 20.6409i) q^{53} +(10.5028 + 52.9688i) q^{54} -0.178883i q^{55} +(45.8014 + 23.2886i) q^{56} +(8.16452 - 3.25452i) q^{57} +(-18.5844 - 25.5642i) q^{58} +(-60.3533 - 60.3533i) q^{59} +(-0.166955 + 0.0109872i) q^{60} +(48.0230 + 48.0230i) q^{61} +(18.7198 - 118.406i) q^{62} +(41.9537 - 39.7655i) q^{63} +(-37.7051 - 51.7138i) q^{64} -0.248646i q^{65} +(-16.9875 - 75.0795i) q^{66} +(-23.7768 - 23.7768i) q^{67} +(-23.4640 + 72.3526i) q^{68} +(-23.1928 + 53.9388i) q^{69} +(0.105316 + 0.144870i) q^{70} +13.5743 q^{71} +(-69.0299 + 20.4663i) q^{72} +31.4516i q^{73} +(15.5123 + 21.3383i) q^{74} +(68.9001 + 29.6259i) q^{75} +(5.32617 + 10.4387i) q^{76} +(-58.2665 + 58.2665i) q^{77} +(-23.6126 - 104.360i) q^{78} +47.4718 q^{79} +(-0.0351454 - 0.220303i) q^{80} +(-4.33472 + 80.8839i) q^{81} +(-14.7613 + 93.3681i) q^{82} +(-70.3318 + 70.3318i) q^{83} +(57.9601 + 50.8026i) q^{84} +(-0.187478 + 0.187478i) q^{85} +(40.1185 + 55.1859i) q^{86} +(-17.5545 - 44.0385i) q^{87} +(97.5864 - 31.7983i) q^{88} -95.1729 q^{89} +(-0.246758 - 0.0458131i) q^{90} +(-80.9900 + 80.9900i) q^{91} +(-74.4669 - 24.1497i) q^{92} +(71.0298 - 165.192i) q^{93} +(12.4395 + 1.96666i) q^{94} +0.0408497i q^{95} +(-35.6719 - 89.1264i) q^{96} +61.6218 q^{97} +(-2.41985 + 15.3061i) q^{98} +(3.09069 - 115.425i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 6q^{3} + 4q^{4} - 12q^{6} + O(q^{10}) \) \( 20q - 6q^{3} + 4q^{4} - 12q^{6} + 32q^{10} - 88q^{12} + 92q^{13} - 116q^{15} - 16q^{16} + 4q^{18} - 52q^{19} + 48q^{21} + 24q^{22} - 8q^{24} + 18q^{27} + 56q^{28} + 28q^{30} - 80q^{31} + 60q^{33} + 104q^{34} + 92q^{36} - 116q^{37} + 88q^{40} + 304q^{42} + 172q^{43} + 60q^{45} - 424q^{46} + 176q^{48} - 364q^{49} + 128q^{51} - 208q^{52} + 40q^{54} - 512q^{58} - 240q^{60} - 244q^{61} + 296q^{63} + 88q^{64} - 492q^{66} + 356q^{67} - 20q^{69} + 200q^{70} - 472q^{72} - 146q^{75} + 328q^{76} + 84q^{78} + 384q^{79} - 188q^{81} + 560q^{82} + 816q^{84} + 48q^{85} + 416q^{88} + 616q^{90} + 136q^{91} - 132q^{93} + 32q^{94} - 24q^{96} + 472q^{97} - 452q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/48\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(31\) \(37\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.312316 + 1.97546i −0.156158 + 0.987732i
\(3\) −1.18505 + 2.75602i −0.395015 + 0.918675i
\(4\) −3.80492 1.23394i −0.951229 0.308485i
\(5\) −0.00985921 0.00985921i −0.00197184 0.00197184i 0.706120 0.708092i \(-0.250444\pi\)
−0.708092 + 0.706120i \(0.750444\pi\)
\(6\) −5.07432 3.20176i −0.845720 0.533627i
\(7\) 6.42277i 0.917538i 0.888556 + 0.458769i \(0.151709\pi\)
−0.888556 + 0.458769i \(0.848291\pi\)
\(8\) 3.62594 7.13110i 0.453242 0.891387i
\(9\) −6.19134 6.53203i −0.687926 0.725781i
\(10\) 0.0225557 0.0163973i 0.00225557 0.00163973i
\(11\) 9.07186 + 9.07186i 0.824715 + 0.824715i 0.986780 0.162065i \(-0.0518155\pi\)
−0.162065 + 0.986780i \(0.551815\pi\)
\(12\) 7.90976 9.02417i 0.659147 0.752014i
\(13\) 12.6098 + 12.6098i 0.969987 + 0.969987i 0.999563 0.0295753i \(-0.00941548\pi\)
−0.0295753 + 0.999563i \(0.509415\pi\)
\(14\) −12.6879 2.00593i −0.906282 0.143281i
\(15\) 0.0388558 0.0154886i 0.00259039 0.00103257i
\(16\) 12.9548 + 9.39007i 0.809674 + 0.586879i
\(17\) 19.0155i 1.11856i −0.828978 0.559281i \(-0.811077\pi\)
0.828978 0.559281i \(-0.188923\pi\)
\(18\) 14.8374 10.1907i 0.824302 0.566150i
\(19\) −2.07165 2.07165i −0.109034 0.109034i 0.650485 0.759519i \(-0.274566\pi\)
−0.759519 + 0.650485i \(0.774566\pi\)
\(20\) 0.0253478 + 0.0496792i 0.00126739 + 0.00248396i
\(21\) −17.7013 7.61127i −0.842919 0.362441i
\(22\) −20.7544 + 15.0879i −0.943383 + 0.685812i
\(23\) 19.5712 0.850923 0.425461 0.904977i \(-0.360112\pi\)
0.425461 + 0.904977i \(0.360112\pi\)
\(24\) 15.3566 + 18.4438i 0.639857 + 0.768494i
\(25\) 24.9998i 0.999992i
\(26\) −28.8485 + 20.9720i −1.10956 + 0.806616i
\(27\) 25.3394 9.32272i 0.938497 0.345286i
\(28\) 7.92530 24.4381i 0.283046 0.872789i
\(29\) −11.1742 + 11.1742i −0.385319 + 0.385319i −0.873014 0.487695i \(-0.837838\pi\)
0.487695 + 0.873014i \(0.337838\pi\)
\(30\) 0.0184619 + 0.0815957i 0.000615397 + 0.00271986i
\(31\) −59.9385 −1.93350 −0.966750 0.255725i \(-0.917686\pi\)
−0.966750 + 0.255725i \(0.917686\pi\)
\(32\) −22.5957 + 22.6591i −0.706117 + 0.708096i
\(33\) −35.7528 + 14.2517i −1.08342 + 0.431870i
\(34\) 37.5645 + 5.93886i 1.10484 + 0.174672i
\(35\) 0.0633234 0.0633234i 0.00180924 0.00180924i
\(36\) 15.4974 + 32.4935i 0.430483 + 0.902598i
\(37\) 9.32707 9.32707i 0.252083 0.252083i −0.569741 0.821824i \(-0.692957\pi\)
0.821824 + 0.569741i \(0.192957\pi\)
\(38\) 4.73948 3.44546i 0.124723 0.0906700i
\(39\) −49.6962 + 19.8098i −1.27426 + 0.507943i
\(40\) −0.106056 + 0.0345581i −0.00265140 + 0.000863953i
\(41\) 47.2639 1.15278 0.576389 0.817176i \(-0.304461\pi\)
0.576389 + 0.817176i \(0.304461\pi\)
\(42\) 20.5642 32.5912i 0.489623 0.775980i
\(43\) 24.1220 24.1220i 0.560978 0.560978i −0.368607 0.929585i \(-0.620165\pi\)
0.929585 + 0.368607i \(0.120165\pi\)
\(44\) −23.3236 45.7118i −0.530081 1.03890i
\(45\) −0.00335893 + 0.125442i −7.46430e−5 + 0.00278761i
\(46\) −6.11241 + 38.6623i −0.132878 + 0.840484i
\(47\) 6.29702i 0.133979i −0.997754 0.0669896i \(-0.978661\pi\)
0.997754 0.0669896i \(-0.0213394\pi\)
\(48\) −41.2313 + 24.5761i −0.858985 + 0.512001i
\(49\) 7.74808 0.158124
\(50\) 49.3862 + 7.80784i 0.987724 + 0.156157i
\(51\) 52.4073 + 22.5343i 1.02759 + 0.441849i
\(52\) −32.4196 63.5391i −0.623454 1.22191i
\(53\) 20.6409 + 20.6409i 0.389450 + 0.389450i 0.874491 0.485041i \(-0.161195\pi\)
−0.485041 + 0.874491i \(0.661195\pi\)
\(54\) 10.5028 + 52.9688i 0.194496 + 0.980903i
\(55\) 0.178883i 0.00325242i
\(56\) 45.8014 + 23.2886i 0.817882 + 0.415867i
\(57\) 8.16452 3.25452i 0.143237 0.0570968i
\(58\) −18.5844 25.5642i −0.320421 0.440762i
\(59\) −60.3533 60.3533i −1.02294 1.02294i −0.999731 0.0232062i \(-0.992613\pi\)
