Properties

Label 48.3.i.a.5.2
Level $48$
Weight $3$
Character 48.5
Analytic conductor $1.308$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 48.i (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.30790526893\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.629407744.1
Defining polynomial: \(x^{8} - 2 x^{6} + 2 x^{4} - 8 x^{2} + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 5.2
Root \(0.767178 + 1.18804i\) of defining polynomial
Character \(\chi\) \(=\) 48.5
Dual form 48.3.i.a.29.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.420861 + 1.95522i) q^{2} +(-2.77809 - 1.13234i) q^{3} +(-3.64575 - 1.64575i) q^{4} +(-6.28651 + 6.28651i) q^{5} +(3.38317 - 4.95522i) q^{6} +1.64575i q^{7} +(4.75216 - 6.43560i) q^{8} +(6.43560 + 6.29150i) q^{9} +O(q^{10})\) \(q+(-0.420861 + 1.95522i) q^{2} +(-2.77809 - 1.13234i) q^{3} +(-3.64575 - 1.64575i) q^{4} +(-6.28651 + 6.28651i) q^{5} +(3.38317 - 4.95522i) q^{6} +1.64575i q^{7} +(4.75216 - 6.43560i) q^{8} +(6.43560 + 6.29150i) q^{9} +(-9.64575 - 14.9373i) q^{10} +(4.75216 - 4.75216i) q^{11} +(8.26468 + 8.70029i) q^{12} +(-9.35425 + 9.35425i) q^{13} +(-3.21780 - 0.692633i) q^{14} +(24.5830 - 10.3460i) q^{15} +(10.5830 + 12.0000i) q^{16} +11.4859i q^{17} +(-15.0098 + 9.93515i) q^{18} +(-8.58301 + 8.58301i) q^{19} +(33.2651 - 12.5730i) q^{20} +(1.86355 - 4.57205i) q^{21} +(7.29150 + 11.2915i) q^{22} -16.2381 q^{23} +(-20.4892 + 12.4976i) q^{24} -54.0405i q^{25} +(-14.3527 - 22.2264i) q^{26} +(-10.7546 - 24.7657i) q^{27} +(2.70850 - 6.00000i) q^{28} +(10.7405 + 10.7405i) q^{29} +(9.88272 + 52.4194i) q^{30} +6.35425 q^{31} +(-27.9166 + 15.6417i) q^{32} +(-18.5830 + 7.82087i) q^{33} +(-22.4575 - 4.83399i) q^{34} +(-10.3460 - 10.3460i) q^{35} +(-13.1084 - 33.5287i) q^{36} +(27.2288 + 27.2288i) q^{37} +(-13.1694 - 20.3939i) q^{38} +(36.5792 - 15.3948i) q^{39} +(10.5830 + 70.3320i) q^{40} -1.98162 q^{41} +(8.15506 + 5.56785i) q^{42} +(-19.4170 - 19.4170i) q^{43} +(-25.1461 + 9.50432i) q^{44} +(-80.0091 + 0.905893i) q^{45} +(6.83399 - 31.7490i) q^{46} +74.9474i q^{47} +(-15.8125 - 45.3207i) q^{48} +46.2915 q^{49} +(105.661 + 22.7436i) q^{50} +(13.0060 - 31.9090i) q^{51} +(49.4980 - 18.7085i) q^{52} +(-4.00671 + 4.00671i) q^{53} +(52.9485 - 10.6046i) q^{54} +59.7490i q^{55} +(10.5914 + 7.82087i) q^{56} +(33.5633 - 14.1255i) q^{57} +(-25.5203 + 16.4797i) q^{58} +(27.9694 - 27.9694i) q^{59} +(-106.651 - 2.73843i) q^{60} +(39.2288 - 39.2288i) q^{61} +(-2.67426 + 12.4239i) q^{62} +(-10.3542 + 10.5914i) q^{63} +(-18.8340 - 61.1660i) q^{64} -117.611i q^{65} +(-7.47063 - 39.6253i) q^{66} +(-68.6863 + 68.6863i) q^{67} +(18.9030 - 41.8749i) q^{68} +(45.1110 + 18.3871i) q^{69} +(24.5830 - 15.8745i) q^{70} -40.6822 q^{71} +(71.0726 - 11.5188i) q^{72} +59.0405i q^{73} +(-64.6977 + 41.7786i) q^{74} +(-61.1923 + 150.130i) q^{75} +(45.4170 - 17.1660i) q^{76} +(7.82087 + 7.82087i) q^{77} +(14.7054 + 77.9993i) q^{78} +17.3948 q^{79} +(-141.968 - 8.90796i) q^{80} +(1.83399 + 80.9792i) q^{81} +(0.833990 - 3.87451i) q^{82} +(75.1400 + 75.1400i) q^{83} +(-14.3185 + 13.6016i) q^{84} +(-72.2065 - 72.2065i) q^{85} +(46.1363 - 29.7926i) q^{86} +(-17.6762 - 42.0000i) q^{87} +(-8.00000 - 53.1660i) q^{88} -78.8051 q^{89} +(31.9015 - 156.817i) q^{90} +(-15.3948 - 15.3948i) q^{91} +(59.2001 + 26.7239i) q^{92} +(-17.6527 - 7.19518i) q^{93} +(-146.539 - 31.5425i) q^{94} -107.914i q^{95} +(95.2667 - 11.8431i) q^{96} -38.8340 q^{97} +(-19.4823 + 90.5100i) q^{98} +(60.4812 - 0.684791i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 4q^{3} - 8q^{4} + 16q^{6} + O(q^{10}) \) \( 8q + 4q^{3} - 8q^{4} + 16q^{6} - 56q^{10} + 56q^{12} - 96q^{13} + 112q^{15} - 64q^{18} + 16q^{19} - 32q^{21} + 16q^{22} - 48q^{24} - 68q^{27} + 64q^{28} + 56q^{30} + 72q^{31} - 64q^{33} + 32q^{34} + 104q^{36} + 112q^{37} - 24q^{42} - 240q^{43} - 112q^{45} + 224q^{46} - 64q^{48} + 328q^{49} - 32q^{51} - 112q^{52} - 168q^{54} - 56q^{58} - 336q^{60} + 208q^{61} - 104q^{63} - 320q^{64} - 80q^{66} - 232q^{67} + 112q^{70} + 160q^{72} + 324q^{75} + 448q^{76} + 152q^{78} - 136q^{79} + 184q^{81} + 176q^{82} + 64q^{84} - 112q^{85} - 64q^{88} + 392q^{90} + 152q^{91} + 64q^{93} - 368q^{94} + 512q^{96} - 480q^{97} + 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/48\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(31\) \(37\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.420861 + 1.95522i −0.210431 + 0.977609i
\(3\) −2.77809 1.13234i −0.926031 0.377447i
\(4\) −3.64575 1.64575i −0.911438 0.411438i
\(5\) −6.28651 + 6.28651i −1.25730 + 1.25730i −0.304927 + 0.952376i \(0.598632\pi\)
−0.952376 + 0.304927i \(0.901368\pi\)
\(6\) 3.38317 4.95522i 0.563861 0.825870i
\(7\) 1.64575i 0.235107i 0.993067 + 0.117554i \(0.0375052\pi\)
−0.993067 + 0.117554i \(0.962495\pi\)
\(8\) 4.75216 6.43560i 0.594020 0.804450i
\(9\) 6.43560 + 6.29150i 0.715067 + 0.699056i
\(10\) −9.64575 14.9373i −0.964575 1.49373i
\(11\) 4.75216 4.75216i 0.432014 0.432014i −0.457299 0.889313i \(-0.651183\pi\)
0.889313 + 0.457299i \(0.151183\pi\)
\(12\) 8.26468 + 8.70029i 0.688724 + 0.725024i
\(13\) −9.35425 + 9.35425i −0.719558 + 0.719558i −0.968515 0.248957i \(-0.919912\pi\)
0.248957 + 0.968515i \(0.419912\pi\)
\(14\) −3.21780 0.692633i −0.229843 0.0494738i
\(15\) 24.5830 10.3460i 1.63887 0.689736i
\(16\) 10.5830 + 12.0000i 0.661438 + 0.750000i
\(17\) 11.4859i 0.675644i 0.941210 + 0.337822i \(0.109690\pi\)
−0.941210 + 0.337822i \(0.890310\pi\)
\(18\) −15.0098 + 9.93515i −0.833875 + 0.551953i
\(19\) −8.58301 + 8.58301i −0.451737 + 0.451737i −0.895931 0.444194i \(-0.853490\pi\)
0.444194 + 0.895931i \(0.353490\pi\)
\(20\) 33.2651 12.5730i 1.66326 0.628651i
\(21\) 1.86355 4.57205i 0.0887406 0.217717i
\(22\) 7.29150 + 11.2915i 0.331432 + 0.513250i
\(23\) −16.2381 −0.706004 −0.353002 0.935623i \(-0.614839\pi\)
−0.353002 + 0.935623i \(0.614839\pi\)
\(24\) −20.4892 + 12.4976i −0.853718 + 0.520735i
\(25\) 54.0405i 2.16162i
