Properties

Label 48.3.i.b.29.4
Level $48$
Weight $3$
Character 48.29
Analytic conductor $1.308$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 48.i (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.30790526893\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 2 x^{18} + 6 x^{16} - 24 x^{14} - 24 x^{12} + 1216 x^{10} - 384 x^{8} - 6144 x^{6} + 24576 x^{4} - 131072 x^{2} + 1048576\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{13} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 29.4
Root \(-1.21144 + 1.59136i\) of defining polynomial
Character \(\chi\) \(=\) 48.29
Dual form 48.3.i.b.5.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.21144 - 1.59136i) q^{2} +(1.14944 + 2.77106i) q^{3} +(-1.06484 + 3.85566i) q^{4} +(4.80434 + 4.80434i) q^{5} +(3.01728 - 5.18614i) q^{6} -7.36187i q^{7} +(7.42573 - 2.97634i) q^{8} +(-6.35757 + 6.37035i) q^{9} +O(q^{10})\) \(q+(-1.21144 - 1.59136i) q^{2} +(1.14944 + 2.77106i) q^{3} +(-1.06484 + 3.85566i) q^{4} +(4.80434 + 4.80434i) q^{5} +(3.01728 - 5.18614i) q^{6} -7.36187i q^{7} +(7.42573 - 2.97634i) q^{8} +(-6.35757 + 6.37035i) q^{9} +(1.82527 - 13.4656i) q^{10} +(-0.514693 - 0.514693i) q^{11} +(-11.9082 + 1.48110i) q^{12} +(7.12969 + 7.12969i) q^{13} +(-11.7154 + 8.91843i) q^{14} +(-7.79081 + 18.8354i) q^{15} +(-13.7322 - 8.21135i) q^{16} -11.1126i q^{17} +(17.8393 + 2.39991i) q^{18} +(-21.1403 - 21.1403i) q^{19} +(-23.6398 + 13.4080i) q^{20} +(20.4002 - 8.46203i) q^{21} +(-0.195543 + 1.44258i) q^{22} -7.80231 q^{23} +(16.7830 + 17.1560i) q^{24} +21.1633i q^{25} +(2.70873 - 19.9831i) q^{26} +(-24.9603 - 10.2949i) q^{27} +(28.3849 + 7.83924i) q^{28} +(34.6058 - 34.6058i) q^{29} +(39.4120 - 10.4199i) q^{30} +24.8644 q^{31} +(3.56850 + 31.8004i) q^{32} +(0.834637 - 2.01786i) q^{33} +(-17.6842 + 13.4623i) q^{34} +(35.3689 - 35.3689i) q^{35} +(-17.7921 - 31.2960i) q^{36} +(-18.2760 + 18.2760i) q^{37} +(-8.03168 + 59.2520i) q^{38} +(-11.5617 + 27.9520i) q^{39} +(49.9750 + 21.3764i) q^{40} -64.2448 q^{41} +(-38.1797 - 22.2128i) q^{42} +(7.24058 - 7.24058i) q^{43} +(2.53255 - 1.43641i) q^{44} +(-61.1492 + 0.0613789i) q^{45} +(9.45200 + 12.4163i) q^{46} +23.0508i q^{47} +(6.96979 - 47.4913i) q^{48} -5.19710 q^{49} +(33.6784 - 25.6380i) q^{50} +(30.7938 - 12.7733i) q^{51} +(-35.0817 + 19.8976i) q^{52} +(31.9199 + 31.9199i) q^{53} +(13.8549 + 52.1923i) q^{54} -4.94552i q^{55} +(-21.9114 - 54.6672i) q^{56} +(34.2816 - 82.8807i) q^{57} +(-96.9929 - 13.1475i) q^{58} +(17.6272 + 17.6272i) q^{59} +(-64.3270 - 50.0955i) q^{60} +(-12.3933 - 12.3933i) q^{61} +(-30.1216 - 39.5682i) q^{62} +(46.8976 + 46.8036i) q^{63} +(46.2828 - 44.2029i) q^{64} +68.5069i q^{65} +(-4.22224 + 1.11630i) q^{66} +(41.1425 + 41.1425i) q^{67} +(42.8465 + 11.8332i) q^{68} +(-8.96830 - 21.6207i) q^{69} +(-99.1318 - 13.4374i) q^{70} -25.6785 q^{71} +(-28.2493 + 66.2267i) q^{72} +56.1845i q^{73} +(51.2239 + 6.94346i) q^{74} +(-58.6449 + 24.3260i) q^{75} +(104.021 - 58.9988i) q^{76} +(-3.78910 + 3.78910i) q^{77} +(58.4878 - 15.4633i) q^{78} -35.7013 q^{79} +(-26.5241 - 105.424i) q^{80} +(-0.162608 - 80.9998i) q^{81} +(77.8285 + 102.236i) q^{82} +(-94.9424 + 94.9424i) q^{83} +(10.9037 + 87.6669i) q^{84} +(53.3889 - 53.3889i) q^{85} +(-20.2939 - 2.75086i) q^{86} +(135.672 + 56.1175i) q^{87} +(-5.35387 - 2.29007i) q^{88} -44.8713 q^{89} +(74.1760 + 97.2360i) q^{90} +(52.4878 - 52.4878i) q^{91} +(8.30824 - 30.0830i) q^{92} +(28.5802 + 68.9008i) q^{93} +(36.6821 - 27.9246i) q^{94} -203.131i q^{95} +(-84.0191 + 46.4412i) q^{96} -82.3636 q^{97} +(6.29596 + 8.27045i) q^{98} +(6.55097 - 0.00657558i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 6q^{3} + 4q^{4} - 12q^{6} + O(q^{10}) \) \( 20q - 6q^{3} + 4q^{4} - 12q^{6} + 32q^{10} - 88q^{12} + 92q^{13} - 116q^{15} - 16q^{16} + 4q^{18} - 52q^{19} + 48q^{21} + 24q^{22} - 8q^{24} + 18q^{27} + 56q^{28} + 28q^{30} - 80q^{31} + 60q^{33} + 104q^{34} + 92q^{36} - 116q^{37} + 88q^{40} + 304q^{42} + 172q^{43} + 60q^{45} - 424q^{46} + 176q^{48} - 364q^{49} + 128q^{51} - 208q^{52} + 40q^{54} - 512q^{58} - 240q^{60} - 244q^{61} + 296q^{63} + 88q^{64} - 492q^{66} + 356q^{67} - 20q^{69} + 200q^{70} - 472q^{72} - 146q^{75} + 328q^{76} + 84q^{78} + 384q^{79} - 188q^{81} + 560q^{82} + 816q^{84} + 48q^{85} + 416q^{88} + 616q^{90} + 136q^{91} - 132q^{93} + 32q^{94} - 24q^{96} + 472q^{97} - 452q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/48\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(31\) \(37\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.21144 1.59136i −0.605718 0.795679i
\(3\) 1.14944 + 2.77106i 0.383147 + 0.923687i
\(4\) −1.06484 + 3.85566i −0.266211 + 0.963915i
\(5\) 4.80434 + 4.80434i 0.960868 + 0.960868i 0.999263 0.0383950i \(-0.0122245\pi\)
−0.0383950 + 0.999263i \(0.512225\pi\)
\(6\) 3.01728 5.18614i 0.502880 0.864356i
\(7\) 7.36187i 1.05170i −0.850579 0.525848i \(-0.823748\pi\)
0.850579 0.525848i \(-0.176252\pi\)
\(8\) 7.42573 2.97634i 0.928216 0.372042i
\(9\) −6.35757 + 6.37035i −0.706397 + 0.707816i
\(10\) 1.82527 13.4656i 0.182527 1.34656i
\(11\) −0.514693 0.514693i −0.0467903 0.0467903i 0.683325 0.730115i \(-0.260533\pi\)
−0.730115 + 0.683325i \(0.760533\pi\)
\(12\) −11.9082 + 1.48110i −0.992354 + 0.123425i
\(13\) 7.12969 + 7.12969i 0.548438 + 0.548438i 0.925989 0.377551i \(-0.123234\pi\)
−0.377551 + 0.925989i \(0.623234\pi\)
\(14\) −11.7154 + 8.91843i −0.836812 + 0.637031i
\(15\) −7.79081 + 18.8354i −0.519388 + 1.25569i
\(16\) −13.7322 8.21135i −0.858263 0.513210i
\(17\) 11.1126i 0.653684i −0.945079 0.326842i \(-0.894015\pi\)
0.945079 0.326842i \(-0.105985\pi\)
\(18\) 17.8393 + 2.39991i 0.991072 + 0.133328i
\(19\) −21.1403 21.1403i −1.11265 1.11265i −0.992791 0.119858i \(-0.961756\pi\)
−0.119858 0.992791i \(-0.538244\pi\)
\(20\) −23.6398 + 13.4080i −1.18199 + 0.670401i
\(21\) 20.4002 8.46203i 0.971438 0.402954i
\(22\) −0.195543 + 1.44258i −0.00888834 + 0.0655718i
\(23\) −7.80231 −0.339231 −0.169615 0.985510i \(-0.554253\pi\)
−0.169615 + 0.985510i \(0.554253\pi\)
\(24\) 16.7830 + 17.1560i 0.699294 + 0.714834i