−0.0232062 0.999731i \(-0.507387\pi\)
\(60\) −0.166955 + 0.0109872i −0.00278259 + 0.000183120i
\(61\) 48.0230 + 48.0230i 0.787262 + 0.787262i 0.981045 0.193782i \(-0.0620755\pi\)
−0.193782 + 0.981045i \(0.562076\pi\)
\(62\) 18.7198 118.406i 0.301931 1.90978i
\(63\) 41.9537 39.7655i 0.665931 0.631198i
\(64\) −37.7051 51.7138i −0.589143 0.808029i
\(65\) 0.248646i 0.00382532i
\(66\) −16.9875 75.0795i −0.257387 1.13757i
\(67\) −23.7768 23.7768i −0.354878 0.354878i 0.507043 0.861921i \(-0.330738\pi\)
−0.861921 + 0.507043i \(0.830738\pi\)
\(68\) −23.4640 + 72.3526i −0.345059 + 1.06401i
\(69\) −23.1928 + 53.9388i −0.336127 + 0.781721i
\(70\) 0.105316 + 0.144870i 0.00150452 + 0.00206957i
\(71\) 13.5743 0.191188 0.0955938 0.995420i \(-0.469525\pi\)
0.0955938 + 0.995420i \(0.469525\pi\)
\(72\) −69.0299 + 20.4663i −0.958749 + 0.284254i
\(73\) 31.4516i 0.430844i 0.976521 + 0.215422i \(0.0691127\pi\)
−0.976521 + 0.215422i \(0.930887\pi\)
\(74\) 15.5123 + 21.3383i 0.209626 + 0.288355i
\(75\) 68.9001 + 29.6259i 0.918668 + 0.395012i
\(76\) 5.32617 + 10.4387i 0.0700812 + 0.137352i
\(77\) −58.2665 + 58.2665i −0.756707 + 0.756707i
\(78\) −23.6126 104.360i −0.302725 1.33795i
\(79\) 47.4718 0.600909 0.300455 0.953796i \(-0.402862\pi\)
0.300455 + 0.953796i \(0.402862\pi\)
\(80\) −0.0351454 0.220303i −0.000439317 0.00275378i
\(81\) −4.33472 + 80.8839i −0.0535151 + 0.998567i
\(82\) −14.7613 + 93.3681i −0.180016 + 1.13864i
\(83\) −70.3318 + 70.3318i −0.847372 + 0.847372i −0.989804 0.142433i \(-0.954507\pi\)
0.142433 + 0.989804i \(0.454507\pi\)
\(84\) 57.9601 + 50.8026i 0.690002 + 0.604792i
\(85\) −0.187478 + 0.187478i −0.00220563 + 0.00220563i
\(86\) 40.1185 + 55.1859i 0.466494 + 0.641697i
\(87\) −17.5545 44.0385i −0.201776 0.506189i
\(88\) 97.5864 31.7983i 1.10894 0.361345i
\(89\) −95.1729 −1.06936 −0.534679 0.845055i \(-0.679568\pi\)
−0.534679 + 0.845055i \(0.679568\pi\)
\(90\) −0.246758 0.0458131i −0.00274175 0.000509035i
\(91\) −80.9900 + 80.9900i −0.890000 + 0.890000i
\(92\) −74.4669 24.1497i −0.809423 0.262497i
\(93\) 71.0298 165.192i 0.763761 1.77626i
\(94\) 12.4395 + 1.96666i 0.132335 + 0.0209219i
\(95\) 0.0408497i 0.000429997i
\(96\) −35.6719 89.1264i −0.371583 0.928400i
\(97\) 61.6218 0.635276 0.317638 0.948212i \(-0.397110\pi\)
0.317638 + 0.948212i \(0.397110\pi\)
\(98\) −2.41985 + 15.3061i −0.0246924 + 0.156184i
\(99\) 3.09069 115.425i 0.0312191 1.16591i
\(100\) −30.8482 + 95.1222i −0.308482 + 0.951222i
\(101\) 48.1867 + 48.1867i 0.477096 + 0.477096i 0.904202 0.427106i \(-0.140467\pi\)
−0.427106 + 0.904202i \(0.640467\pi\)
\(102\) −60.8833 + 96.4909i −0.596895 + 0.945989i
\(103\) 4.73669i 0.0459873i −0.999736 0.0229936i \(-0.992680\pi\)
0.999736 0.0229936i \(-0.00731975\pi\)
\(104\) 135.644 44.1995i 1.30427 0.424995i
\(105\) 0.0994797 + 0.249562i 0.000947426 + 0.00237678i
\(106\) −47.2217 + 34.3288i −0.445488 + 0.323857i
\(107\) −40.9462 40.9462i −0.382674 0.382674i 0.489390 0.872065i \(-0.337219\pi\)
−0.872065 + 0.489390i \(0.837219\pi\)
\(108\) −107.918 + 4.20489i −0.999242 + 0.0389342i
\(109\) −120.437 120.437i −1.10493 1.10493i −0.993807 0.111123i \(-0.964555\pi\)
−0.111123 0.993807i \(-0.535445\pi\)
\(110\) 0.353377 + 0.0558680i 0.00321252 + 0.000507891i
\(111\) 14.6526 + 36.7586i 0.132006 + 0.331159i
\(112\) −60.3102 + 83.2056i −0.538484 + 0.742907i
\(113\) 205.193i 1.81587i −0.419110 0.907936i \(-0.637658\pi\)
0.419110 0.907936i \(-0.362342\pi\)
\(114\) 3.87928 + 17.1452i 0.0340287 + 0.150396i
\(115\) −0.192957 0.192957i −0.00167789 0.00167789i
\(116\) 56.3054 28.7287i 0.485391 0.247662i
\(117\) 4.29604 160.439i 0.0367183 1.37128i
\(118\) 138.075 100.376i 1.17013 0.850648i
\(119\) 122.132 1.02632
\(120\) 0.0304380 0.333246i 0.000253650 0.00277705i
\(121\) 43.5974i 0.360309i
\(122\) −109.866 + 79.8694i −0.900542 + 0.654667i
\(123\) −56.0098 + 130.260i −0.455365 + 1.05903i
\(124\) 228.061 + 73.9604i 1.83920 + 0.596455i
\(125\) −0.492959 + 0.492959i −0.00394367 + 0.00394367i
\(126\) 65.4525 + 95.2974i 0.519464 + 0.756328i
\(127\) 54.1458 0.426345 0.213173 0.977015i \(-0.431620\pi\)
0.213173 + 0.977015i \(0.431620\pi\)
\(128\) 113.935 58.3341i 0.890115 0.455735i
\(129\) 37.8952 + 95.0666i 0.293761 + 0.736951i
\(130\) 0.491191 + 0.0776562i 0.00377840 + 0.000597355i
\(131\) 31.2584 31.2584i 0.238614 0.238614i −0.577662 0.816276i \(-0.696035\pi\)
0.816276 + 0.577662i \(0.196035\pi\)
\(132\) 153.622 10.1098i 1.16381 0.0765890i
\(133\) 13.3057 13.3057i 0.100043 0.100043i
\(134\) 54.3961 39.5443i 0.405941 0.295107i
\(135\) −0.341742 0.157912i −0.00253142 0.00116972i
\(136\) −135.602 68.9492i −0.997072 0.506979i
\(137\) 42.9176 0.313267 0.156633 0.987657i \(-0.449936\pi\)
0.156633 + 0.987657i \(0.449936\pi\)
\(138\) −99.3106 62.6625i −0.719642 0.454076i
\(139\) −47.0945 + 47.0945i −0.338809 + 0.338809i −0.855919 0.517110i \(-0.827008\pi\)
0.517110 + 0.855919i \(0.327008\pi\)
\(140\) −0.319078 + 0.162803i −0.00227913 + 0.00116288i
\(141\) 17.3547 + 7.46225i 0.123083 + 0.0529238i
\(142\) −4.23948 + 26.8156i −0.0298555 + 0.188842i
\(143\) 228.789i 1.59993i
\(144\) −18.8713 142.758i −0.131051 0.991376i
\(145\) 0.220339 0.00151958
\(146\) −62.1316 9.82285i −0.425559 0.0672798i
\(147\) −9.18183 + 21.3539i −0.0624614 + 0.145265i
\(148\) −46.9978 + 23.9797i −0.317552 + 0.162025i
\(149\) −131.532 131.532i −0.882766 0.882766i 0.111049 0.993815i \(-0.464579\pi\)
−0.993815 + 0.111049i \(0.964579\pi\)
\(150\) −80.0435 + 126.857i −0.533623 + 0.845713i
\(151\) 145.908i 0.966281i −0.875543 0.483140i \(-0.839496\pi\)
0.875543 0.483140i \(-0.160504\pi\)
\(152\) −22.2848 + 7.26147i −0.146611 + 0.0477728i
\(153\) −124.210 + 117.732i −0.811830 + 0.769488i
\(154\) −96.9057 133.301i −0.629258 0.865590i
\(155\) 0.590946 + 0.590946i 0.00381256 + 0.00381256i
\(156\) 213.534 14.0525i 1.36881 0.0900801i