\(26\) −14.3527 22.2264i −0.552029 0.854863i
\(27\) −10.7546 24.7657i −0.398318 0.917248i
\(28\) 2.70850 6.00000i 0.0967320 0.214286i
\(29\) 10.7405 + 10.7405i 0.370362 + 0.370362i 0.867609 0.497247i \(-0.165656\pi\)
−0.497247 + 0.867609i \(0.665656\pi\)
\(30\) 9.88272 + 52.4194i 0.329424 + 1.74731i
\(31\) 6.35425 0.204976 0.102488 0.994734i \(-0.467320\pi\)
0.102488 + 0.994734i \(0.467320\pi\)
\(32\) −27.9166 + 15.6417i −0.872393 + 0.488804i
\(33\) −18.5830 + 7.82087i −0.563121 + 0.236996i
\(34\) −22.4575 4.83399i −0.660515 0.142176i
\(35\) −10.3460 10.3460i −0.295601 0.295601i
\(36\) −13.1084 33.5287i −0.364121 0.931352i
\(37\) 27.2288 + 27.2288i 0.735912 + 0.735912i 0.971784 0.235872i \(-0.0757946\pi\)
−0.235872 + 0.971784i \(0.575795\pi\)
\(38\) −13.1694 20.3939i −0.346563 0.536682i
\(39\) 36.5792 15.3948i 0.937928 0.394738i
\(40\) 10.5830 + 70.3320i 0.264575 + 1.75830i
\(41\) −1.98162 −0.0483323 −0.0241662 0.999708i \(-0.507693\pi\)
−0.0241662 + 0.999708i \(0.507693\pi\)
\(42\) 8.15506 + 5.56785i 0.194168 + 0.132568i
\(43\) −19.4170 19.4170i −0.451558 0.451558i 0.444313 0.895871i \(-0.353448\pi\)
−0.895871 + 0.444313i \(0.853448\pi\)
\(44\) −25.1461 + 9.50432i −0.571501 + 0.216007i
\(45\) −80.0091 + 0.905893i −1.77798 + 0.0201310i
\(46\) 6.83399 31.7490i 0.148565 0.690196i
\(47\) 74.9474i 1.59463i 0.603566 + 0.797313i \(0.293746\pi\)
−0.603566 + 0.797313i \(0.706254\pi\)
\(48\) −15.8125 45.3207i −0.329427 0.944181i
\(49\) 46.2915 0.944725
\(50\) 105.661 + 22.7436i 2.11322 + 0.454871i
\(51\) 13.0060 31.9090i 0.255020 0.625667i
\(52\) 49.4980 18.7085i 0.951885 0.359779i
\(53\) −4.00671 + 4.00671i −0.0755983 + 0.0755983i −0.743895 0.668297i \(-0.767024\pi\)
0.668297 + 0.743895i \(0.267024\pi\)
\(54\) 52.9485 10.6046i 0.980528 0.196382i
\(55\) 59.7490i 1.08635i
\(56\) 10.5914 + 7.82087i 0.189132 + 0.139658i
\(57\) 33.5633 14.1255i 0.588830 0.247816i
\(58\) −25.5203 + 16.4797i −0.440004 + 0.284133i
\(59\) 27.9694 27.9694i 0.474058 0.474058i −0.429167 0.903225i \(-0.641193\pi\)
0.903225 + 0.429167i \(0.141193\pi\)
\(60\) −106.651 2.73843i −1.77751 0.0456405i
\(61\) 39.2288 39.2288i 0.643094 0.643094i −0.308221 0.951315i \(-0.599733\pi\)
0.951315 + 0.308221i \(0.0997335\pi\)
\(62\) −2.67426 + 12.4239i −0.0431332 + 0.200386i
\(63\) −10.3542 + 10.5914i −0.164353 + 0.168118i
\(64\) −18.8340 61.1660i −0.294281 0.955719i
\(65\) 117.611i 1.80940i
\(66\) −7.47063 39.6253i −0.113191 0.600384i
\(67\) −68.6863 + 68.6863i −1.02517 + 1.02517i −0.0254932 + 0.999675i \(0.508116\pi\)
−0.999675 + 0.0254932i \(0.991884\pi\)
\(68\) 18.9030 41.8749i 0.277985 0.615807i
\(69\) 45.1110 + 18.3871i 0.653782 + 0.266479i
\(70\) 24.5830 15.8745i 0.351186 0.226779i
\(71\) −40.6822 −0.572988 −0.286494 0.958082i \(-0.592490\pi\)
−0.286494 + 0.958082i \(0.592490\pi\)
\(72\) 71.0726 11.5188i 0.987120 0.159983i
\(73\) 59.0405i 0.808774i 0.914588 + 0.404387i \(0.132515\pi\)
−0.914588 + 0.404387i \(0.867485\pi\)
\(74\) −64.6977 + 41.7786i −0.874293 + 0.564576i