\(25\) 21.1633i 0.846533i
\(26\) 2.70873 19.9831i 0.104182 0.768579i
\(27\) −24.9603 10.2949i −0.924455 0.381292i
\(28\) 28.3849 + 7.83924i 1.01374 + 0.279973i
\(29\) 34.6058 34.6058i 1.19330 1.19330i 0.217169 0.976134i \(-0.430318\pi\)
0.976134 0.217169i \(-0.0696823\pi\)
\(30\) 39.4120 10.4199i 1.31373 0.347331i
\(31\) 24.8644 0.802078 0.401039 0.916061i \(-0.368649\pi\)
0.401039 + 0.916061i \(0.368649\pi\)
\(32\) 3.56850 + 31.8004i 0.111516 + 0.993763i
\(33\) 0.834637 2.01786i 0.0252920 0.0611472i
\(34\) −17.6842 + 13.4623i −0.520123 + 0.395949i
\(35\) 35.3689 35.3689i 1.01054 1.01054i
\(36\) −17.7921 31.2960i −0.494224 0.869335i
\(37\) −18.2760 + 18.2760i −0.493946 + 0.493946i −0.909547 0.415601i \(-0.863571\pi\)
0.415601 + 0.909547i \(0.363571\pi\)
\(38\) −8.03168 + 59.2520i −0.211360 + 1.55926i
\(39\) −11.5617 + 27.9520i −0.296453 + 0.716717i
\(40\) 49.9750 + 21.3764i 1.24938 + 0.534409i
\(41\) −64.2448 −1.56695 −0.783473 0.621426i \(-0.786554\pi\)
−0.783473 + 0.621426i \(0.786554\pi\)
\(42\) −38.1797 22.2128i −0.909040 0.528876i
\(43\) 7.24058 7.24058i 0.168386 0.168386i −0.617884 0.786269i \(-0.712010\pi\)
0.786269 + 0.617884i \(0.212010\pi\)
\(44\) 2.53255 1.43641i 0.0575579 0.0326458i
\(45\) −61.1492 + 0.0613789i −1.35887 + 0.00136398i
\(46\) 9.45200 + 12.4163i 0.205478 + 0.269919i
\(47\) 23.0508i 0.490442i 0.969467 + 0.245221i \(0.0788606\pi\)
−0.969467 + 0.245221i \(0.921139\pi\)
\(48\) 6.96979 47.4913i 0.145204 0.989402i
\(49\) −5.19710 −0.106063
\(50\) 33.6784 25.6380i 0.673569 0.512760i
\(51\) 30.7938 12.7733i 0.603800 0.250457i
\(52\) −35.0817 + 19.8976i −0.674647 + 0.382647i
\(53\) 31.9199 + 31.9199i 0.602263 + 0.602263i 0.940913 0.338650i \(-0.109970\pi\)
−0.338650 + 0.940913i \(0.609970\pi\)
\(54\) 13.8549 + 52.1923i 0.256573 + 0.966525i
\(55\) 4.94552i 0.0899185i
\(56\) −21.9114 54.6672i −0.391275 0.976200i
\(57\) 34.2816 82.8807i 0.601432 1.45405i
\(58\) −96.9929 13.1475i −1.67229 0.226681i
\(59\) 17.6272 + 17.6272i 0.298766 + 0.298766i 0.840530 0.541764i \(-0.182244\pi\)
−0.541764 + 0.840530i \(0.682244\pi\)
\(60\) −64.3270 50.0955i −1.07212 0.834925i
\(61\) −12.3933 12.3933i −0.203170 0.203170i 0.598187 0.801357i \(-0.295888\pi\)
−0.801357 + 0.598187i \(0.795888\pi\)
\(62\) −30.1216 39.5682i −0.485833 0.638196i
\(63\) 46.8976 + 46.8036i 0.744407 + 0.742914i
\(64\) 46.2828 44.2029i 0.723169 0.690671i
\(65\) 68.5069i 1.05395i
\(66\) −4.22224 + 1.11630i −0.0639734 + 0.0169136i
\(67\) 41.1425 + 41.1425i 0.614067 + 0.614067i 0.944003 0.329936i \(-0.107027\pi\)
−0.329936 + 0.944003i \(0.607027\pi\)
\(68\) 42.8465 + 11.8332i 0.630096 + 0.174018i
\(69\) −8.96830 21.6207i −0.129975 0.313343i
\(70\) −99.1318 13.4374i −1.41617 0.191963i
\(71\) −25.6785 −0.361669 −0.180834 0.983514i \(-0.557880\pi\)
−0.180834 + 0.983514i \(0.557880\pi\)
\(72\) −28.2493 + 66.2267i −0.392351 + 0.919815i
\(73\) 56.1845i 0.769650i 0.922990 + 0.384825i \(0.125738\pi\)
−0.922990 + 0.384825i \(0.874262\pi\)
\(74\) 51.2239 + 6.94346i 0.692214 + 0.0938305i
\(75\) −58.6449 + 24.3260i −0.781932 + 0.324347i
\(76\) 104.021 58.9988i 1.36870 0.776299i
\(77\) −3.78910 + 3.78910i −0.0492091 + 0.0492091i
\(78\) 58.4878 15.4633i 0.749844 0.198247i
\(79\) −35.7013 −0.451915 −0.225957 0.974137i \(-0.572551\pi\)
−0.225957 + 0.974137i \(0.572551\pi\)
\(80\) −26.5241 105.424i −0.331551 1.31780i
\(81\) −0.162608 80.9998i −0.00200751 0.999998i
\(82\) 77.8285 + 102.236i 0.949128 + 1.24679i
\(83\) −94.9424 + 94.9424i −1.14388 + 1.14388i −0.156151 + 0.987733i \(0.549909\pi\)
−0.987733 + 0.156151i \(0.950091\pi\)
\(84\) 10.9037 + 87.6669i 0.129806 + 1.04365i
\(85\) 53.3889 53.3889i 0.628104 0.628104i
\(86\) −20.2939 2.75086i −0.235975 0.0319867i
\(87\) 135.672 + 56.1175i 1.55945 + 0.645028i
\(88\) −5.35387 2.29007i −0.0608394 0.0260235i
\(89\) −44.8713 −0.504172 −0.252086 0.967705i \(-0.581117\pi\)
−0.252086 + 0.967705i \(0.581117\pi\)
\(90\) 74.1760 + 97.2360i 0.824178 + 1.08040i
\(91\) 52.4878 52.4878i 0.576789 0.576789i
\(92\) 8.30824 30.0830i 0.0903070 0.326990i
\(93\) 28.5802 + 68.9008i 0.307314 + 0.740869i
\(94\) 36.6821 27.9246i 0.390235 0.297070i
\(95\) 203.131i 2.13822i
\(96\) −84.0191 + 46.4412i −0.875199 + 0.483763i
\(97\) −82.3636 −0.849109 −0.424554 0.905402i \(-0.639569\pi\)
−0.424554 + 0.905402i \(0.639569\pi\)
\(98\) 6.29596 + 8.27045i 0.0642445 + 0.0843924i
\(99\) 6.55097 0.00657558i 0.0661714 6.64200e-5i
\(100\) −81.5986 22.5356i −0.815986 0.225356i
\(101\) −36.3420 36.3420i −0.359822 0.359822i 0.503925 0.863747i \(-0.331889\pi\)
−0.863747 + 0.503925i \(0.831889\pi\)
\(102\) −57.6317 33.5299i −0.565016 0.328725i
\(103\) 87.5176i 0.849685i −0.905267 0.424843i \(-0.860329\pi\)
0.905267 0.424843i \(-0.139671\pi\)
\(104\) 74.1635 + 31.7228i 0.713110 + 0.305027i
\(105\) 138.664 + 57.3550i 1.32061 + 0.546238i
\(106\) 12.1271 89.4650i 0.114407 0.844010i
\(107\) 104.866 + 104.866i 0.980058 + 0.980058i 0.999805 0.0197471i \(-0.00628610\pi\)
−0.0197471 + 0.999805i \(0.506286\pi\)
\(108\) 66.2724 85.2759i 0.613633 0.789591i
\(109\) 7.64006 + 7.64006i 0.0700923 + 0.0700923i 0.741284 0.671192i \(-0.234217\pi\)
−0.671192 + 0.741284i \(0.734217\pi\)
\(110\) −7.87010 + 5.99118i −0.0715463 + 0.0544653i
\(111\) −71.6511 29.6367i −0.645505 0.266998i
\(112\) −60.4509 + 101.095i −0.539740 + 0.902632i
\(113\) 13.1273i 0.116171i 0.998312 + 0.0580853i \(0.0184995\pi\)
−0.998312 + 0.0580853i \(0.981500\pi\)
\(114\) −173.423 + 45.8504i −1.52125 + 0.402197i
\(115\) −37.4849 37.4849i −0.325956 0.325956i
\(116\) 96.5784 + 170.278i 0.832572 + 1.46791i
\(117\) −90.7461 + 0.0910869i −0.775607 + 0.000778521i
\(118\) 6.69696 49.4054i 0.0567539 0.418690i
\(119\) −81.8098 −0.687477
\(120\) −1.79191 + 163.055i −0.0149326 + 1.35879i
\(121\) 120.470i 0.995621i
\(122\) −4.70851 + 34.7360i −0.0385943 + 0.284721i
\(123\) −73.8456 178.026i −0.600371 1.44737i
\(124\) −26.4767 + 95.8687i −0.213522 + 0.773134i
\(125\) 18.4327 18.4327i 0.147461 0.147461i
\(126\) 17.6678 131.331i 0.140221 1.04231i
\(127\) −88.2707 −0.695045 −0.347523 0.937672i \(-0.612977\pi\)