\(157\) −55.2586 55.2586i −0.351966 0.351966i 0.508875 0.860840i \(-0.330062\pi\)
−0.860840 + 0.508875i \(0.830062\pi\)
\(158\) −14.8262 + 93.7789i −0.0938368 + 0.593537i
\(159\) −81.3470 + 32.4263i −0.511617 + 0.203939i
\(160\) 0.446177 0.000624319i 0.00278860 3.90199e-6i
\(161\) 125.701i 0.780754i
\(162\) −158.430 33.8244i −0.977960 0.208793i
\(163\) 70.6156 + 70.6156i 0.433225 + 0.433225i 0.889724 0.456499i \(-0.150897\pi\)
−0.456499 + 0.889724i \(0.650897\pi\)
\(164\) −179.835 58.3207i −1.09656 0.355614i
\(165\) 0.493006 + 0.211984i 0.00298791 + 0.00128475i
\(166\) −116.972 160.904i −0.704652 0.969300i
\(167\) 86.2013 0.516176 0.258088 0.966121i \(-0.416908\pi\)
0.258088 + 0.966121i \(0.416908\pi\)
\(168\) −118.461 + 98.6317i −0.705122 + 0.587093i
\(169\) 149.016i 0.881751i
\(170\) −0.311804 0.428909i −0.00183414 0.00252300i
\(171\) −0.705790 + 26.3584i −0.00412743 + 0.154142i
\(172\) −121.547 + 62.0173i −0.706671 + 0.360565i
\(173\) −58.2425 + 58.2425i −0.336662 + 0.336662i −0.855109 0.518448i \(-0.826510\pi\)
0.518448 + 0.855109i \(0.326510\pi\)
\(174\) 92.4790 20.9244i 0.531488 0.120255i
\(175\) 160.568 0.917531
\(176\) 32.3387 + 202.710i 0.183743 + 1.15176i
\(177\) 237.856 94.8137i 1.34382 0.535671i
\(178\) 29.7240 188.011i 0.166989 1.05624i
\(179\) 18.9272 18.9272i 0.105738 0.105738i −0.652258 0.757997i \(-0.726178\pi\)
0.757997 + 0.652258i \(0.226178\pi\)
\(180\) 0.167569 0.473153i 0.000930937 0.00262863i
\(181\) 24.5109 24.5109i 0.135420 0.135420i −0.636148 0.771567i \(-0.719473\pi\)
0.771567 + 0.636148i \(0.219473\pi\)
\(182\) −134.698 185.287i −0.740101 1.01806i
\(183\) −189.262 + 75.4431i −1.03422 + 0.412257i
\(184\) 70.9641 139.564i 0.385674 0.758502i
\(185\) −0.183915 −0.000994136
\(186\) 304.147 + 191.909i 1.63520 + 1.03177i
\(187\) 172.506 172.506i 0.922494 0.922494i
\(188\) −7.77013 + 23.9596i −0.0413305 + 0.127445i
\(189\) 59.8777 + 162.749i 0.316813 + 0.861107i
\(190\) −0.0806971 0.0127580i −0.000424722 6.71475e-5i
\(191\) 156.422i 0.818962i −0.912319 0.409481i \(-0.865710\pi\)
0.912319 0.409481i \(-0.134290\pi\)
\(192\) 187.207 42.6330i 0.975036 0.222047i
\(193\) −217.972 −1.12939 −0.564695 0.825299i \(-0.691006\pi\)
−0.564695 + 0.825299i \(0.691006\pi\)
\(194\) −19.2455 + 121.732i −0.0992034 + 0.627482i
\(195\) 0.685275 + 0.294657i 0.00351423 + 0.00151106i
\(196\) −29.4808 9.56066i −0.150412 0.0487789i
\(197\) 245.945 + 245.945i 1.24845 + 1.24845i 0.956403 + 0.292050i \(0.0943374\pi\)
0.292050 + 0.956403i \(0.405663\pi\)
\(198\) 227.052 + 42.1545i 1.14673 + 0.212902i
\(199\) 233.190i 1.17181i 0.810379 + 0.585905i \(0.199261\pi\)
−0.810379 + 0.585905i \(0.800739\pi\)
\(200\) −178.276 90.6478i −0.891380 0.453239i
\(201\) 93.7060 37.3528i 0.466199 0.185835i
\(202\) −110.240 + 80.1415i −0.545745 + 0.396740i
\(203\) −71.7695 71.7695i −0.353545 0.353545i
\(204\) −171.600 150.408i −0.841174 0.737296i
\(205\) −0.465985 0.465985i −0.00227310 0.00227310i
\(206\) 9.35716 + 1.47934i 0.0454231 + 0.00718128i
\(207\) −121.172 127.840i −0.585372 0.617583i
\(208\) 44.9506 + 281.765i 0.216109 + 1.35464i
\(209\) 37.5875i 0.179844i
\(210\) −0.524070 + 0.118576i −0.00249557 + 0.000564650i
\(211\) −8.49504 8.49504i −0.0402609 0.0402609i 0.686690 0.726951i \(-0.259063\pi\)
−0.726951 + 0.686690i \(0.759063\pi\)
\(212\) −53.0672 104.006i −0.250317 0.490596i
\(213\) −16.0862 + 37.4111i −0.0755220 + 0.175639i
\(214\) 93.6758 68.0995i 0.437737 0.318222i
\(215\) −0.475649 −0.00221232
\(216\) 25.3979 214.502i 0.117583 0.993063i
\(217\) 384.971i 1.77406i
\(218\) 275.534 200.305i 1.26392 0.918831i
\(219\) −86.6814 37.2716i −0.395806 0.170190i
\(220\) −0.220730 + 0.680635i −0.00100332 + 0.00309379i
\(221\) 239.783 239.783i 1.08499 1.08499i
\(222\) −77.1916 + 17.4654i −0.347710 + 0.0786731i
\(223\) −10.9290 −0.0490090 −0.0245045 0.999700i \(-0.507801\pi\)
−0.0245045 + 0.999700i \(0.507801\pi\)
\(224\) −145.534 145.127i −0.649705 0.647889i
\(225\) −163.299 + 154.782i −0.725775 + 0.687921i
\(226\) 405.352 + 64.0852i 1.79359 + 0.283563i
\(227\) −99.9027 + 99.9027i −0.440100 + 0.440100i −0.892045 0.451946i \(-0.850730\pi\)
0.451946 + 0.892045i \(0.350730\pi\)
\(228\) −35.0812 + 2.30866i −0.153865 + 0.0101257i
\(229\) −231.857 + 231.857i −1.01248 + 1.01248i −0.0125555 + 0.999921i \(0.503997\pi\)
−0.999921 + 0.0125555i \(0.996003\pi\)
\(230\) 0.441443 0.320916i 0.00191932 0.00139529i
\(231\) −91.5354 229.632i −0.396257 0.994079i
\(232\) 39.1675 + 120.202i 0.168826 + 0.518111i
\(233\) 316.641 1.35897 0.679486 0.733688i \(-0.262203\pi\)
0.679486 + 0.733688i \(0.262203\pi\)
\(234\) 315.601 + 58.5945i 1.34872 + 0.250404i
\(235\) −0.0620836 + 0.0620836i −0.000264186 + 0.000264186i
\(236\) 155.167 + 304.111i 0.657487 + 1.28861i
\(237\) −56.2562 + 130.833i −0.237368 + 0.552040i
\(238\) −38.1439 + 241.268i −0.160269 + 1.01373i
\(239\) 382.691i 1.60122i −0.599187 0.800609i \(-0.704509\pi\)
0.599187 0.800609i \(-0.295491\pi\)
\(240\) 0.648808 + 0.164207i 0.00270337 + 0.000684197i
\(241\) −91.3157 −0.378903 −0.189452 0.981890i \(-0.560671\pi\)
−0.189452 + 0.981890i \(0.560671\pi\)
\(242\) −86.1252 13.6162i −0.355889 0.0562652i
\(243\) −217.781 107.798i −0.896219 0.443612i
\(244\) −123.466 241.981i −0.506009 0.991725i
\(245\) −0.0763900 0.0763900i −0.000311796 0.000311796i
\(246\) −239.832 151.328i −0.974927 0.615154i
\(247\) 52.2463i 0.211524i
\(248\) −217.333 + 427.427i −0.876344 + 1.72350i
\(249\) −110.490 277.183i −0.443734 1.11318i
\(250\) −0.819863 1.12778i −0.00327945 0.00451113i
\(251\) 128.768 + 128.768i 0.513021 + 0.513021i 0.915451 0.402430i \(-0.131834\pi\)
−0.402430 + 0.915451i \(0.631834\pi\)
\(252\) −208.698 + 99.5362i −0.828168 + 0.394985i
\(253\) 177.547 + 177.547i 0.701769 + 0.701769i
\(254\) −16.9106 + 106.963i −0.0665772 + 0.421115i
\(255\) −0.294524 0.738865i −0.00115500 0.00289751i