\(75\) −61.1923 + 150.130i −0.815898 + 2.00173i
\(76\) 45.4170 17.1660i 0.597592 0.225869i
\(77\) 7.82087 + 7.82087i 0.101570 + 0.101570i
\(78\) 14.7054 + 77.9993i 0.188530 + 0.999991i
\(79\) 17.3948 0.220187 0.110093 0.993921i \(-0.464885\pi\)
0.110093 + 0.993921i \(0.464885\pi\)
\(80\) −141.968 8.90796i −1.77460 0.111349i
\(81\) 1.83399 + 80.9792i 0.0226418 + 0.999744i
\(82\) 0.833990 3.87451i 0.0101706 0.0472501i
\(83\) 75.1400 + 75.1400i 0.905301 + 0.905301i 0.995889 0.0905874i \(-0.0288745\pi\)
−0.0905874 + 0.995889i \(0.528874\pi\)
\(84\) −14.3185 + 13.6016i −0.170458 + 0.161924i
\(85\) −72.2065 72.2065i −0.849489 0.849489i
\(86\) 46.1363 29.7926i 0.536469 0.346425i
\(87\) −17.6762 42.0000i −0.203174 0.482759i
\(88\) −8.00000 53.1660i −0.0909091 0.604159i
\(89\) −78.8051 −0.885450 −0.442725 0.896657i \(-0.645988\pi\)
−0.442725 + 0.896657i \(0.645988\pi\)
\(90\) 31.9015 156.817i 0.354462 1.74241i
\(91\) −15.3948 15.3948i −0.169173 0.169173i
\(92\) 59.2001 + 26.7239i 0.643479 + 0.290477i
\(93\) −17.6527 7.19518i −0.189814 0.0773675i
\(94\) −146.539 31.5425i −1.55892 0.335558i
\(95\) 107.914i 1.13594i
\(96\) 95.2667 11.8431i 0.992361 0.123366i
\(97\) −38.8340 −0.400350 −0.200175 0.979760i \(-0.564151\pi\)
−0.200175 + 0.979760i \(0.564151\pi\)
\(98\) −19.4823 + 90.5100i −0.198799 + 0.923571i
\(99\) 60.4812 0.684791i 0.610921 0.00691708i
\(100\) −88.9373 + 197.018i −0.889373 + 1.97018i
\(101\) 41.5332 41.5332i 0.411220 0.411220i −0.470943 0.882164i \(-0.656086\pi\)
0.882164 + 0.470943i \(0.156086\pi\)
\(102\) 56.9153 + 38.8589i 0.557993 + 0.380969i
\(103\) 98.8118i 0.959337i −0.877450 0.479669i \(-0.840757\pi\)
0.877450 0.479669i \(-0.159243\pi\)
\(104\) 15.7474 + 104.653i 0.151417 + 1.00628i
\(105\) 17.0270 + 40.4575i 0.162162 + 0.385310i
\(106\) −6.14772 9.52026i −0.0579974 0.0898138i
\(107\) 98.8480 98.8480i 0.923813 0.923813i −0.0734837 0.997296i \(-0.523412\pi\)
0.997296 + 0.0734837i \(0.0234117\pi\)
\(108\) −1.54965 + 107.989i −0.0143486 + 0.999897i
\(109\) 68.8523 68.8523i 0.631672 0.631672i −0.316815 0.948487i \(-0.602613\pi\)
0.948487 + 0.316815i \(0.102613\pi\)
\(110\) −116.822 25.1461i −1.06202 0.228601i
\(111\) −44.8118 106.476i −0.403710 0.959246i
\(112\) −19.7490 + 17.4170i −0.176330 + 0.155509i
\(113\) 8.31160i 0.0735540i 0.999323 + 0.0367770i \(0.0117091\pi\)
−0.999323 + 0.0367770i \(0.988291\pi\)
\(114\) 13.4929 + 71.5684i 0.118359 + 0.627793i
\(115\) 102.081 102.081i 0.887661 0.887661i
\(116\) −21.4810 56.8333i −0.185181 0.489943i
\(117\) −119.053 + 1.34796i −1.01754 + 0.0115210i
\(118\) 42.9150 + 66.4575i 0.363687 + 0.563199i
\(119\) −18.9030 −0.158849
\(120\) 50.2393 207.372i 0.418661 1.72810i
\(121\) 75.8340i 0.626727i
\(122\) 60.1909 + 93.2106i 0.493368 + 0.764022i
\(123\) 5.50514 + 2.24388i 0.0447572 + 0.0182429i
\(124\) −23.1660 10.4575i −0.186823 0.0843348i
\(125\) 182.564 + 182.564i 1.46051 + 1.46051i
\(126\) −16.3508 24.7023i −0.129768 0.196050i