−0.347523 + 0.937672i \(0.612977\pi\)
\(128\) −126.411 20.1036i −0.987589 0.157059i
\(129\) 28.3867 + 11.7415i 0.220052 + 0.0910192i
\(130\) 109.019 82.9917i 0.838608 0.638398i
\(131\) −57.0518 + 57.0518i −0.435510 + 0.435510i −0.890498 0.454988i \(-0.849644\pi\)
0.454988 + 0.890498i \(0.349644\pi\)
\(132\) 6.89141 + 5.36678i 0.0522076 + 0.0406574i
\(133\) −155.632 + 155.632i −1.17017 + 1.17017i
\(134\) 15.6310 115.314i 0.116649 0.860552i
\(135\) −70.4575 169.378i −0.521907 1.25465i
\(136\) −33.0749 82.5194i −0.243198 0.606760i
\(137\) 165.112 1.20520 0.602599 0.798045i \(-0.294132\pi\)
0.602599 + 0.798045i \(0.294132\pi\)
\(138\) −23.5417 + 40.4639i −0.170592 + 0.293216i
\(139\) −95.0802 + 95.0802i −0.684030 + 0.684030i −0.960906 0.276875i \(-0.910701\pi\)
0.276875 + 0.960906i \(0.410701\pi\)
\(140\) 98.7081 + 174.033i 0.705058 + 1.24309i
\(141\) −63.8752 + 26.4955i −0.453015 + 0.187912i
\(142\) 31.1078 + 40.8637i 0.219069 + 0.287772i
\(143\) 7.33920i 0.0513231i
\(144\) 139.613 35.2747i 0.969532 0.244963i
\(145\) 332.516 2.29321
\(146\) 89.4096 68.0639i 0.612395 0.466191i
\(147\) −5.97376 14.4015i −0.0406378 0.0979693i
\(148\) −51.0049 89.9271i −0.344628 0.607615i
\(149\) −131.077 131.077i −0.879709 0.879709i 0.113795 0.993504i \(-0.463699\pi\)
−0.993504 + 0.113795i \(0.963699\pi\)
\(150\) 109.756 + 63.8557i 0.731706 + 0.425704i
\(151\) 123.070i 0.815031i 0.913198 + 0.407515i \(0.133605\pi\)
−0.913198 + 0.407515i \(0.866395\pi\)
\(152\) −219.903 94.0616i −1.44673 0.618826i
\(153\) 70.7913 + 70.6494i 0.462688 + 0.461761i
\(154\) 10.6201 + 1.43956i 0.0689615 + 0.00934782i
\(155\) 119.457 + 119.457i 0.770690 + 0.770690i
\(156\) −95.4619 74.3423i −0.611935 0.476553i
\(157\) 139.181 + 139.181i 0.886503 + 0.886503i 0.994185 0.107683i \(-0.0343430\pi\)
−0.107683 + 0.994185i \(0.534343\pi\)
\(158\) 43.2498 + 56.8135i 0.273733 + 0.359579i
\(159\) −51.7620 + 125.142i −0.325547 + 0.787058i
\(160\) −135.636 + 169.924i −0.847723 + 1.06203i
\(161\) 57.4396i 0.356768i
\(162\) −128.703 + 98.3849i −0.794462 + 0.607314i
\(163\) −19.9311 19.9311i −0.122277 0.122277i 0.643320 0.765597i \(-0.277556\pi\)
−0.765597 + 0.643320i \(0.777556\pi\)
\(164\) 68.4107 247.706i 0.417138 1.51040i
\(165\) 13.7043 5.68458i 0.0830566 0.0344520i
\(166\) 266.104 + 36.0707i 1.60304 + 0.217294i
\(167\) 60.3220 0.361210 0.180605 0.983556i \(-0.442194\pi\)
0.180605 + 0.983556i \(0.442194\pi\)
\(168\) 126.300 123.555i 0.751788 0.735444i
\(169\) 67.3351i 0.398432i
\(170\) −149.638 20.2836i −0.880224 0.119315i
\(171\) 269.072 0.270083i 1.57352 0.00157943i
\(172\) 20.2071 + 35.6273i 0.117483 + 0.207135i
\(173\) 74.8292 74.8292i 0.432539 0.432539i −0.456952 0.889491i \(-0.651059\pi\)
0.889491 + 0.456952i \(0.151059\pi\)
\(174\) −75.0551 283.886i −0.431351 1.63153i
\(175\) 155.802 0.890295
\(176\) 2.84155 + 11.2942i 0.0161452 + 0.0641716i
\(177\) −28.5846 + 69.1074i −0.161495 + 0.390438i
\(178\) 54.3587 + 71.4063i 0.305386 + 0.401159i
\(179\) 3.96558 3.96558i 0.0221541 0.0221541i −0.695943 0.718097i \(-0.745013\pi\)
0.718097 + 0.695943i \(0.245013\pi\)
\(180\) 64.8777 235.836i 0.360432 1.31020i
\(181\) 158.820 158.820i 0.877457 0.877457i −0.115814 0.993271i \(-0.536948\pi\)
0.993271 + 0.115814i \(0.0369475\pi\)
\(182\) −147.113 19.9413i −0.808311 0.109568i
\(183\) 20.0973 48.5882i 0.109821 0.265509i
\(184\) −57.9378 + 23.2223i −0.314879 + 0.126208i
\(185\) −175.608 −0.949233
\(186\) 75.0228 128.950i 0.403349 0.693281i
\(187\) −5.71960 + 5.71960i −0.0305861 + 0.0305861i
\(188\) −88.8760 24.5455i −0.472745 0.130561i
\(189\) −75.7896 + 183.754i −0.401003 + 0.972245i
\(190\) −323.254 + 246.080i −1.70133 + 1.29516i
\(191\) 68.8639i 0.360544i −0.983617 0.180272i \(-0.942302\pi\)
0.983617 0.180272i \(-0.0576978\pi\)
\(192\) 175.688 + 77.4440i 0.915044 + 0.403354i
\(193\) −366.645 −1.89971 −0.949856 0.312686i \(-0.898771\pi\)
−0.949856 + 0.312686i \(0.898771\pi\)
\(194\) 99.7782 + 131.070i 0.514321 + 0.675618i
\(195\) −189.837 + 78.7446i −0.973522 + 0.403819i
\(196\) 5.53410 20.0383i 0.0282352 0.102236i
\(197\) 246.744 + 246.744i 1.25251 + 1.25251i 0.954593 + 0.297912i \(0.0962901\pi\)
0.297912 + 0.954593i \(0.403710\pi\)
\(198\) −7.94655 10.4170i −0.0401341 0.0526110i
\(199\) 287.802i 1.44624i 0.690722 + 0.723120i \(0.257293\pi\)
−0.690722 + 0.723120i \(0.742707\pi\)
\(200\) 62.9892 + 157.153i 0.314946 + 0.785765i
\(201\) −66.7176 + 161.299i −0.331928 + 0.802484i
\(202\) −13.8071 + 101.859i −0.0683521 + 0.504253i
\(203\) −254.763 254.763i −1.25499 1.25499i
\(204\) 16.4590 + 132.332i 0.0806812 + 0.648686i
\(205\) −308.654 308.654i −1.50563 1.50563i
\(206\) −139.272 + 106.022i −0.676077 + 0.514670i
\(207\) 49.6037 49.7034i 0.239632 0.240113i
\(208\) −39.3620 156.451i −0.189240 0.752167i
\(209\) 21.7616i 0.104122i
\(210\) −76.7102 290.146i −0.365287 1.38165i
\(211\) 156.146 + 156.146i 0.740027 + 0.740027i 0.972583 0.232556i \(-0.0747089\pi\)
−0.232556 + 0.972583i \(0.574709\pi\)
\(212\) −157.062 + 89.0826i −0.740859 + 0.420201i
\(213\) −29.5159 71.1567i −0.138572 0.334069i
\(214\) 39.8410 293.918i 0.186173 1.37345i
\(215\) 69.5724 0.323593
\(216\) −215.989 2.15681i −0.999950 0.00998524i
\(217\) 183.048i 0.843541i
\(218\) 2.90263 21.4135i 0.0133148 0.0982271i
\(219\) −155.691 + 64.5807i −0.710916 + 0.294889i
\(220\) 19.0682 + 5.26621i 0.0866738 + 0.0239373i
\(221\) 79.2296 79.2296i 0.358505 0.358505i
\(222\) 39.6381 + 149.926i 0.178550 + 0.675340i
\(223\) 45.2998 0.203138 0.101569 0.994828i \(-0.467614\pi\)
0.101569 + 0.994828i \(0.467614\pi\)
\(224\) 234.110 26.2708i 1.04514 0.117280i
\(225\) −134.818 134.547i −0.599190 0.597988i
\(226\) 20.8902 15.9029i 0.0924345 0.0703666i
\(227\) 300.757 300.757i 1.32492 1.32492i 0.415186 0.909737i \(-0.363717\pi\)
0.909737 0.415186i \(-0.136283\pi\)
\(228\) 283.055 + 220.433i 1.24147 + 0.966813i
\(229\) 65.7088 65.7088i 0.286938 0.286938i −0.548930 0.835868i \(-0.684965\pi\)
0.835868 + 0.548930i \(0.184965\pi\)
\(230\) −14.2414 + 105.063i −0.0619190 + 0.456794i
\(231\) −14.8552 6.14449i −0.0643082 0.0265995i