\(256\) 79.6532 + 243.293i 0.311145 + 0.950362i
\(257\) 123.915i 0.482159i 0.970505 + 0.241079i \(0.0775014\pi\)
−0.970505 + 0.241079i \(0.922499\pi\)
\(258\) −199.636 + 45.1698i −0.773783 + 0.175077i
\(259\) 59.9056 + 59.9056i 0.231296 + 0.231296i
\(260\) −0.306814 + 0.946078i −0.00118005 + 0.00363876i
\(261\) 142.174 + 3.80695i 0.544728 + 0.0145860i
\(262\) 51.9874 + 71.5124i 0.198425 + 0.272948i
\(263\) −194.379 −0.739085 −0.369542 0.929214i \(-0.620486\pi\)
−0.369542 + 0.929214i \(0.620486\pi\)
\(264\) −28.0073 + 306.633i −0.106088 + 1.16149i
\(265\) 0.407005i 0.00153587i
\(266\) 22.1294 + 30.4406i 0.0831932 + 0.114438i
\(267\) 112.784 262.299i 0.422413 0.982393i
\(268\) 61.1296 + 119.808i 0.228096 + 0.447044i
\(269\) −296.636 + 296.636i −1.10274 + 1.10274i −0.108658 + 0.994079i \(0.534655\pi\)
−0.994079 + 0.108658i \(0.965345\pi\)
\(270\) 0.418681 0.625780i 0.00155067 0.00231770i
\(271\) −278.227 −1.02667 −0.513334 0.858189i \(-0.671590\pi\)
−0.513334 + 0.858189i \(0.671590\pi\)
\(272\) 178.557 246.342i 0.656461 0.905671i
\(273\) −127.234 319.187i −0.466057 1.16918i
\(274\) −13.4038 + 84.7821i −0.0489191 + 0.309424i
\(275\) 226.795 226.795i 0.824709 0.824709i
\(276\) 154.804 176.614i 0.560883 0.639906i
\(277\) −60.1513 + 60.1513i −0.217153 + 0.217153i −0.807297 0.590145i \(-0.799071\pi\)
0.590145 + 0.807297i \(0.299071\pi\)
\(278\) −78.3251 107.742i −0.281745 0.387561i
\(279\) 371.099 + 391.520i 1.33010 + 1.40330i
\(280\) −0.221959 0.681172i −0.000792710 0.00243276i
\(281\) −313.645 −1.11617 −0.558087 0.829782i \(-0.688465\pi\)
−0.558087 + 0.829782i \(0.688465\pi\)
\(282\) −20.1616 + 31.9531i −0.0714949 + 0.113309i
\(283\) 286.980 286.980i 1.01406 1.01406i 0.0141627 0.999900i \(-0.495492\pi\)
0.999900 0.0141627i \(-0.00450829\pi\)
\(284\) −51.6491 16.7499i −0.181863 0.0589784i
\(285\) −0.112583 0.0484087i −0.000395027 0.000169855i
\(286\) −451.965 71.4546i −1.58030 0.249841i
\(287\) 303.565i 1.05772i
\(288\) 287.907 + 7.30608i 0.999678 + 0.0253683i
\(289\) −72.5910 −0.251180
\(290\) −0.0688153 + 0.435271i −0.000237294 + 0.00150093i
\(291\) −73.0246 + 169.831i −0.250944 + 0.583612i
\(292\) 38.8094 119.671i 0.132909 0.409832i
\(293\) −176.501 176.501i −0.602394 0.602394i 0.338553 0.940947i \(-0.390062\pi\)
−0.940947 + 0.338553i \(0.890062\pi\)
\(294\) −39.3162 24.8075i −0.133729 0.0843794i
\(295\) 1.19007i 0.00403414i
\(296\) −32.6929 100.332i −0.110449 0.338958i
\(297\) 314.450 + 145.301i 1.05876 + 0.489230i
\(298\) 300.917 218.757i 1.00979 0.734085i
\(299\) 246.790 + 246.790i 0.825384 + 0.825384i
\(300\) −225.603 197.743i −0.752008 0.659142i
\(301\) 154.930 + 154.930i 0.514718 + 0.514718i
\(302\) 288.237 + 45.5695i 0.954427 + 0.150893i
\(303\) −189.907 + 75.7002i −0.626756 + 0.249836i
\(304\) −7.38486 46.2907i −0.0242923 0.152272i
\(305\) 0.946938i 0.00310471i
\(306\) −193.782 282.142i −0.633274 0.922033i
\(307\) 63.9904 + 63.9904i 0.208438 + 0.208438i 0.803603 0.595165i \(-0.202913\pi\)
−0.595165 + 0.803603i \(0.702913\pi\)
\(308\) 293.596 149.802i 0.953235 0.486370i
\(309\) 13.0544 + 5.61319i 0.0422473 + 0.0181657i
\(310\) −1.35196 + 0.982831i −0.00436115 + 0.00317042i
\(311\) −532.288 −1.71154 −0.855769 0.517359i \(-0.826915\pi\)
−0.855769 + 0.517359i \(0.826915\pi\)
\(312\) −38.9299 + 426.218i −0.124775 + 1.36608i
\(313\) 185.676i 0.593215i 0.954999 + 0.296607i \(0.0958553\pi\)
−0.954999 + 0.296607i \(0.904145\pi\)
\(314\) 126.420 91.9032i 0.402610 0.292685i
\(315\) −0.805687 0.0215736i −0.00255774 6.84878e-5i
\(316\) −180.626 58.5773i −0.571602 0.185371i
\(317\) 168.127 168.127i 0.530370 0.530370i −0.390312 0.920683i \(-0.627633\pi\)
0.920683 + 0.390312i \(0.127633\pi\)
\(318\) −38.6511 170.825i −0.121544 0.537187i
\(319\) −202.742 −0.635556
\(320\) −0.138115 + 0.881601i −0.000431609 + 0.00275500i
\(321\) 161.372 64.3256i 0.502715 0.200391i
\(322\) −248.319 39.2586i −0.771176 0.121921i
\(323\) −39.3936 + 39.3936i −0.121962 + 0.121962i
\(324\) 116.299 302.408i 0.358948 0.933358i
\(325\) 315.243 315.243i 0.969980 0.969980i
\(326\) −161.553 + 117.444i −0.495562 + 0.360258i
\(327\) 474.652 189.204i 1.45153 0.578607i
\(328\) 171.376 337.043i 0.522488 1.02757i
\(329\) 40.4443 0.122931
\(330\) −0.572741 + 0.907709i −0.00173558 + 0.00275063i
\(331\) −241.678 + 241.678i −0.730144 + 0.730144i −0.970648 0.240504i \(-0.922687\pi\)
0.240504 + 0.970648i \(0.422687\pi\)
\(332\) 354.392 180.822i 1.06745 0.544644i
\(333\) −118.672 3.17764i −0.356371 0.00954245i
\(334\) −26.9221 + 170.288i −0.0806050 + 0.509843i
\(335\) 0.468841i 0.00139953i
\(336\) −157.846 264.819i −0.469781 0.788151i
\(337\) 396.856 1.17762 0.588808 0.808273i \(-0.299598\pi\)
0.588808 + 0.808273i \(0.299598\pi\)
\(338\) −294.375 46.5401i −0.870933 0.137692i
\(339\) 565.518 + 243.163i 1.66819 + 0.717296i
\(340\) 0.944676 0.482003i 0.00277846 0.00141766i
\(341\) −543.754 543.754i −1.59459 1.59459i
\(342\) −51.8496 9.62640i −0.151607 0.0281474i
\(343\) 364.480i 1.06262i
\(344\) −84.5516 259.482i −0.245790 0.754307i
\(345\) 0.760456 0.303131i 0.00220422 0.000878641i
\(346\) −96.8659 133.246i −0.279959 0.385104i
\(347\) 38.5699 + 38.5699i 0.111153 + 0.111153i 0.760496 0.649343i \(-0.224956\pi\)
−0.649343 + 0.760496i \(0.724956\pi\)
\(348\) 12.4527 + 189.224i 0.0357835 + 0.543747i
\(349\) 10.4065 + 10.4065i 0.0298180 + 0.0298180i 0.721859 0.692041i \(-0.243288\pi\)
−0.692041 + 0.721859i \(0.743288\pi\)
\(350\) −50.1479 + 317.196i −0.143280 + 0.906275i
\(351\) 437.084 + 201.968i 1.24525 + 0.575408i
\(352\) −410.545 + 0.574461i −1.16632 + 0.00163199i
\(353\) 209.294i 0.592900i 0.955048 + 0.296450i \(0.0958028\pi\)
−0.955048 + 0.296450i \(0.904197\pi\)
\(354\) 113.015 + 499.489i 0.319251 + 1.41099i
\(355\) −0.133832 0.133832i −0.000376992 0.000376992i
\(356\) 362.125 + 117.438i 1.01721 + 0.329881i
\(357\) −144.732 + 336.600i −0.405413 + 0.942857i