\(127\) −195.933 −1.54278 −0.771391 0.636361i \(-0.780439\pi\)
−0.771391 + 0.636361i \(0.780439\pi\)
\(128\) 127.519 11.0821i 0.996245 0.0865792i
\(129\) 31.9555 + 75.9289i 0.247717 + 0.588596i
\(130\) 229.956 + 49.4980i 1.76889 + 0.380754i
\(131\) −142.127 142.127i −1.08494 1.08494i −0.996041 0.0888967i \(-0.971666\pi\)
−0.0888967 0.996041i \(-0.528334\pi\)
\(132\) 80.6202 + 2.07006i 0.610759 + 0.0156823i
\(133\) −14.1255 14.1255i −0.106207 0.106207i
\(134\) −105.389 163.204i −0.786487 1.21794i
\(135\) 223.299 + 88.0810i 1.65406 + 0.652452i
\(136\) 73.9190 + 54.5830i 0.543522 + 0.401346i
\(137\) 50.4847 0.368501 0.184251 0.982879i \(-0.441014\pi\)
0.184251 + 0.982879i \(0.441014\pi\)
\(138\) −54.9362 + 80.4633i −0.398088 + 0.583067i
\(139\) 171.727 + 171.727i 1.23544 + 1.23544i 0.961843 + 0.273601i \(0.0882149\pi\)
0.273601 + 0.961843i \(0.411785\pi\)
\(140\) 20.6921 + 54.7461i 0.147801 + 0.391044i
\(141\) 84.8661 208.211i 0.601887 1.47667i
\(142\) 17.1216 79.5425i 0.120574 0.560158i
\(143\) 88.9057i 0.621718i
\(144\) −7.39000 + 143.810i −0.0513195 + 0.998682i
\(145\) −135.041 −0.931314
\(146\) −115.437 24.8479i −0.790665 0.170191i
\(147\) −128.602 52.4178i −0.874844 0.356584i
\(148\) −54.4575 144.081i −0.367956 0.973521i
\(149\) −84.4952 + 84.4952i −0.567082 + 0.567082i −0.931310 0.364228i \(-0.881333\pi\)
0.364228 + 0.931310i \(0.381333\pi\)
\(150\) −267.783 182.828i −1.78522 1.21885i
\(151\) 30.1033i 0.199359i 0.995020 + 0.0996797i \(0.0317818\pi\)
−0.995020 + 0.0996797i \(0.968218\pi\)
\(152\) 14.4490 + 96.0246i 0.0950594 + 0.631741i
\(153\) −72.2638 + 73.9190i −0.472313 + 0.483130i
\(154\) −18.5830 + 12.0000i −0.120669 + 0.0779221i
\(155\) −39.9461 + 39.9461i −0.257717 + 0.257717i
\(156\) −158.695 4.07475i −1.01727 0.0261202i
\(157\) −181.265 + 181.265i −1.15456 + 1.15456i −0.168928 + 0.985628i \(0.554030\pi\)
−0.985628 + 0.168928i \(0.945970\pi\)
\(158\) −7.32079 + 34.0106i −0.0463341 + 0.215257i
\(159\) 15.6680 6.59405i 0.0985407 0.0414720i
\(160\) 77.1660 273.830i 0.482288 1.71144i
\(161\) 26.7239i 0.165987i
\(162\) −159.104 30.4952i −0.982123 0.188242i
\(163\) 200.081 200.081i 1.22749 1.22749i 0.262581 0.964910i \(-0.415426\pi\)
0.964910 0.262581i \(-0.0845737\pi\)
\(164\) 7.22451 + 3.26126i 0.0440519 + 0.0198857i
\(165\) 67.6563 165.988i 0.410038 1.00599i
\(166\) −178.539 + 115.292i −1.07553 + 0.694527i
\(167\) −172.656 −1.03387 −0.516933 0.856026i \(-0.672926\pi\)
−0.516933 + 0.856026i \(0.672926\pi\)
\(168\) −20.5680 33.7202i −0.122429 0.200715i
\(169\) 6.00394i 0.0355263i
\(170\) 171.568 110.791i 1.00923 0.651709i
\(171\) −109.237 + 1.23682i −0.638812 + 0.00723287i
\(172\) 38.8340 + 102.745i 0.225779 + 0.597355i
\(173\) −40.8313 40.8313i −0.236019 0.236019i 0.579181 0.815199i \(-0.303373\pi\)
−0.815199 + 0.579181i \(0.803373\pi\)
\(174\) 89.5584 16.8846i 0.514703 0.0970379i
\(175\) 88.9373 0.508213
\(176\) 107.318 + 6.73378i 0.609761 + 0.0382601i
\(177\) −109.373 + 46.0307i −0.617924 + 0.260060i