\(232\) 153.975 359.972i 0.663684 1.55160i
\(233\) −42.8218 −0.183785 −0.0918923 0.995769i \(-0.529292\pi\)
−0.0918923 + 0.995769i \(0.529292\pi\)
\(234\) 110.078 + 144.299i 0.470419 + 0.616663i
\(235\) −110.744 + 110.744i −0.471250 + 0.471250i
\(236\) −86.7346 + 49.1942i −0.367520 + 0.208450i
\(237\) −41.0365 98.9305i −0.173150 0.417428i
\(238\) 99.1073 + 130.189i 0.416417 + 0.547011i
\(239\) 100.598i 0.420913i 0.977603 + 0.210456i \(0.0674950\pi\)
−0.977603 + 0.210456i \(0.932505\pi\)
\(240\) 261.649 194.679i 1.09021 0.811162i
\(241\) −5.23162 −0.0217080 −0.0108540 0.999941i \(-0.503455\pi\)
−0.0108540 + 0.999941i \(0.503455\pi\)
\(242\) −191.711 + 145.942i −0.792195 + 0.603066i
\(243\) 224.269 93.5551i 0.922916 0.385001i
\(244\) 60.9815 34.5875i 0.249924 0.141752i
\(245\) −24.9686 24.9686i −0.101913 0.101913i
\(246\) −193.844 + 333.182i −0.787985 + 1.35440i
\(247\) 301.448i 1.22044i
\(248\) 184.636 74.0048i 0.744501 0.298407i
\(249\) −372.222 153.961i −1.49487 0.618315i
\(250\) −51.6630 7.00298i −0.206652 0.0280119i
\(251\) 17.4381 + 17.4381i 0.0694747 + 0.0694747i 0.740990 0.671516i \(-0.234356\pi\)
−0.671516 + 0.740990i \(0.734356\pi\)
\(252\) −230.397 + 130.983i −0.914275 + 0.519773i
\(253\) 4.01579 + 4.01579i 0.0158727 + 0.0158727i
\(254\) 106.934 + 140.470i 0.421001 + 0.553033i
\(255\) 209.311 + 86.5765i 0.820828 + 0.339516i
\(256\) 121.147 + 225.520i 0.473232 + 0.880938i
\(257\) 343.676i 1.33726i −0.743595 0.668630i \(-0.766881\pi\)
0.743595 0.668630i \(-0.233119\pi\)
\(258\) −15.7038 59.3975i −0.0608674 0.230223i
\(259\) 134.545 + 134.545i 0.519480 + 0.519480i
\(260\) −264.139 72.9491i −1.01592 0.280574i
\(261\) 0.442114 + 440.460i 0.00169392 + 1.68758i
\(262\) 159.904 + 21.6752i 0.610322 + 0.0827299i
\(263\) 98.0863 0.372952 0.186476 0.982460i \(-0.440293\pi\)
0.186476 + 0.982460i \(0.440293\pi\)
\(264\) 0.191969 17.4682i 0.000727155 0.0661675i
\(265\) 306.708i 1.15739i
\(266\) 436.206 + 59.1282i 1.63987 + 0.222286i
\(267\) −51.5769 124.341i −0.193172 0.465697i
\(268\) −202.442 + 114.821i −0.755380 + 0.428437i
\(269\) −126.560 + 126.560i −0.470482 + 0.470482i −0.902070 0.431589i \(-0.857953\pi\)
0.431589 + 0.902070i \(0.357953\pi\)
\(270\) −184.186 + 317.313i −0.682170 + 1.17523i
\(271\) −206.487 −0.761945 −0.380972 0.924586i \(-0.624411\pi\)
−0.380972 + 0.924586i \(0.624411\pi\)
\(272\) −91.2498 + 152.601i −0.335477 + 0.561033i
\(273\) 205.779 + 85.1154i 0.753768 + 0.311778i
\(274\) −200.023 262.752i −0.730010 0.958950i
\(275\) 10.8926 10.8926i 0.0396095 0.0396095i
\(276\) 92.9118 11.5560i 0.336637 0.0418697i
\(277\) 183.416 183.416i 0.662153 0.662153i −0.293734 0.955887i \(-0.594898\pi\)
0.955887 + 0.293734i \(0.0948980\pi\)
\(278\) 266.490 + 36.1231i 0.958598 + 0.129939i
\(279\) −158.077 + 158.395i −0.566585 + 0.567723i
\(280\) 157.370 367.910i 0.562036 1.31396i
\(281\) −109.143 −0.388409 −0.194204 0.980961i \(-0.562213\pi\)
−0.194204 + 0.980961i \(0.562213\pi\)
\(282\) 119.545 + 69.5507i 0.423917 + 0.246634i
\(283\) 60.4623 60.4623i 0.213648 0.213648i −0.592167 0.805815i \(-0.701728\pi\)
0.805815 + 0.592167i \(0.201728\pi\)
\(284\) 27.3436 99.0075i 0.0962802 0.348618i
\(285\) 562.888 233.487i 1.97504 0.819252i
\(286\) −11.6793 + 8.89098i −0.0408367 + 0.0310873i
\(287\) 472.962i 1.64795i
\(288\) −225.267 179.441i −0.782176 0.623058i
\(289\) 165.509 0.572697
\(290\) −402.822 529.152i −1.38904 1.82466i
\(291\) −94.6721 228.235i −0.325334 0.784311i
\(292\) −216.628 59.8277i −0.741877 0.204889i
\(293\) 19.4639 + 19.4639i 0.0664296 + 0.0664296i 0.739541 0.673111i \(-0.235043\pi\)
−0.673111 + 0.739541i \(0.735043\pi\)
\(294\) −15.6811 + 26.9529i −0.0533371 + 0.0916765i
\(295\) 169.374i 0.574149i
\(296\) −81.3170 + 190.108i −0.274720 + 0.642257i
\(297\) 7.54818 + 18.1456i 0.0254147 + 0.0610963i
\(298\) −49.7990 + 367.381i −0.167111 + 1.23282i
\(299\) −55.6280 55.6280i −0.186047 0.186047i
\(300\) −31.3451 252.018i −0.104484 0.840060i
\(301\) −53.3042 53.3042i −0.177090 0.177090i
\(302\) 195.848 149.091i 0.648503 0.493679i
\(303\) 58.9329 142.479i 0.194498 0.470227i
\(304\) 116.713 + 463.894i 0.383924 + 1.52597i
\(305\) 119.084i 0.390438i
\(306\) 26.6693 198.242i 0.0871545 0.647848i
\(307\) −408.201 408.201i −1.32964 1.32964i −0.905677 0.423967i \(-0.860637\pi\)
−0.423967 0.905677i \(-0.639363\pi\)
\(308\) −10.5747 18.6443i −0.0343334 0.0605334i
\(309\) 242.517 100.596i 0.784844 0.325554i
\(310\) 45.3844 334.813i 0.146401 1.08004i
\(311\) −360.965 −1.16066 −0.580330 0.814381i \(-0.697076\pi\)
−0.580330 + 0.814381i \(0.697076\pi\)
\(312\) −2.65921 + 241.975i −0.00852311 + 0.775561i
\(313\) 73.9217i 0.236172i 0.993003 + 0.118086i \(0.0376758\pi\)
−0.993003 + 0.118086i \(0.962324\pi\)
\(314\) 52.8779 390.096i 0.168401 1.24234i
\(315\) 0.451863 + 450.172i 0.00143449 + 1.42912i
\(316\) 38.0163 137.652i 0.120305 0.435607i
\(317\) −172.709 + 172.709i −0.544825 + 0.544825i −0.924939 0.380115i \(-0.875884\pi\)
0.380115 + 0.924939i \(0.375884\pi\)
\(318\) 261.853 69.2299i 0.823436 0.217704i
\(319\) −35.6227 −0.111670
\(320\) 434.724 + 9.99263i 1.35851 + 0.0312270i
\(321\) −170.053 + 411.128i −0.529761 + 1.28077i
\(322\) 91.4070 69.5844i 0.283873 0.216101i
\(323\) −234.925 + 234.925i −0.727321 + 0.727321i
\(324\) 312.481 + 85.6252i 0.964447 + 0.264275i
\(325\) −150.888 + 150.888i −0.464271 + 0.464271i
\(326\) −7.57226 + 55.8627i −0.0232278 + 0.171358i
\(327\) −12.3893 + 29.9529i −0.0378877 + 0.0915990i
\(328\) −477.064 + 191.214i −1.45446 + 0.582970i
\(329\) 169.697 0.515796
\(330\) −25.6481 14.9220i −0.0777217 0.0452182i
\(331\) 261.507 261.507i 0.790051 0.790051i −0.191451 0.981502i \(-0.561319\pi\)
0.981502 + 0.191451i \(0.0613194\pi\)
\(332\) −264.967 467.164i −0.798092 1.40712i
\(333\) −0.233489 232.615i −0.000701168 0.698544i
\(334\) −73.0763 95.9940i −0.218791 0.287407i
\(335\) 395.325i 1.18007i
\(336\) −349.625 51.3107i −1.04055 0.152710i
\(337\) 18.2211 0.0540684 0.0270342 0.999635i \(-0.491394\pi\)
0.0270342 + 0.999635i \(0.491394\pi\)
\(338\) −107.154 + 81.5722i −0.317024 + 0.241338i