\(358\) 31.4787 + 43.3012i 0.0879293 + 0.120953i
\(359\) 42.6682 0.118853 0.0594264 0.998233i \(-0.481073\pi\)
0.0594264 + 0.998233i \(0.481073\pi\)
\(360\) 0.882362 + 0.478799i 0.00245101 + 0.00133000i
\(361\) 352.417i 0.976223i
\(362\) 40.7653 + 56.0756i 0.112611 + 0.154905i
\(363\) −120.156 51.6649i −0.331007 0.142328i
\(364\) 408.097 208.224i 1.12115 0.572043i
\(365\) 0.310088 0.310088i 0.000849557 0.000849557i
\(366\) −89.9256 397.442i −0.245698 1.08591i
\(367\) −16.2444 −0.0442627 −0.0221313 0.999755i \(-0.507045\pi\)
−0.0221313 + 0.999755i \(0.507045\pi\)
\(368\) 253.541 + 183.775i 0.688970 + 0.499389i
\(369\) −292.627 308.729i −0.793026 0.836664i
\(370\) 0.0574397 0.363318i 0.000155242 0.000981940i
\(371\) −132.571 + 132.571i −0.357335 + 0.357335i
\(372\) −474.099 + 540.895i −1.27446 + 1.45402i
\(373\) 351.379 351.379i 0.942035 0.942035i −0.0563743 0.998410i \(-0.517954\pi\)
0.998410 + 0.0563743i \(0.0179540\pi\)
\(374\) 286.904 + 394.657i 0.767122 + 1.05523i
\(375\) −0.774428 1.94278i −0.00206514 0.00518076i
\(376\) −44.9047 22.8326i −0.119427 0.0607250i
\(377\) −281.811 −0.747509
\(378\) −340.206 + 67.4570i −0.900016 + 0.178458i
\(379\) −170.505 + 170.505i −0.449880 + 0.449880i −0.895315 0.445435i \(-0.853049\pi\)
0.445435 + 0.895315i \(0.353049\pi\)
\(380\) 0.0504060 0.155430i 0.000132647 0.000409025i
\(381\) −64.1653 + 149.227i −0.168413 + 0.391673i
\(382\) 309.005 + 48.8530i 0.808915 + 0.127887i
\(383\) 256.234i 0.669017i 0.942393 + 0.334509i \(0.108570\pi\)
−0.942393 + 0.334509i \(0.891430\pi\)
\(384\) 25.7523 + 383.136i 0.0670633 + 0.997749i
\(385\) 1.14892 0.00298422
\(386\) 68.0763 430.597i 0.176363 1.11554i
\(387\) −306.913 8.21813i −0.793058 0.0212355i
\(388\) −234.466 76.0375i −0.604293 0.195973i
\(389\) 376.214 + 376.214i 0.967130 + 0.967130i 0.999477 0.0323468i \(-0.0102981\pi\)
−0.0323468 + 0.999477i \(0.510298\pi\)
\(390\) −0.796106 + 1.26171i −0.00204130 + 0.00323515i
\(391\) 372.158i 0.951810i
\(392\) 28.0941 55.2523i 0.0716685 0.140950i
\(393\) 49.1063 + 123.192i 0.124953 + 0.313465i
\(394\) −562.669 + 409.043i −1.42809 + 1.03818i
\(395\) −0.468035 0.468035i −0.00118490 0.00118490i
\(396\) −154.187 + 435.367i −0.389360 + 1.09941i
\(397\) −312.905 312.905i −0.788174 0.788174i 0.193021 0.981195i \(-0.438172\pi\)
−0.981195 + 0.193021i \(0.938172\pi\)
\(398\) −460.659 72.8291i −1.15744 0.182988i
\(399\) 20.9030 + 52.4388i 0.0523885 + 0.131426i
\(400\) 234.750 323.867i 0.586875 0.809668i
\(401\) 9.22373i 0.0230018i 0.999934 + 0.0115009i \(0.00366093\pi\)
−0.999934 + 0.0115009i \(0.996339\pi\)
\(402\) 44.5233 + 196.779i 0.110754 + 0.489499i
\(403\) −755.814 755.814i −1.87547 1.87547i
\(404\) −123.887 242.806i −0.306651 0.601004i
\(405\) 0.840189 0.754715i 0.00207454 0.00186349i
\(406\) 164.193 119.363i 0.404416 0.293998i
\(407\) 169.228 0.415793
\(408\) 350.720 292.014i 0.859607 0.715720i
\(409\) 322.436i 0.788352i 0.919035 + 0.394176i \(0.128970\pi\)
−0.919035 + 0.394176i \(0.871030\pi\)
\(410\) 1.06607 0.775002i 0.00260017 0.00189025i
\(411\) −50.8592 + 118.282i −0.123745 + 0.287790i
\(412\) −5.84478 + 18.0227i −0.0141864 + 0.0437444i
\(413\) 387.635 387.635i 0.938583 0.938583i
\(414\) 290.387 199.445i 0.701417 0.481750i
\(415\) 1.38683 0.00334177
\(416\) −570.655 + 0.798498i −1.37177 + 0.00191947i
\(417\) −73.9845 185.603i −0.177421 0.445090i
\(418\) 74.2527 + 11.7392i 0.177638 + 0.0280841i
\(419\) 226.569 226.569i 0.540738 0.540738i −0.383007 0.923745i \(-0.625112\pi\)
0.923745 + 0.383007i \(0.125112\pi\)
\(420\) −0.0705681 1.07231i −0.000168019 0.00255313i
\(421\) −498.861 + 498.861i −1.18494 + 1.18494i −0.206495 + 0.978448i \(0.566206\pi\)
−0.978448 + 0.206495i \(0.933794\pi\)
\(422\) 19.4348 14.1285i 0.0460540 0.0334799i
\(423\) −41.1323 + 38.9870i −0.0972394 + 0.0921677i
\(424\) 222.034 72.3495i 0.523666 0.170636i
\(425\) −475.385 −1.11855
\(426\) −68.8804 43.4618i −0.161691 0.102023i
\(427\) −308.440 + 308.440i −0.722343 + 0.722343i
\(428\) 105.272 + 206.322i 0.245962 + 0.482060i
\(429\) −630.549 271.126i −1.46981 0.631995i
\(430\) 0.148553 0.939627i 0.000345472 0.00218518i
\(431\) 452.283i 1.04938i −0.851293 0.524690i \(-0.824181\pi\)
0.851293 0.524690i \(-0.175819\pi\)
\(432\) 415.808 + 117.165i 0.962519 + 0.271215i
\(433\) 379.557 0.876574 0.438287 0.898835i \(-0.355585\pi\)
0.438287 + 0.898835i \(0.355585\pi\)
\(434\) 760.496 + 120.233i 1.75229 + 0.277034i
\(435\) −0.261111 + 0.607258i −0.000600255 + 0.00139600i
\(436\) 309.642 + 606.866i 0.710188 + 1.39190i
\(437\) −40.5447 40.5447i −0.0927797 0.0927797i
\(438\) 100.701 159.596i 0.229910 0.364373i
\(439\) 689.509i 1.57063i −0.619094 0.785317i \(-0.712500\pi\)
0.619094 0.785317i \(-0.287500\pi\)
\(440\) −1.27563 0.648618i −0.00289916 0.00147413i
\(441\) −47.9710 50.6107i −0.108778 0.114763i
\(442\) 398.794 + 548.571i 0.902250 + 1.24111i
\(443\) 97.5600 + 97.5600i 0.220226 + 0.220226i 0.808593 0.588368i \(-0.200229\pi\)
−0.588368 + 0.808593i \(0.700229\pi\)
\(444\) −10.3942 157.944i −0.0234103 0.355730i
\(445\) 0.938330 + 0.938330i 0.00210861 + 0.00210861i
\(446\) 3.41330 21.5899i 0.00765315 0.0484078i
\(447\) 518.377 206.634i 1.15968 0.462269i
\(448\) 332.146 242.171i 0.741397 0.540561i
\(449\) 718.711i 1.60069i 0.599538 + 0.800347i \(0.295351\pi\)
−0.599538 + 0.800347i \(0.704649\pi\)
\(450\) −254.766 370.933i −0.566146 0.824296i
\(451\) 428.772 + 428.772i 0.950713 + 0.950713i
\(452\) −253.196 + 780.744i −0.560168 + 1.72731i
\(453\) 402.127 + 172.908i 0.887698 + 0.381695i
\(454\) −166.153 228.555i −0.365976 0.503426i
\(455\) 1.59700 0.00350988
\(456\) 6.39574 70.0227i 0.0140257 0.153558i
\(457\) 489.021i 1.07007i 0.844830 + 0.535034i \(0.179701\pi\)
−0.844830 + 0.535034i \(0.820299\pi\)
\(458\) −385.613 530.438i −0.841949 1.15816i
\(459\) −177.277 481.843i −0.386224 1.04977i