\(178\) 33.1660 154.081i 0.186326 0.865624i
\(179\) 152.613 + 152.613i 0.852584 + 0.852584i 0.990451 0.137866i \(-0.0440245\pi\)
−0.137866 + 0.990451i \(0.544024\pi\)
\(180\) 293.184 + 128.372i 1.62880 + 0.713180i
\(181\) 166.601 + 166.601i 0.920449 + 0.920449i 0.997061 0.0766118i \(-0.0244102\pi\)
−0.0766118 + 0.997061i \(0.524410\pi\)
\(182\) 36.5792 23.6211i 0.200985 0.129786i
\(183\) −153.402 + 64.5608i −0.838260 + 0.352791i
\(184\) −77.1660 + 104.502i −0.419380 + 0.567945i
\(185\) −342.348 −1.85053
\(186\) 21.4975 31.4867i 0.115578 0.169283i
\(187\) 54.5830 + 54.5830i 0.291888 + 0.291888i
\(188\) 123.345 273.240i 0.656090 1.45340i
\(189\) 40.7582 17.6994i 0.215652 0.0936474i
\(190\) 210.996 + 45.4170i 1.11051 + 0.239037i
\(191\) 14.3434i 0.0750963i −0.999295 0.0375482i \(-0.988045\pi\)
0.999295 0.0375482i \(-0.0119548\pi\)
\(192\) −16.9383 + 191.251i −0.0882201 + 0.996101i
\(193\) 207.373 1.07447 0.537235 0.843433i \(-0.319469\pi\)
0.537235 + 0.843433i \(0.319469\pi\)
\(194\) 16.3437 75.9289i 0.0842460 0.391386i
\(195\) −133.176 + 326.735i −0.682954 + 1.67556i
\(196\) −168.767 76.1843i −0.861058 0.388695i
\(197\) 97.2608 97.2608i 0.493710 0.493710i −0.415763 0.909473i \(-0.636486\pi\)
0.909473 + 0.415763i \(0.136486\pi\)
\(198\) −24.1153 + 118.542i −0.121794 + 0.598698i
\(199\) 82.7673i 0.415916i −0.978138 0.207958i \(-0.933318\pi\)
0.978138 0.207958i \(-0.0666818\pi\)
\(200\) −347.783 256.809i −1.73892 1.28405i
\(201\) 268.593 113.041i 1.33628 0.562391i
\(202\) 63.7268 + 98.6863i 0.315479 + 0.488546i
\(203\) −17.6762 + 17.6762i −0.0870748 + 0.0870748i
\(204\) −99.9310 + 94.9277i −0.489858 + 0.465332i
\(205\) 12.4575 12.4575i 0.0607684 0.0607684i
\(206\) 193.198 + 41.5861i 0.937857 + 0.201874i
\(207\) −104.502 102.162i −0.504840 0.493536i
\(208\) −211.247 13.2549i −1.01561 0.0637256i
\(209\) 81.5756i 0.390314i
\(210\) −86.2693 + 16.2645i −0.410806 + 0.0774500i
\(211\) −201.646 + 201.646i −0.955667 + 0.955667i −0.999058 0.0433911i \(-0.986184\pi\)
0.0433911 + 0.999058i \(0.486184\pi\)
\(212\) 21.2015 8.01342i 0.100007 0.0377992i
\(213\) 113.019 + 46.0661i 0.530605 + 0.216273i
\(214\) 151.668 + 234.871i 0.708729 + 1.09753i
\(215\) 244.130 1.13549
\(216\) −210.490 48.4783i −0.974489 0.224436i
\(217\) 10.4575i 0.0481913i
\(218\) 105.644 + 163.598i 0.484605 + 0.750452i
\(219\) 66.8541 164.020i 0.305270 0.748950i
\(220\) 98.3320 217.830i 0.446964 0.990137i
\(221\) −107.442 107.442i −0.486164 0.486164i
\(222\) 227.044 42.8050i 1.02272 0.192815i
\(223\) 233.261 1.04602 0.523008 0.852328i \(-0.324810\pi\)
0.523008 + 0.852328i \(0.324810\pi\)
\(224\) −25.7424 45.9438i −0.114921 0.205106i
\(225\) 339.996 347.783i 1.51109 1.54570i
\(226\) −16.2510 3.49803i −0.0719070 0.0154780i
\(227\) 94.3599 + 94.3599i 0.415682 + 0.415682i 0.883712 0.468030i \(-0.155036\pi\)
−0.468030 + 0.883712i \(0.655036\pi\)
\(228\) −145.610 3.73879i −0.638642 0.0163982i
\(229\) −138.063 138.063i −0.602894 0.602894i 0.338185 0.941080i \(-0.390187\pi\)