\(339\) −36.3765 + 15.0890i −0.107305 + 0.0445104i
\(340\) 148.998 + 262.700i 0.438231 + 0.772647i
\(341\) −12.7975 12.7975i −0.0375294 0.0375294i
\(342\) −326.394 427.863i −0.954368 1.25106i
\(343\) 322.471i 0.940149i
\(344\) 32.2162 75.3170i 0.0936517 0.218945i
\(345\) 60.7863 146.960i 0.176192 0.425970i
\(346\) −209.731 28.4293i −0.606159 0.0821656i
\(347\) −173.710 173.710i −0.500605 0.500605i 0.411021 0.911626i \(-0.365172\pi\)
−0.911626 + 0.411021i \(0.865172\pi\)
\(348\) −360.839 + 463.349i −1.03690 + 1.33146i
\(349\) 387.899 + 387.899i 1.11146 + 1.11146i 0.992953 + 0.118506i \(0.0378106\pi\)
0.118506 + 0.992953i \(0.462189\pi\)
\(350\) −188.744 247.936i −0.539268 0.708389i
\(351\) −104.560 251.358i −0.297891 0.716121i
\(352\) 14.5308 18.2041i 0.0412806 0.0517163i
\(353\) 676.812i 1.91732i 0.284561 + 0.958658i \(0.408152\pi\)
−0.284561 + 0.958658i \(0.591848\pi\)
\(354\) 144.603 38.2309i 0.408484 0.107997i
\(355\) −123.368 123.368i −0.347516 0.347516i
\(356\) 47.7809 173.008i 0.134216 0.485979i
\(357\) −94.0355 226.700i −0.263405 0.635014i
\(358\) −11.1147 1.50661i −0.0310467 0.00420842i
\(359\) 240.896 0.671020 0.335510 0.942037i \(-0.391091\pi\)
0.335510 + 0.942037i \(0.391091\pi\)
\(360\) −453.895 + 182.456i −1.26082 + 0.506823i
\(361\) 532.827i 1.47598i
\(362\) −445.139 60.3392i −1.22967 0.166683i
\(363\) 333.830 138.473i 0.919643 0.381469i
\(364\) 146.484 + 258.267i 0.402428 + 0.709523i
\(365\) −269.929 + 269.929i −0.739532 + 0.739532i
\(366\) −101.668 + 26.8794i −0.277781 + 0.0734411i
\(367\) 666.702 1.81663 0.908313 0.418291i \(-0.137371\pi\)
0.908313 + 0.418291i \(0.137371\pi\)
\(368\) 107.143 + 64.0675i 0.291149 + 0.174096i
\(369\) 408.441 409.261i 1.10689 1.10911i
\(370\) 212.738 + 279.455i 0.574968 + 0.755285i
\(371\) 234.990 234.990i 0.633397 0.633397i
\(372\) −296.091 + 36.8268i −0.795945 + 0.0989967i
\(373\) −358.513 + 358.513i −0.961160 + 0.961160i −0.999273 0.0381137i \(-0.987865\pi\)
0.0381137 + 0.999273i \(0.487865\pi\)
\(374\) 16.0309 + 2.17300i 0.0428633 + 0.00581017i
\(375\) 72.2653 + 29.8908i 0.192708 + 0.0797088i
\(376\) 68.6069 + 171.169i 0.182465 + 0.455236i
\(377\) 493.457 1.30890
\(378\) 384.233 101.998i 1.01649 0.269836i
\(379\) −140.959 + 140.959i −0.371925 + 0.371925i −0.868178 0.496253i \(-0.834709\pi\)
0.496253 + 0.868178i \(0.334709\pi\)
\(380\) 783.202 + 216.302i 2.06106 + 0.569217i
\(381\) −101.462 244.604i −0.266305 0.642004i
\(382\) −109.587 + 83.4242i −0.286877 + 0.218388i
\(383\) 69.4683i 0.181379i −0.995879 0.0906897i \(-0.971093\pi\)
0.995879 0.0906897i \(-0.0289071\pi\)
\(384\) −89.5942 373.402i −0.233318 0.972400i
\(385\) −36.4083 −0.0945669
\(386\) 444.167 + 583.463i 1.15069 + 1.51156i
\(387\) 0.0925037 + 92.1575i 0.000239028 + 0.238133i
\(388\) 87.7043 317.566i 0.226042 0.818468i
\(389\) −265.362 265.362i −0.682165 0.682165i 0.278322 0.960488i \(-0.410222\pi\)
−0.960488 + 0.278322i \(0.910222\pi\)
\(390\) 355.286 + 206.704i 0.910990 + 0.530011i
\(391\) 86.7042i 0.221750i
\(392\) −38.5923 + 15.4683i −0.0984496 + 0.0394600i
\(393\) −223.672 92.5164i −0.569139 0.235411i
\(394\) 93.7434 691.571i 0.237927 1.75526i
\(395\) −171.521 171.521i −0.434230 0.434230i
\(396\) −6.95041 + 25.2653i −0.0175515 + 0.0638013i
\(397\) 259.123 + 259.123i 0.652703 + 0.652703i 0.953643 0.300940i \(-0.0973004\pi\)
−0.300940 + 0.953643i \(0.597300\pi\)
\(398\) 457.996 348.654i 1.15074 0.876014i
\(399\) −610.157 252.377i −1.52922 0.632523i
\(400\) 173.780 290.619i 0.434449 0.726548i
\(401\) 664.163i 1.65627i −0.560531 0.828133i \(-0.689403\pi\)
0.560531 0.828133i \(-0.310597\pi\)
\(402\) 337.509 89.2323i 0.839575 0.221971i
\(403\) 177.275 + 177.275i 0.439889 + 0.439889i
\(404\) 178.821 101.424i 0.442626 0.251049i
\(405\) 388.369 389.932i 0.958937 0.962795i
\(406\) −96.7902 + 714.049i −0.238400 + 1.75874i
\(407\) 18.8131 0.0462237
\(408\) 190.649 186.504i 0.467276 0.457117i
\(409\) 530.421i 1.29687i −0.761269 0.648437i \(-0.775423\pi\)
0.761269 0.648437i \(-0.224577\pi\)
\(410\) −117.264 + 865.093i −0.286011 + 2.10998i
\(411\) 189.787 + 457.536i 0.461768 + 1.11323i
\(412\) 337.438 + 93.1926i 0.819024 + 0.226196i
\(413\) 129.769 129.769i 0.314211 0.314211i
\(414\) −139.188 18.7248i −0.336202 0.0452290i
\(415\) −912.271 −2.19824
\(416\) −201.285 + 252.169i −0.483857 + 0.606176i
\(417\) −372.762 154.184i −0.893914 0.369746i
\(418\) 34.6305 26.3628i 0.0828480 0.0630688i
\(419\) −404.149 + 404.149i −0.964556 + 0.964556i −0.999393 0.0348367i \(-0.988909\pi\)
0.0348367 + 0.999393i \(0.488909\pi\)
\(420\) −368.797 + 473.567i −0.878087 + 1.12754i
\(421\) −264.630 + 264.630i −0.628575 + 0.628575i −0.947710 0.319134i \(-0.896608\pi\)
0.319134 + 0.947710i \(0.396608\pi\)
\(422\) 59.3232 437.644i 0.140576 1.03707i
\(423\) −146.842 146.547i −0.347143 0.346447i
\(424\) 332.033 + 142.024i 0.783097 + 0.334963i
\(425\) 235.180 0.553366
\(426\) −77.4791 + 133.172i −0.181876 + 0.312611i
\(427\) −91.2382 + 91.2382i −0.213673 + 0.213673i
\(428\) −515.994 + 292.662i −1.20559 + 0.683790i
\(429\) 20.3374 8.43598i 0.0474065 0.0196643i
\(430\) −84.2825 110.715i −0.196006 0.257476i
\(431\) 766.652i 1.77877i −0.457155 0.889387i \(-0.651132\pi\)
0.457155 0.889387i \(-0.348868\pi\)
\(432\) 258.225 + 346.329i 0.597743 + 0.801688i
\(433\) 151.222 0.349243 0.174622 0.984636i \(-0.444130\pi\)
0.174622 + 0.984636i \(0.444130\pi\)
\(434\) −291.296 + 221.752i −0.671188 + 0.510948i
\(435\) 382.207 + 921.422i 0.878638 + 2.11821i
\(436\) −37.5929 + 21.3220i −0.0862223 + 0.0489036i
\(437\) 164.943 + 164.943i 0.377445 + 0.377445i
\(438\) 291.380 + 169.524i 0.665252 + 0.387041i
\(439\) 565.007i 1.28703i −0.765433 0.643516i \(-0.777475\pi\)
0.765433 0.643516i \(-0.222525\pi\)
\(440\) −14.7195 36.7241i −0.0334535 0.0834638i
\(441\) 33.0409 33.1073i 0.0749228 0.0750733i
\(442\) −222.064 30.1011i −0.502408 0.0681020i
\(443\) −100.963 100.963i −0.227907 0.227907i 0.583911 0.811818i \(-0.301522\pi\)
−0.811818 + 0.583911i \(0.801522\pi\)
\(444\) 190.566 244.704i 0.429204 0.551134i
\(445\) −215.577 215.577i −0.484442 0.484442i