\(460\) 0.496088 + 0.972282i 0.00107845 + 0.00211366i
\(461\) 459.082 459.082i 0.995840 0.995840i −0.00415179 0.999991i \(-0.501322\pi\)
0.999991 + 0.00415179i \(0.00132156\pi\)
\(462\) 482.218 109.107i 1.04376 0.236162i
\(463\) 587.611 1.26914 0.634569 0.772866i \(-0.281178\pi\)
0.634569 + 0.772866i \(0.281178\pi\)
\(464\) −249.687 + 39.8331i −0.538118 + 0.0858472i
\(465\) −2.32896 + 0.928364i −0.00500852 + 0.00199648i
\(466\) −98.8919 + 625.512i −0.212214 + 1.34230i
\(467\) 89.5077 89.5077i 0.191665 0.191665i −0.604750 0.796415i \(-0.706727\pi\)
0.796415 + 0.604750i \(0.206727\pi\)
\(468\) −214.319 + 605.158i −0.457946 + 1.29307i
\(469\) 152.713 152.713i 0.325614 0.325614i
\(470\) −0.103254 0.142034i −0.000219690 0.000302199i
\(471\) 217.778 86.8101i 0.462374 0.184310i
\(472\) −649.222 + 211.548i −1.37547 + 0.448195i
\(473\) 437.664 0.925293
\(474\) −240.887 151.994i −0.508201 0.320662i
\(475\) −51.7909 + 51.7909i −0.109033 + 0.109033i
\(476\) −464.704 150.704i −0.976268 0.316605i
\(477\) 7.03213 262.621i 0.0147424 0.550568i
\(478\) 755.993 + 119.521i 1.58157 + 0.250043i
\(479\) 439.291i 0.917101i −0.888668 0.458550i \(-0.848369\pi\)
0.888668 0.458550i \(-0.151631\pi\)
\(480\) −0.527019 + 1.23041i −0.00109796 + 0.00256336i
\(481\) 235.226 0.489034
\(482\) 28.5194 180.391i 0.0591688 0.374255i
\(483\) −346.436 148.962i −0.717259 0.308410i
\(484\) 53.7966 165.885i 0.111150 0.342737i
\(485\) −0.607542 0.607542i −0.00125266 0.00125266i
\(486\) 280.967 396.552i 0.578122 0.815951i
\(487\) 499.716i 1.02611i 0.858355 + 0.513056i \(0.171487\pi\)
−0.858355 + 0.513056i \(0.828513\pi\)
\(488\) 516.585 168.328i 1.05858 0.344935i
\(489\) −278.301 + 110.936i −0.569123 + 0.226862i
\(490\) 0.174764 0.127048i 0.000356660 0.000259281i
\(491\) −359.246 359.246i −0.731663 0.731663i 0.239286 0.970949i \(-0.423087\pi\)
−0.970949 + 0.239286i \(0.923087\pi\)
\(492\) 373.846 426.517i 0.759850 0.866905i
\(493\) 212.484 + 212.484i 0.431003 + 0.431003i
\(494\) 103.211 + 16.3174i 0.208929 + 0.0330311i
\(495\) −1.16847 + 1.10752i −0.00236054 + 0.00223742i
\(496\) −776.490 562.826i −1.56550 1.13473i
\(497\) 87.1846i 0.175422i
\(498\) 582.072 131.700i 1.16882 0.264458i
\(499\) −64.4682 64.4682i −0.129195 0.129195i 0.639553 0.768747i \(-0.279120\pi\)
−0.768747 + 0.639553i \(0.779120\pi\)
\(500\) 2.48395 1.26739i 0.00496790 0.00253477i
\(501\) −102.152 + 237.573i −0.203897 + 0.474197i
\(502\) −294.594 + 214.161i −0.586840 + 0.426615i
\(503\) −597.277 −1.18743 −0.593714 0.804676i \(-0.702339\pi\)
−0.593714 + 0.804676i \(0.702339\pi\)
\(504\) −131.450 443.363i −0.260814 0.879689i
\(505\) 0.950165i 0.00188151i
\(506\) −406.190 + 295.288i −0.802746 + 0.583573i
\(507\) −410.691 176.591i −0.810042 0.348305i
\(508\) −206.020 66.8127i −0.405552 0.131521i
\(509\) −359.574 + 359.574i −0.706433 + 0.706433i −0.965783 0.259350i \(-0.916492\pi\)
0.259350 + 0.965783i \(0.416492\pi\)
\(510\) 1.55159 0.351063i 0.00304233 0.000688359i
\(511\) −202.006 −0.395316
\(512\) −505.493 + 81.3679i −0.987291 + 0.158922i
\(513\) −71.8079 33.1810i −0.139976 0.0646804i
\(514\) −244.789 38.7006i −0.476244 0.0752930i
\(515\) −0.0467000 + 0.0467000i −9.06796e−5 + 9.06796e-5i
\(516\) −26.8818 408.481i −0.0520965 0.791630i
\(517\) 57.1257 57.1257i 0.110495 0.110495i
\(518\) −137.051 + 99.6318i −0.264577 + 0.192339i
\(519\) −91.4977 229.538i −0.176296 0.442269i
\(520\) −1.77312 0.901575i −0.00340985 0.00173380i
\(521\) 862.399 1.65528 0.827639 0.561261i \(-0.189684\pi\)
0.827639 + 0.561261i \(0.189684\pi\)
\(522\) −51.9237 + 279.671i −0.0994707 + 0.535767i
\(523\) −256.574 + 256.574i −0.490581 + 0.490581i −0.908489 0.417908i \(-0.862763\pi\)
0.417908 + 0.908489i \(0.362763\pi\)
\(524\) −157.507 + 80.3648i −0.300585 + 0.153368i
\(525\) −190.280 + 442.529i −0.362438 + 0.842912i
\(526\) 60.7078 383.989i 0.115414 0.730018i
\(527\) 1139.76i 2.16274i
\(528\) −596.995 151.094i −1.13067 0.286162i
\(529\) −145.967 −0.275930
\(530\) 0.804024 + 0.127114i 0.00151703 + 0.000239838i
\(531\) −20.5617 + 767.897i −0.0387227 + 1.44613i
\(532\) −67.0456 + 34.2087i −0.126026 + 0.0643021i
\(533\) 595.990 + 595.990i 1.11818 + 1.11818i
\(534\) 482.938 + 304.721i 0.904378 + 0.570639i
\(535\) 0.807394i 0.00150915i
\(536\) −255.768 + 83.3415i −0.477179 + 0.155488i
\(537\) 29.7342 + 74.5933i 0.0553709 + 0.138907i
\(538\) −493.350 678.639i −0.917008 1.26141i
\(539\) 70.2895 + 70.2895i 0.130407 + 0.130407i
\(540\) 1.10544 + 1.02253i 0.00204712 + 0.00189358i
\(541\) −431.469 431.469i −0.797540 0.797540i 0.185167 0.982707i \(-0.440717\pi\)
−0.982707 + 0.185167i \(0.940717\pi\)
\(542\) 86.8947 549.627i 0.160322 1.01407i
\(543\) 38.5062 + 96.5993i 0.0709137 + 0.177899i
\(544\) 430.874 + 429.670i 0.792048 + 0.789835i
\(545\) 2.37483i 0.00435749i
\(546\) 670.280 151.658i 1.22762 0.277762i
\(547\) 335.381 + 335.381i 0.613127 + 0.613127i 0.943760 0.330632i \(-0.107262\pi\)
−0.330632 + 0.943760i \(0.607262\pi\)
\(548\) −163.298 52.9576i −0.297989 0.0966380i
\(549\) 16.3609 611.014i 0.0298014 1.11296i
\(550\) 377.193 + 518.857i 0.685806 + 0.943376i
\(551\) 46.2983 0.0840259
\(552\) 300.547 + 360.969i 0.544469 + 0.653929i
\(553\) 304.900i 0.551357i
\(554\) −100.041 137.613i −0.180579 0.248399i
\(555\) 0.217948 0.506874i 0.000392699 0.000913287i
\(556\) 237.302 121.079i 0.426803 0.217768i
\(557\) −118.642 + 118.642i −0.213001 + 0.213001i −0.805541 0.592540i \(-0.798125\pi\)
0.592540 + 0.805541i \(0.298125\pi\)
\(558\) −889.333 + 610.815i −1.59379 + 1.09465i
\(559\) 608.350 1.08828
\(560\) 1.41495 0.225730i 0.00252670 0.000403090i
\(561\) 271.004 + 679.860i 0.483073 + 1.21187i
\(562\) 97.9564 619.595i 0.174300 1.10248i
\(563\) 290.766 290.766i 0.516459 0.516459i −0.400039 0.916498i \(-0.631003\pi\)
0.916498 + 0.400039i \(0.131003\pi\)
\(564\) −56.8254 49.8079i −0.100754 0.0883119i