−0.941080 + 0.338185i \(0.890187\pi\)
\(230\) 156.629 + 242.553i 0.680994 + 1.05458i
\(231\) −12.8712 30.5830i −0.0557195 0.132394i
\(232\) 120.162 18.0810i 0.517940 0.0779355i
\(233\) 396.796 1.70299 0.851493 0.524366i \(-0.175697\pi\)
0.851493 + 0.524366i \(0.175697\pi\)
\(234\) 47.4691 233.341i 0.202859 0.997183i
\(235\) −471.158 471.158i −2.00493 2.00493i
\(236\) −148.000 + 55.9388i −0.627119 + 0.237029i
\(237\) −48.3243 19.6968i −0.203900 0.0831090i
\(238\) 7.95554 36.9595i 0.0334267 0.155292i
\(239\) 284.813i 1.19168i 0.803102 + 0.595842i \(0.203182\pi\)
−0.803102 + 0.595842i \(0.796818\pi\)
\(240\) 384.315 + 185.504i 1.60131 + 0.772933i
\(241\) −266.531 −1.10594 −0.552968 0.833202i \(-0.686505\pi\)
−0.552968 + 0.833202i \(0.686505\pi\)
\(242\) −148.272 31.9156i −0.612694 0.131883i
\(243\) 86.6012 227.045i 0.356383 0.934340i
\(244\) −207.579 + 78.4575i −0.850734 + 0.321547i
\(245\) −291.012 + 291.012i −1.18780 + 1.18780i
\(246\) −6.70417 + 9.81938i −0.0272527 + 0.0399162i
\(247\) 160.575i 0.650102i
\(248\) 30.1964 40.8934i 0.121760 0.164893i
\(249\) −123.662 293.830i −0.496633 1.18004i
\(250\) −433.786 + 280.118i −1.73514 + 1.12047i
\(251\) −153.945 + 153.945i −0.613327 + 0.613327i −0.943811 0.330485i \(-0.892788\pi\)
0.330485 + 0.943811i \(0.392788\pi\)
\(252\) 55.1798 21.5731i 0.218968 0.0856076i
\(253\) −77.1660 + 77.1660i −0.305004 + 0.305004i
\(254\) 82.4608 383.092i 0.324649 1.50824i
\(255\) 118.834 + 282.359i 0.466016 + 1.10729i
\(256\) −32.0000 + 253.992i −0.125000 + 0.992157i
\(257\) 240.167i 0.934503i −0.884125 0.467251i \(-0.845244\pi\)
0.884125 0.467251i \(-0.154756\pi\)
\(258\) −161.906 + 30.5245i −0.627544 + 0.118312i
\(259\) −44.8118 + 44.8118i −0.173018 + 0.173018i
\(260\) −193.559 + 428.781i −0.744457 + 1.64916i
\(261\) 1.54772 + 136.695i 0.00592995 + 0.523737i
\(262\) 337.705 218.073i 1.28895 0.832340i
\(263\) −140.707 −0.535009 −0.267505 0.963557i \(-0.586199\pi\)
−0.267505 + 0.963557i \(0.586199\pi\)
\(264\) −37.9774 + 156.759i −0.143854 + 0.593784i
\(265\) 50.3765i 0.190100i
\(266\) 33.5633 21.6735i 0.126178 0.0814795i
\(267\) 218.928 + 89.2343i 0.819954 + 0.334211i
\(268\) 363.454 137.373i 1.35617 0.512584i
\(269\) −229.830 229.830i −0.854388 0.854388i 0.136282 0.990670i \(-0.456485\pi\)
−0.990670 + 0.136282i \(0.956485\pi\)
\(270\) −266.195 + 399.527i −0.985909 + 1.47973i
\(271\) 228.731 0.844025 0.422012 0.906590i \(-0.361324\pi\)
0.422012 + 0.906590i \(0.361324\pi\)
\(272\) −137.831 + 121.556i −0.506733 + 0.446896i
\(273\) 25.3360 + 60.2002i 0.0928057 + 0.220514i
\(274\) −21.2470 + 98.7085i −0.0775440 + 0.360250i
\(275\) −256.809 256.809i −0.933851 0.933851i
\(276\) −134.203 141.276i −0.486242 0.511870i
\(277\) −103.265 103.265i −0.372799 0.372799i 0.495697 0.868496i \(-0.334913\pi\)
−0.868496 + 0.495697i \(0.834913\pi\)
\(278\) −408.036 + 263.490i −1.46776 + 0.947806i
\(279\) 40.8934 + 39.9778i 0.146571 + 0.143290i