\(446\) −54.8779 72.0883i −0.123045 0.161633i
\(447\) 212.557 513.887i 0.475518 1.14963i
\(448\) −325.416 340.728i −0.726375 0.760554i
\(449\) 131.725i 0.293375i −0.989183 0.146687i \(-0.953139\pi\)
0.989183 0.146687i \(-0.0468611\pi\)
\(450\) −50.7900 + 377.539i −0.112867 + 0.838975i
\(451\) 33.0663 + 33.0663i 0.0733178 + 0.0733178i
\(452\) −50.6143 13.9785i −0.111979 0.0309259i
\(453\) −341.034 + 141.461i −0.752833 + 0.312277i
\(454\) −842.961 114.264i −1.85674 0.251684i
\(455\) 504.339 1.10844
\(456\) 7.88486 717.483i 0.0172914 1.57343i
\(457\) 137.963i 0.301888i −0.988542 0.150944i \(-0.951769\pi\)
0.988542 0.150944i \(-0.0482313\pi\)
\(458\) −184.168 24.9642i −0.402114 0.0545071i
\(459\) −114.403 + 277.374i −0.249245 + 0.604302i
\(460\) 184.445 104.613i 0.400967 0.227421i
\(461\) −303.536 + 303.536i −0.658430 + 0.658430i −0.955008 0.296579i \(-0.904154\pi\)
0.296579 + 0.955008i \(0.404154\pi\)
\(462\) 8.21803 + 31.0836i 0.0177879 + 0.0672805i
\(463\) 280.379 0.605570 0.302785 0.953059i \(-0.402084\pi\)
0.302785 + 0.953059i \(0.402084\pi\)
\(464\) −759.374 + 191.054i −1.63658 + 0.411754i
\(465\) −193.714 + 468.332i −0.416589 + 1.00716i
\(466\) 51.8759 + 68.1449i 0.111322 + 0.146234i
\(467\) −65.6355 + 65.6355i −0.140547 + 0.140547i −0.773880 0.633333i \(-0.781687\pi\)
0.633333 + 0.773880i \(0.281687\pi\)
\(468\) 96.2792 349.983i 0.205725 0.747827i
\(469\) 302.886 302.886i 0.645812 0.645812i
\(470\) 310.392 + 42.0740i 0.660409 + 0.0895192i
\(471\) −225.699 + 545.659i −0.479190 + 1.15851i
\(472\) 183.359 + 78.4302i 0.388473 + 0.166166i
\(473\) −7.45335 −0.0157576
\(474\) −107.721 + 185.152i −0.227259 + 0.390616i
\(475\) 447.400 447.400i 0.941894 0.941894i
\(476\) 87.1147 315.431i 0.183014 0.662669i
\(477\) −406.274 + 0.407800i −0.851728 + 0.000854927i
\(478\) 160.088 121.868i 0.334912 0.254955i
\(479\) 373.272i 0.779273i 0.920969 + 0.389636i \(0.127399\pi\)
−0.920969 + 0.389636i \(0.872601\pi\)
\(480\) −626.776 180.537i −1.30578 0.376119i
\(481\) −260.604 −0.541797
\(482\) 6.33778 + 8.32539i 0.0131489 + 0.0172726i
\(483\) −159.169 + 66.0234i −0.329542 + 0.136694i
\(484\) 464.492 + 128.282i 0.959694 + 0.265045i
\(485\) −395.702 395.702i −0.815881 0.815881i
\(486\) −420.567 243.556i −0.865364 0.501144i
\(487\) 0.0470526i 9.66171e-5i −1.00000 4.83086e-5i \(-0.999985\pi\)
1.00000 4.83086e-5i \(-1.53771e-5\pi\)
\(488\) −128.916 55.1429i −0.264173 0.112998i
\(489\) 32.3206 78.1398i 0.0660954 0.159795i
\(490\) −9.48614 + 69.9820i −0.0193595 + 0.142820i
\(491\) 273.442 + 273.442i 0.556908 + 0.556908i 0.928426 0.371518i \(-0.121163\pi\)
−0.371518 + 0.928426i \(0.621163\pi\)
\(492\) 765.043 95.1532i 1.55496 0.193401i
\(493\) −384.562 384.562i −0.780044 0.780044i
\(494\) −479.712 + 365.185i −0.971077 + 0.739241i
\(495\) 31.5047 + 31.4415i 0.0636458 + 0.0635182i
\(496\) −341.443 204.170i −0.688394 0.411634i
\(497\) 189.042i 0.380365i
\(498\) 205.917 + 778.852i 0.413487 + 1.56396i
\(499\) −46.2637 46.2637i −0.0927129 0.0927129i 0.659229 0.751942i \(-0.270883\pi\)
−0.751942 + 0.659229i \(0.770883\pi\)
\(500\) 51.4422 + 90.6980i 0.102884 + 0.181396i
\(501\) 69.3366 + 167.156i 0.138396 + 0.333645i
\(502\) 6.62514 48.8755i 0.0131975 0.0973616i
\(503\) 864.426 1.71854 0.859270 0.511522i \(-0.170918\pi\)
0.859270 + 0.511522i \(0.170918\pi\)
\(504\) 487.552 + 207.968i 0.967366 + 0.412634i
\(505\) 349.198i 0.691482i
\(506\) 1.52569 11.2554i 0.00301520 0.0222440i
\(507\) 186.590 77.3977i 0.368027 0.152658i
\(508\) 93.9946 340.342i 0.185029 0.669964i
\(509\) −171.041 + 171.041i −0.336033 + 0.336033i −0.854872 0.518839i \(-0.826365\pi\)
0.518839 + 0.854872i \(0.326365\pi\)
\(510\) −115.793 437.971i −0.227045 0.858767i
\(511\) 413.623 0.809438
\(512\) 212.121 465.992i 0.414299 0.910141i
\(513\) 310.031 + 745.306i 0.604349 + 1.45284i
\(514\) −546.911 + 416.341i −1.06403 + 0.810002i
\(515\) 420.464 420.464i 0.816435 0.816435i
\(516\) −75.4986 + 96.9467i −0.146315 + 0.187881i
\(517\) 11.8641 11.8641i 0.0229479 0.0229479i
\(518\) 51.1168 377.103i 0.0986811 0.727999i
\(519\) 293.368 + 121.345i 0.565257 + 0.233805i
\(520\) 203.899 + 508.713i 0.392114 + 0.978295i
\(521\) 351.572 0.674802 0.337401 0.941361i \(-0.390452\pi\)
0.337401 + 0.941361i \(0.390452\pi\)
\(522\) 700.394 534.292i 1.34175 1.02355i
\(523\) −287.638 + 287.638i −0.549977 + 0.549977i −0.926434 0.376457i \(-0.877142\pi\)
0.376457 + 0.926434i \(0.377142\pi\)
\(524\) −159.221 280.724i −0.303857 0.535732i
\(525\) 179.085 + 431.736i 0.341114 + 0.822354i
\(526\) −118.825 156.090i −0.225904 0.296750i
\(527\) 276.309i 0.524306i
\(528\) −28.0307 + 20.8561i −0.0530885 + 0.0395003i
\(529\) −468.124 −0.884922
\(530\) 488.083 371.558i 0.920911 0.701052i
\(531\) −224.357 + 0.225200i −0.422519 + 0.000424106i
\(532\) −434.341 765.789i −0.816431 1.43945i
\(533\) −458.045 458.045i −0.859372 0.859372i
\(534\) −135.389 + 232.709i −0.253538 + 0.435784i
\(535\) 1007.63i 1.88341i
\(536\) 427.967 + 183.059i 0.798446 + 0.341528i
\(537\) 15.5471 + 6.43067i 0.0289517 + 0.0119752i
\(538\) 354.721 + 48.0828i 0.659332 + 0.0893732i
\(539\) 2.67491 + 2.67491i 0.00496273 + 0.00496273i
\(540\) 728.089 91.2993i 1.34831 0.169073i
\(541\) 419.846 + 419.846i 0.776056 + 0.776056i 0.979158 0.203102i \(-0.0651021\pi\)
−0.203102 + 0.979158i \(0.565102\pi\)
\(542\) 250.146 + 328.595i 0.461524 + 0.606264i
\(543\) 622.654 + 257.545i 1.14669 + 0.474301i
\(544\) 353.386 39.6554i 0.649607 0.0728960i
\(545\) 73.4108i 0.134699i
\(546\) −113.839 430.580i −0.208496 0.788607i
\(547\) 517.346 + 517.346i 0.945789 + 0.945789i 0.998604 0.0528155i \(-0.0168195\pi\)
−0.0528155 + 0.998604i \(0.516820\pi\)
\(548\) −175.819 + 636.616i −0.320837 + 1.16171i
\(549\) 157.742 0.158334i 0.287325 0.000288404i
\(550\) −30.5298 4.13835i −0.0555087 0.00752427i
\(551\) −1463.16 −2.65546
\(552\) −130.947 133.857i −0.237222 0.242494i
\(553\) 262.828i 0.475277i
\(554\) −514.079 69.6840i −0.927940 0.125783i
\(555\) −201.851 486.621i −0.363696 0.876794i
\(556\) −265.351 467.843i −0.477251 0.841443i