\(565\) −2.02305 + 2.02305i −0.00358061 + 0.00358061i
\(566\) 477.290 + 656.546i 0.843268 + 1.15998i
\(567\) −519.499 27.8409i −0.916223 0.0491021i
\(568\) 49.2196 96.7998i 0.0866543 0.170422i
\(569\) −669.398 −1.17645 −0.588223 0.808699i \(-0.700172\pi\)
−0.588223 + 0.808699i \(0.700172\pi\)
\(570\) 0.130791 0.207284i 0.000229458 0.000363657i
\(571\) 454.971 454.971i 0.796798 0.796798i −0.185792 0.982589i \(-0.559485\pi\)
0.982589 + 0.185792i \(0.0594849\pi\)
\(572\) 282.312 870.525i 0.493553 1.52190i
\(573\) 431.102 + 185.367i 0.752359 + 0.323502i
\(574\) −599.681 94.8082i −1.04474 0.165171i
\(575\) 489.277i 0.850916i
\(576\) −104.351 + 566.469i −0.181165 + 0.983453i
\(577\) −288.393 −0.499814 −0.249907 0.968270i \(-0.580400\pi\)
−0.249907 + 0.968270i \(0.580400\pi\)
\(578\) 22.6713 143.401i 0.0392238 0.248098i
\(579\) 258.307 600.737i 0.446126 1.03754i
\(580\) −0.838370 0.271884i −0.00144547 0.000468766i
\(581\) −451.725 451.725i −0.777496 0.777496i
\(582\) −312.688 197.298i −0.537265 0.339001i
\(583\) 374.502i 0.642371i
\(584\) 224.285 + 114.042i 0.384049 + 0.195277i
\(585\) −1.62416 + 1.53945i −0.00277635 + 0.00263154i
\(586\) 403.796 293.548i 0.689072 0.500935i
\(587\) 393.610 + 393.610i 0.670545 + 0.670545i 0.957842 0.287297i \(-0.0927566\pi\)
−0.287297 + 0.957842i \(0.592757\pi\)
\(588\) 61.2855 69.9200i 0.104227 0.118912i
\(589\) 124.172 + 124.172i 0.210818 + 0.210818i
\(590\) −2.35094 0.371679i −0.00398465 0.000629964i
\(591\) −969.287 + 386.375i −1.64008 + 0.653764i
\(592\) 208.412 33.2484i 0.352047 0.0561629i
\(593\) 707.638i 1.19332i −0.802495 0.596659i \(-0.796494\pi\)
0.802495 0.596659i \(-0.203506\pi\)
\(594\) −385.246 + 575.805i −0.648562 + 0.969370i
\(595\) −1.20413 1.20413i −0.00202375 0.00202375i
\(596\) 338.166 + 662.772i 0.567393 + 1.11203i
\(597\) −642.678 276.341i −1.07651 0.462883i
\(598\) −564.601 + 410.448i −0.944149 + 0.686368i
\(599\) 996.581 1.66374 0.831870 0.554970i \(-0.187270\pi\)
0.831870 + 0.554970i \(0.187270\pi\)
\(600\) 461.093 383.911i 0.768488 0.639852i
\(601\) 214.386i 0.356716i −0.983966 0.178358i \(-0.942921\pi\)
0.983966 0.178358i \(-0.0570785\pi\)
\(602\) −354.446 + 257.672i −0.588781 + 0.428026i
\(603\) −8.10051 + 302.521i −0.0134337 + 0.501693i
\(604\) −180.042 + 555.169i −0.298083 + 0.919155i
\(605\) 0.429836 0.429836i 0.000710474 0.000710474i
\(606\) −90.2321 398.797i −0.148898 0.658080i
\(607\) −989.981 −1.63094 −0.815470 0.578799i \(-0.803522\pi\)
−0.815470 + 0.578799i \(0.803522\pi\)
\(608\) 93.7521 0.131184i 0.154198 0.000215763i
\(609\) 282.849 112.748i 0.464448 0.185137i
\(610\) 1.87064 + 0.295744i 0.00306663 + 0.000484826i
\(611\) 79.4044 79.4044i 0.129958 0.129958i
\(612\) 617.882 294.692i 1.00961 0.481522i
\(613\) 277.427 277.427i 0.452572 0.452572i −0.443636 0.896207i \(-0.646312\pi\)
0.896207 + 0.443636i \(0.146312\pi\)
\(614\) −146.396 + 106.425i −0.238430 + 0.173331i
\(615\) 1.83648 0.732052i 0.00298614 0.00119033i
\(616\) 204.233 + 626.774i 0.331548 + 1.01749i
\(617\) 294.951 0.478040 0.239020 0.971015i \(-0.423174\pi\)
0.239020 + 0.971015i \(0.423174\pi\)
\(618\) −15.1658 + 24.0355i −0.0245401 + 0.0388923i
\(619\) 717.374 717.374i 1.15892 1.15892i 0.174218 0.984707i \(-0.444260\pi\)
0.984707 0.174218i \(-0.0557396\pi\)
\(620\) −1.51931 2.97769i −0.00245050 0.00480273i
\(621\) 495.924 182.457i 0.798589 0.293812i
\(622\) 166.242 1051.52i 0.267270 1.69054i
\(623\) 611.273i 0.981177i
\(624\) −829.819 210.019i −1.32984 0.336570i
\(625\) −624.985 −0.999977
\(626\) −366.797 57.9897i −0.585937 0.0926353i
\(627\) 103.592 + 44.5428i 0.165218 + 0.0710412i
\(628\) 142.069 + 278.440i 0.226224 + 0.443376i
\(629\) −177.359 177.359i −0.281970 0.281970i
\(630\) 0.294247 1.58487i 0.000467059 0.00251566i
\(631\) 526.114i 0.833779i −0.908957 0.416889i \(-0.863120\pi\)
0.908957 0.416889i \(-0.136880\pi\)
\(632\) 172.130 338.526i 0.272357 0.535643i
\(633\) 33.4795 13.3455i 0.0528903 0.0210830i
\(634\) 279.621 + 384.639i 0.441042 + 0.606685i
\(635\) −0.533835 0.533835i −0.000840686 0.000840686i
\(636\) 349.531 23.0023i 0.549577 0.0361672i
\(637\) 97.7020 + 97.7020i 0.153378 + 0.153378i
\(638\) 63.3197 400.510i 0.0992472 0.627759i
\(639\) −84.0431 88.6678i −0.131523 0.138760i
\(640\) −1.69844 0.548179i −0.00265381 0.000856530i
\(641\) 1025.84i 1.60037i −0.599754 0.800184i \(-0.704735\pi\)
0.599754 0.800184i \(-0.295265\pi\)
\(642\) 76.6739 + 338.874i 0.119430 + 0.527841i
\(643\) −366.197 366.197i −0.569514 0.569514i 0.362479 0.931992i \(-0.381931\pi\)
−0.931992 + 0.362479i \(0.881931\pi\)
\(644\) 155.108 478.283i 0.240851 0.742676i
\(645\) 0.563665 1.31090i 0.000873900 0.00203240i
\(646\) −65.5173 90.1238i −0.101420 0.139511i
\(647\) 90.9084 0.140508 0.0702538 0.997529i \(-0.477619\pi\)
0.0702538 + 0.997529i \(0.477619\pi\)
\(648\) 561.074 + 324.191i 0.865855 + 0.500295i
\(649\) 1095.03i 1.68726i
\(650\) 524.296 + 721.208i 0.806610 + 1.10955i
\(651\) 1060.99 + 456.208i 1.62978 + 0.700780i
\(652\) −181.551 355.822i −0.278453 0.545739i
\(653\) −291.274 + 291.274i −0.446056 + 0.446056i −0.894041 0.447985i \(-0.852142\pi\)
0.447985 + 0.894041i \(0.352142\pi\)
\(654\) 225.525 + 996.749i 0.344840 + 1.52408i
\(655\) −0.616367 −0.000941019
\(656\) 612.294 + 443.811i 0.933375 + 0.676541i
\(657\) 205.443 194.728i 0.312698 0.296389i
\(658\) −12.6314 + 79.8962i −0.0191967 + 0.121423i
\(659\) −817.853 + 817.853i −1.24105 + 1.24105i −0.281486 + 0.959565i \(0.590827\pi\)
−0.959565 + 0.281486i \(0.909173\pi\)
\(660\) −1.61427 1.41492i −0.00244586 0.00214382i
\(661\) −673.995 + 673.995i −1.01966 + 1.01966i −0.0198568 + 0.999803i \(0.506321\pi\)
−0.999803 + 0.0198568i \(0.993679\pi\)
\(662\) −401.946 552.905i −0.607169 0.835205i
\(663\) 376.694 + 945.001i 0.568166 + 1.42534i
\(664\) 246.524 + 756.562i 0.371272 + 1.13940i
\(665\) −0.262368 −0.000394538
\(666\) 43.3404 233.439i 0.0650756 0.350509i
\(667\) −218.694 + 218.694i −0.327877 + 0.327877i
\(668\) −327.989 106.367i −0.491001 0.159232i
\(669\) 12.9514 30.1206i 0.0193593 0.0450233i
\(670\) −0.926179 0.146427i −0.00138236 0.000218547i
\(671\) 871.316i 1.29853i
\(672\) 572.438 229.112i 0.851842 0.340941i
\(673\) −526.059 −0.781662 −0.390831 0.920462i \(-0.627812\pi\)
−0.390831 + 0.920462i \(0.627812\pi\)
\(674\) −123.945 + 783.975i −0.183894 + 1.16317i
\(675\) −233.066 633.481i −0.345283 0.938490i
\(676\) 183.876 566.993i 0.272007 0.838747i
\(677\) −143.663 143.663i −0.212205 0.212205i 0.592998 0.805204i \(-0.297944\pi\)
−0.805204 + 0.592998i \(0.797944\pi\)
\(678\) −656.981 + 1041.22i −0.968999 + 1.53572i
\(679\) 395.782i 0.582890i
\(680\) 0.657142 + 2.01671i 0.000966385 + 0.00296575i
\(681\) −156.945 393.723i −0.230462 0.578155i
\(682\) 1243.99 904.343i 1.82403 1.32602i
\(683\) −50.6262 50.6262i −0.0741232 0.0741232i 0.669073 0.743196i \(-0.266691\pi\)
−0.743196 + 0.669073i \(0.766691\pi\)
\(684\) 35.2101 99.4205i 0.0514767 0.145352i
\(685\) −0.423133 0.423133i −0.000617713 0.000617713i
\(686\) −720.016 113.833i −1.04959 0.165937i
\(687\) −364.243 913.765i −0.530193 1.33008i
\(688\) 539.004 85.9884i 0.783436 0.124983i
\(689\) 520.556i 0.755523i
\(690\) 0.361322 + 1.59693i 0.000523655 + 0.00231439i
\(691\) 396.186 + 396.186i 0.573351 + 0.573351i 0.933063 0.359712i \(-0.117125\pi\)
−0.359712 + 0.933063i \(0.617125\pi\)
\(692\) 293.475 149.740i 0.424097 0.216388i
\(693\) 741.345 + 19.8508i 1.06976 + 0.0286447i
\(694\) −88.2395 + 64.1475i −0.127146 + 0.0924316i
\(695\) 0.928629 0.00133616
\(696\) −377.694 34.4979i −0.542664 0.0495659i
\(697\) 898.749i 1.28945i
\(698\) −23.8078 + 17.3075i −0.0341086 + 0.0247959i
\(699\) −375.233 + 872.669i −0.536815 + 1.24845i
\(700\) −610.948 198.131i −0.872782 0.283044i
\(701\) −525.886 + 525.886i −0.750195 + 0.750195i −0.974515 0.224321i \(-0.927984\pi\)
0.224321 + 0.974515i \(0.427984\pi\)
\(702\) −535.489 + 800.366i −0.762805 + 1.14012i
\(703\) −38.6449 −0.0549713
\(704\) 127.085 811.197i 0.180519 1.15227i
\(705\) −0.0975321 0.244676i −0.000138343 0.000347058i
\(706\) −413.452 65.3658i −0.585627 0.0925861i
\(707\) −309.492 + 309.492i −0.437753 + 0.437753i
\(708\) −1022.02 + 67.2581i −1.44353 + 0.0949974i
\(709\) −99.4062 + 99.4062i −0.140206 + 0.140206i −0.773726 0.633520i \(-0.781609\pi\)
0.633520 + 0.773726i \(0.281609\pi\)
\(710\) 0.306178 0.222583i 0.000431237 0.000313497i
\(711\) −293.914 310.087i −0.413381 0.436128i
\(712\) −345.091 + 678.688i −0.484679 + 0.953213i
\(713\) −1173.07 −1.64526
\(714\) −619.739 391.039i −0.867981 0.547674i
\(715\) 2.25568 2.25568i 0.00315480 0.00315480i
\(716\) −95.3713 + 48.6613i −0.133200 + 0.0679628i
\(717\) 1054.71 + 453.506i 1.47100 + 0.632505i
\(718\) −13.3260 + 84.2894i −0.0185598 + 0.117395i
\(719\) 551.765i 0.767406i 0.923456 + 0.383703i \(0.125351\pi\)
−0.923456 + 0.383703i \(0.874649\pi\)
\(720\) −1.22143 + 1.59354i −0.00169643 + 0.00221325i
\(721\) 30.4226 0.0421951
\(722\) 696.186 + 110.065i 0.964247 + 0.152445i
\(723\) 108.213 251.668i 0.149673 0.348089i
\(724\) −123.507 + 63.0171i −0.170590 + 0.0870402i
\(725\) 279.354 + 279.354i 0.385316 + 0.385316i
\(726\) 139.589 221.227i 0.192271 0.304721i
\(727\) 75.0947i 0.103294i −0.998665 0.0516470i \(-0.983553\pi\)
0.998665 0.0516470i \(-0.0164471\pi\)
\(728\) 283.883 + 871.213i 0.389949 + 1.19672i
\(729\) 555.174 472.465i 0.761555 0.648100i
\(730\) 0.515723 + 0.709414i 0.000706470 + 0.000971800i
\(731\) −458.694 458.694i −0.627488 0.627488i
\(732\) 813.218 53.5172i 1.11095 0.0731109i
\(733\) 442.709 + 442.709i 0.603968 + 0.603968i 0.941363 0.337395i \(-0.109546\pi\)
−0.337395 + 0.941363i \(0.609546\pi\)
\(734\) 5.07339 32.0902i 0.00691197 0.0437197i
\(735\) 0.301058 0.120007i 0.000409603 0.000163275i
\(736\) −442.226 + 443.465i −0.600851 + 0.602535i
\(737\) 431.400i 0.585346i
\(738\) 701.275 481.652i 0.950237 0.652645i
\(739\) 283.395 + 283.395i 0.383485 + 0.383485i 0.872356 0.488871i \(-0.162591\pi\)
−0.488871 + 0.872356i \(0.662591\pi\)
\(740\) 0.699782 + 0.226940i 0.000945651 + 0.000306676i
\(741\) 143.992 + 61.9143i 0.194321 + 0.0835550i
\(742\) −220.486 303.294i −0.297151 0.408752i
\(743\) −835.949 −1.12510 −0.562550 0.826763i \(-0.690180\pi\)
−0.562550 + 0.826763i \(0.690180\pi\)
\(744\) −920.450 1105.50i −1.23716 1.48588i
\(745\) 2.59361i 0.00348135i
\(746\) 584.396 + 803.878i 0.783372 + 1.07758i
\(747\) 894.857 + 23.9613i 1.19794 + 0.0320768i
\(748\) −869.235 + 443.510i −1.16208 + 0.592928i
\(749\) 262.988 262.988i 0.351118 0.351118i
\(750\) 4.07977 0.923091i 0.00543969 0.00123079i
\(751\) 753.712 1.00361 0.501806 0.864980i \(-0.332669\pi\)
0.501806 + 0.864980i \(0.332669\pi\)
\(752\) 59.1294 81.5766i 0.0786296 0.108479i
\(753\) −507.485 + 202.292i −0.673951 + 0.268648i
\(754\) 88.0140 556.707i 0.116729 0.738338i
\(755\) −1.43854 + 1.43854i −0.00190535 + 0.00190535i
\(756\) −27.0070 693.133i −0.0357236 0.916842i
\(757\) −335.789 + 335.789i −0.443578 + 0.443578i −0.893213 0.449634i \(-0.851554\pi\)
0.449634 + 0.893213i \(0.351554\pi\)
\(758\) −283.574 390.077i −0.374109 0.514613i
\(759\) −699.727 + 278.923i −0.921906 + 0.367488i
\(760\) 0.291303 + 0.148118i 0.000383294 + 0.000194893i
\(761\) 1094.53 1.43828 0.719138 0.694868i \(-0.244537\pi\)
0.719138 + 0.694868i \(0.244537\pi\)
\(762\) −274.753 173.362i −0.360569 0.227510i
\(763\) 773.541 773.541i 1.01381 1.01381i
\(764\) −193.015 + 595.172i −0.252637 + 0.779020i
\(765\) 2.38535 + 0.0638720i 0.00311811 + 8.34928e-5i
\(766\) −506.180 80.0259i −0.660810 0.104472i
\(767\) 1522.09i 1.98447i
\(768\) −764.913 68.7867i −0.995981 0.0895660i
\(769\) 290.367 0.377590 0.188795 0.982016i \(-0.439542\pi\)
0.188795 + 0.982016i \(0.439542\pi\)
\(770\) −0.358827 + 2.26966i −0.000466009 + 0.00294761i
\(771\)