\(557\) 31.8976 31.8976i 0.0572667 0.0572667i −0.677893 0.735160i \(-0.737107\pi\)
0.735160 + 0.677893i \(0.237107\pi\)
\(558\) 443.563 + 59.6722i 0.794917 + 0.106939i
\(559\) 103.246 0.184698
\(560\) −776.120 + 195.267i −1.38593 + 0.348691i
\(561\) −22.4237 9.27502i −0.0399709 0.0165330i
\(562\) 132.220 + 173.685i 0.235266 + 0.309049i
\(563\) −32.9214 + 32.9214i −0.0584750 + 0.0584750i −0.735740 0.677265i \(-0.763165\pi\)
0.677265 + 0.735740i \(0.263165\pi\)
\(564\) −34.1406 274.495i −0.0605330 0.486692i
\(565\) −63.0679 + 63.0679i −0.111625 + 0.111625i
\(566\) −169.464 22.9710i −0.299406 0.0405848i
\(567\) −596.310 + 1.19710i −1.05169 + 0.00211129i
\(568\) −190.681 + 76.4278i −0.335707 + 0.134556i
\(569\) 647.095 1.13725 0.568624 0.822597i \(-0.307476\pi\)
0.568624 + 0.822597i \(0.307476\pi\)
\(570\) −1053.46 612.902i −1.84818 1.07527i
\(571\) 451.861 451.861i 0.791350 0.791350i −0.190363 0.981714i \(-0.560967\pi\)
0.981714 + 0.190363i \(0.0609666\pi\)
\(572\) 28.2975 + 7.81511i 0.0494711 + 0.0136628i
\(573\) 190.826 79.1550i 0.333030 0.138141i
\(574\) 752.652 572.963i 1.31124 0.998193i
\(575\) 165.123i 0.287170i
\(576\) −12.6585 + 575.861i −0.0219766 + 0.999758i
\(577\) 532.176 0.922315 0.461157 0.887318i \(-0.347434\pi\)
0.461157 + 0.887318i \(0.347434\pi\)
\(578\) −200.504 263.385i −0.346893 0.455683i
\(579\) −421.436 1015.99i −0.727869 1.75474i
\(580\) −354.078 + 1282.07i −0.610478 + 2.21046i
\(581\) 698.953 + 698.953i 1.20302 + 1.20302i
\(582\) −248.514 + 427.149i −0.427000 + 0.733933i
\(583\) 32.8579i 0.0563601i
\(584\) 167.224 + 417.210i 0.286342 + 0.714402i
\(585\) −436.412 435.537i −0.746004 0.744508i
\(586\) 7.39475 54.5532i 0.0126190 0.0930942i
\(587\) 532.393 + 532.393i 0.906973 + 0.906973i 0.996027 0.0890534i \(-0.0283842\pi\)
−0.0890534 + 0.996027i \(0.528384\pi\)
\(588\) 61.8884 7.69745i 0.105252 0.0130909i
\(589\) −525.642 525.642i −0.892431 0.892431i
\(590\) 269.535 205.186i 0.456838 0.347772i
\(591\) −400.124 + 967.359i −0.677029 + 1.63682i
\(592\) 401.040 100.899i 0.677433 0.170438i
\(593\) 254.750i 0.429595i 0.976659 + 0.214798i \(0.0689092\pi\)
−0.976659 + 0.214798i \(0.931091\pi\)
\(594\) 19.7320 33.9941i 0.0332189 0.0572291i
\(595\) −393.042 393.042i −0.660574 0.660574i
\(596\) 644.963 365.811i 1.08215 0.613777i
\(597\) −797.517 + 330.811i −1.33587 + 0.554123i
\(598\) −21.1343 + 155.914i −0.0353417 + 0.260726i
\(599\) 624.772 1.04303 0.521513 0.853244i \(-0.325368\pi\)
0.521513 + 0.853244i \(0.325368\pi\)
\(600\) −363.079 + 355.185i −0.605131 + 0.591975i
\(601\) 386.910i 0.643777i 0.946778 + 0.321889i \(0.104318\pi\)
−0.946778 + 0.321889i \(0.895682\pi\)
\(602\) −20.2515 + 149.401i −0.0336403 + 0.248174i
\(603\) −523.658 + 0.525625i −0.868422 + 0.000871684i
\(604\) −474.514 131.050i −0.785620 0.216970i
\(605\) 578.779 578.779i 0.956660 0.956660i
\(606\) −298.128 + 78.8207i −0.491961 + 0.130067i
\(607\) −951.141 −1.56695 −0.783477 0.621421i \(-0.786556\pi\)
−0.783477 + 0.621421i \(0.786556\pi\)
\(608\) 596.832 747.710i 0.981632 1.22979i
\(609\) 413.129 998.800i 0.678373 1.64007i
\(610\) −189.505 + 144.262i −0.310664 + 0.236496i
\(611\) −164.345 + 164.345i −0.268977 + 0.268977i
\(612\) −347.782 + 197.717i −0.568271 + 0.323066i
\(613\) 387.896 387.896i 0.632783 0.632783i −0.315982 0.948765i \(-0.602334\pi\)
0.948765 + 0.315982i \(0.102334\pi\)
\(614\) −155.085 + 1144.10i −0.252581 + 1.86336i
\(615\) 500.519 1210.08i 0.813852 1.96761i
\(616\) −16.8592 + 39.4145i −0.0273688 + 0.0639846i
\(617\) −882.945 −1.43103 −0.715514 0.698598i \(-0.753808\pi\)
−0.715514 + 0.698598i \(0.753808\pi\)
\(618\) −453.878 264.065i −0.734431 0.427290i
\(619\) −694.731 + 694.731i −1.12234 + 1.12234i −0.130955 + 0.991388i \(0.541804\pi\)
−0.991388 + 0.130955i \(0.958196\pi\)
\(620\) −587.789 + 333.382i −0.948046 + 0.537714i
\(621\) 194.748 + 80.3239i 0.313604 + 0.129346i
\(622\) 437.286 + 574.425i 0.703033 + 0.923513i
\(623\) 330.337i 0.530235i
\(624\) 388.291 288.906i 0.622260 0.462990i
\(625\) 706.197 1.12991
\(626\) 117.636 89.5515i 0.187917 0.143053i
\(627\) −60.3027 + 25.0136i −0.0961765 + 0.0398942i
\(628\) −684.840 + 388.428i −1.09051 + 0.618516i
\(629\) 203.094 + 203.094i 0.322885 + 0.322885i
\(630\) 715.838 546.074i 1.13625 0.866785i
\(631\) 927.845i 1.47044i −0.677831 0.735218i \(-0.737080\pi\)
0.677831 0.735218i \(-0.262920\pi\)
\(632\) −265.108 + 106.259i −0.419475 + 0.168131i
\(633\) −253.209 + 612.170i −0.400014 + 0.967093i
\(634\) 484.069 + 65.6161i 0.763516 + 0.103495i
\(635\) −424.082 424.082i −0.667846 0.667846i
\(636\) −427.387 332.834i −0.671992 0.523323i
\(637\) −37.0537 37.0537i −0.0581691 0.0581691i
\(638\) 43.1547 + 56.6885i 0.0676405 + 0.0888535i
\(639\) 163.253 163.581i 0.255482 0.255995i
\(640\) −510.739 703.908i −0.798029 1.09986i
\(641\) 759.287i 1.18453i −0.805741 0.592267i \(-0.798233\pi\)
0.805741 0.592267i \(-0.201767\pi\)
\(642\) 860.261 227.440i 1.33997 0.354268i
\(643\) 274.424 + 274.424i 0.426787 + 0.426787i 0.887532 0.460746i \(-0.152418\pi\)
−0.460746 + 0.887532i \(0.652418\pi\)
\(644\) −221.467 61.1642i −0.343893 0.0949755i
\(645\) 79.9694 + 192.789i 0.123984 + 0.298898i
\(646\) 658.446 + 89.2532i 1.01927 + 0.138163i
\(647\) −747.683 −1.15561 −0.577807 0.816173i \(-0.696092\pi\)
−0.577807 + 0.816173i \(0.696092\pi\)
\(648\) −242.290 600.999i −0.373905 0.927467i
\(649\) 18.1452i 0.0279587i
\(650\) 422.908 + 57.3257i 0.650628 + 0.0881934i
\(651\) 507.239 210.403i 0.779168 0.323200i
\(652\) 98.0709 55.6239i 0.150416 0.0853128i
\(653\) 605.127 605.127i 0.926688 0.926688i −0.0708022 0.997490i \(-0.522556\pi\)
0.997490 + 0.0708022i \(0.0225559\pi\)
\(654\) 62.6746 16.5702i 0.0958327 0.0253367i
\(655\) −548.192 −0.836935
\(656\) 882.223 + 527.537i 1.34485 + 0.804172i
\(657\) −357.914 357.197i −0.544771 0.543678i
\(658\) −205.577 270.049i −0.312427 0.410408i
\(659\) 588.767 588.767i 0.893425 0.893425i −0.101418 0.994844i \(-0.532338\pi\)
0.994844 + 0.101418i \(0.0323381\pi\)
\(660\) 7.32483 + 58.8925i 0.0110982 + 0.0892310i
\(661\) 3.60334 3.60334i 0.00545135 0.00545135i −0.704376 0.709827i \(-0.748773\pi\)
0.709827 + 0.704376i \(0.248773\pi\)
\(662\) −732.950 99.3523i −1.10718 0.150079i
\(663\) 310.620 + 128.480i 0.468507 + 0.193786i
\(664\) −422.436 + 987.597i −0.636198 + 1.48734i
\(665\) −1495.42 −2.24875
\(666\) −369.891 + 282.170i −0.555393 + 0.423679i
\(667\) −270.005 + 270.005i −0.404805 + 0.404805i
\(668\) −64.2336 + 232.581i −0.0961581 + 0.348176i
\(669\) 52.0695 + 125.529i 0.0778319 + 0.187636i
\(670\) 629.104 478.911i 0.938961 0.714793i
\(671\) 12.7575i 0.0190127i
\(672\) 341.894 + 618.538i 0.508771 + 0.920443i
\(673\) −460.445 −0.684167 −0.342084 0.939670i \(-0.611133\pi\)
−0.342084 + 0.939670i \(0.611133\pi\)
\(674\) −22.0737 28.9963i −0.0327502 0.0430211i
\(675\) 217.874 528.242i 0.322776 0.782581i
\(676\) 259.621 + 71.7014i 0.384055 + 0.106067i
\(677\) 150.713 + 150.713i 0.222618 + 0.222618i 0.809600 0.586982i \(-0.199684\pi\)
−0.586982 + 0.809600i \(0.699684\pi\)
\(678\) 68.0799 + 39.6086i 0.100413 + 0.0584198i
\(679\) 606.350i 0.893004i
\(680\) 237.548 555.354i 0.349335 0.816698i
\(681\) 1179.12 + 487.714i 1.73145 + 0.716174i
\(682\) −4.86207 + 35.8689i −0.00712913 + 0.0525937i
\(683\) −577.893 577.893i −0.846109 0.846109i 0.143536 0.989645i \(-0.454153\pi\)
−0.989645 + 0.143536i \(0.954153\pi\)
\(684\) −285.479 + 1037.74i −0.417367 + 1.51716i
\(685\) 793.254 + 793.254i 1.15803 + 1.15803i
\(686\) −513.167 + 390.653i −0.748057 + 0.569465i
\(687\) 257.612 + 106.555i 0.374981 + 0.155102i
\(688\) −158.884 + 39.9742i −0.230936 + 0.0581021i
\(689\) 455.158i 0.660607i
\(690\) −307.505 + 81.2996i −0.445659 + 0.117825i
\(691\) −545.023 545.023i −0.788745 0.788745i 0.192544 0.981288i \(-0.438326\pi\)
−0.981288 + 0.192544i \(0.938326\pi\)
\(692\) 208.834 + 368.197i 0.301784 + 0.532077i
\(693\) −0.0484085 48.2274i −6.98536e−5 0.0695922i
\(694\) −65.9963 + 486.874i −0.0950956 + 0.701547i
\(695\) −913.595 −1.31453
\(696\) 1174.49 + 12.9072i 1.68748 + 0.0185448i
\(697\) 713.929i 1.02429i
\(698\) 147.372 1087.20i 0.211134 1.55760i
\(699\) −49.2212 118.662i −0.0704165 0.169760i
\(700\) −165.904 + 600.718i −0.237006 + 0.858169i
\(701\) −413.745 + 413.745i −0.590221 + 0.590221i −0.937691 0.347470i \(-0.887041\pi\)
0.347470 + 0.937691i \(0.387041\pi\)
\(702\) −273.334 + 470.897i −0.389364 + 0.670793i
\(703\) 772.721 1.09918
\(704\) −46.5724 1.07052i −0.0661540 0.00152062i
\(705\) −434.171 179.584i −0.615846 0.254730i
\(706\) 1077.05 819.915i 1.52557 1.16135i
\(707\) −267.545 + 267.545i −0.378423 + 0.378423i
\(708\) −236.017 183.801i −0.333357 0.259606i
\(709\) 521.959 521.959i 0.736191 0.736191i −0.235648 0.971839i \(-0.575721\pi\)
0.971839 + 0.235648i \(0.0757212\pi\)
\(710\) −46.8703 + 345.776i −0.0660145 + 0.487008i
\(711\) 226.973 227.429i 0.319231 0.319873i
\(712\) −333.202 + 133.552i −0.467980 + 0.187573i
\(713\) −194.000 −0.272089
\(714\) −246.843 + 424.277i −0.345718 + 0.594225i
\(715\) 35.2600 35.2600i 0.0493147 0.0493147i
\(716\) 11.0672 + 19.5127i 0.0154570 + 0.0272523i
\(717\) −278.764 + 115.632i −0.388792 + 0.161272i
\(718\) −291.830 383.352i −0.406449 0.533917i
\(719\) 567.983i 0.789963i 0.918689 + 0.394981i \(0.129249\pi\)
−0.918689 + 0.394981i \(0.870751\pi\)
\(720\) 840.218 + 501.275i 1.16697 + 0.696215i
\(721\) −644.293 −0.893610
\(722\) 847.919 645.486i 1.17440 0.894025i
\(723\) −6.01344 14.4972i −0.00831735 0.0200514i
\(724\) 443.237 + 781.473i 0.612205 + 1.07938i
\(725\) 732.374 + 732.374i 1.01017 + 1.01017i
\(726\) −624.775 363.492i −0.860572 0.500678i
\(727\) 635.396i 0.873998i 0.899462 + 0.436999i \(0.143959\pi\)
−0.899462 + 0.436999i \(0.856041\pi\)
\(728\) 233.539 545.982i 0.320795 0.749975i
\(729\) 517.031 + 513.926i 0.709233 + 0.704974i
\(730\) 756.556 + 102.552i 1.03638 + 0.140482i
\(731\) −80.4619 80.4619i −0.110071 0.110071i
\(732\) 165.939 + 129.227i 0.226692 + 0.176540i
\(733\) −637.378 637.378i −0.869547 0.869547i 0.122875 0.992422i \(-0.460788\pi\)
−0.992422 + 0.122875i \(0.960788\pi\)
\(734\) −807.667 1060.96i −1.10036 1.44545i
\(735\) 40.4897 97.8896i 0.0550880 0.133183i
\(736\) −27.8425 248.117i −0.0378295 0.337115i
\(737\) 42.3515i 0.0574648i
\(738\) −1146.08 154.181i −1.55296 0.208918i
\(739\) 397.296 + 397.296i 0.537613 + 0.537613i 0.922827 0.385214i \(-0.125872\pi\)
−0.385214 + 0.922827i \(0.625872\pi\)
\(740\) 186.995 677.085i 0.252696 0.914980i
\(741\) 835.331 346.497i 1.12730 0.467607i
\(742\) −658.630 89.2781i −0.887641 0.120321i
\(743\) 1160.78 1.56229 0.781145 0.624349i \(-0.214636\pi\)
0.781145 + 0.624349i \(0.214636\pi\)
\(744\) 417.301 + 426.574i 0.560888 + 0.573353i
\(745\) 1259.47i 1.69057i
\(746\) 1004.84 + 136.207i 1.34697 + 0.182583i
\(747\) −1.21296 1208.42i −0.00162377 1.61770i
\(748\) −15.9623 28.1433i −0.0213400 0.0376247i
\(749\) 772.011 772.011i 1.03072 1.03072i
\(750\) −39.9779 151.211i −0.0533038 0.201615i
\(751\) 1220.14 1.62469 0.812343 0.583181i \(-0.198192\pi\)
0.812343 + 0.583181i \(0.198192\pi\)
\(752\) 189.278 316.538i 0.251700 0.420929i
\(753\) −28.2781 + 68.3663i −0.0375539 + 0.0907919i
\(754\) −597.792 785.267i −0.792827 1.04147i
\(755\) −591.268 + 591.268i −0.783136 + 0.783136i
\(756\) −627.790 487.888i −0.830410 0.645355i
\(757\) 202.623 202.623i 0.267666 0.267666i −0.560493 0.828159i \(-0.689388\pi\)
0.828159 + 0.560493i \(0.189388\pi\)
\(758\) 395.080 + 53.5536i 0.521214 + 0.0706512i
\(759\) −6.51210 + 15.7439i −0.00857984 + 0.0207430i
\(760\) −604.585 1508.39i −0.795507 1.98473i
\(761\) −694.461 −0.912563 −0.456282 0.889835i \(-0.650819\pi\)
−0.456282 + 0.889835i \(0.650819\pi\)
\(762\) −266.337 + 457.784i −0.349524 + 0.600767i
\(763\) 56.2451 56.2451i 0.0737157 0.0737157i
\(764\) 265.516 + 73.3293i 0.347534 + 0.0959808i
\(765\) 0.682081 + 679.529i 0.000891610 + 0.888273i
\(766\) −110.549 + 84.1564i −0.144320 + 0.109865i
\(767\) 251.353i 0.327709i
\(768\) −485.678 + 594.929i −0.632394 + 0.774647i
\(769\) 405.268 0.527007 0.263503 0.964658i \(-0.415122\pi\)
0.263503 + 0.964658i \(0.415122\pi\)
\(770\) 44.1063 + 57.9386i 0.0572809 + 0.0752449i
\(771\) 952.347 395.035i 1.23521 0.512367i
\(772\) 390.419