\(280\) −115.749 + 17.4170i −0.413389 + 0.0622036i
\(281\) 283.552 1.00908 0.504540 0.863388i \(-0.331662\pi\)
0.504540 + 0.863388i \(0.331662\pi\)
\(282\) 371.381 + 253.560i 1.31695 + 0.899148i
\(283\) 23.4758 + 23.4758i 0.0829534 + 0.0829534i 0.747366 0.664413i \(-0.231318\pi\)
−0.664413 + 0.747366i \(0.731318\pi\)
\(284\) 148.317 + 66.9527i 0.522243 + 0.235749i
\(285\) −122.196 + 299.796i −0.428758 + 1.05192i
\(286\) −173.830 37.4170i −0.607797 0.130829i
\(287\) 3.26126i 0.0113633i
\(288\) −278.070 74.9733i −0.965521 0.260324i
\(289\) 157.073 0.543506
\(290\) 56.8333 264.034i 0.195977 0.910461i
\(291\) 107.884 + 43.9734i 0.370737 + 0.151111i
\(292\) 97.1660 215.247i 0.332760 0.737147i
\(293\) 381.409 381.409i 1.30174 1.30174i 0.374516 0.927220i \(-0.377809\pi\)
0.927220 0.374516i \(-0.122191\pi\)
\(294\) 156.612 229.384i 0.532693 0.780219i
\(295\) 351.660i 1.19207i
\(296\) 304.629 45.8381i 1.02915 0.154859i
\(297\) −168.798 66.5830i −0.568343 0.224185i
\(298\) −129.646 200.767i −0.435053 0.673716i
\(299\) 151.895 151.895i 0.508011 0.508011i
\(300\) 470.168 446.628i 1.56723 1.48876i
\(301\) 31.9555 31.9555i 0.106165 0.106165i
\(302\) −58.8584 12.6693i −0.194895 0.0419513i
\(303\) −162.413 + 68.3534i −0.536017 + 0.225589i
\(304\) −193.830 12.1621i −0.637599 0.0400068i
\(305\) 493.224i 1.61713i
\(306\) −114.115 172.401i −0.372924 0.563402i
\(307\) −209.055 + 209.055i −0.680960 + 0.680960i −0.960217 0.279256i \(-0.909912\pi\)
0.279256 + 0.960217i \(0.409912\pi\)
\(308\) −15.6417 41.3842i −0.0507849 0.134364i
\(309\) −111.889 + 274.508i −0.362099 + 0.888376i
\(310\) −61.2915 94.9150i −0.197715 0.306178i
\(311\) 111.176 0.357478 0.178739 0.983897i \(-0.442798\pi\)
0.178739 + 0.983897i \(0.442798\pi\)
\(312\) 74.7554 308.567i 0.239601 0.988998i
\(313\) 282.280i 0.901852i −0.892561 0.450926i \(-0.851094\pi\)
0.892561 0.450926i \(-0.148906\pi\)
\(314\) −278.126 430.701i −0.885750 1.37166i
\(315\) −1.49088 131.675i −0.00473294 0.418016i
\(316\) −63.4170 28.6275i −0.200687 0.0905932i
\(317\) 206.983 + 206.983i 0.652943 + 0.652943i 0.953701 0.300758i \(-0.0972395\pi\)
−0.300758 + 0.953701i \(0.597240\pi\)
\(318\) 6.29875 + 33.4095i 0.0198074 + 0.105061i
\(319\) 102.081 0.320003
\(320\) 502.921 + 266.121i 1.57163 + 0.831628i
\(321\) −386.539 + 162.679i −1.20417 + 0.506789i
\(322\) 52.2510 + 11.2470i 0.162270 + 0.0349287i
\(323\) −98.5839 98.5839i −0.305213 0.305213i
\(324\) 126.585 298.248i 0.390696 0.920520i
\(325\) 505.508 + 505.508i 1.55541 + 1.55541i
\(326\) 306.996 + 475.408i 0.941704 + 1.45831i
\(327\) −269.242 + 113.314i −0.823371 + 0.346525i
\(328\) −9.41699 + 12.7530i −0.0287103 + 0.0388810i
\(329\) −123.345 −0.374908
\(330\) 296.069 + 202.141i 0.897180 + 0.612548i
\(331\) 127.431 + 127.431i 0.384989 + 0.384989i 0.872896 0.487907i \(-0.162239\pi\)
−0.487907 + 0.872896i \(0.662239\pi\)
\(332\) −150.280 397.603i −0.452651 1.19760i
\(333\) 3.92369 + 346.543i 0.0117829 + 1.04067i
\(334\) 72.6640 337.579i 0.217557 1.01072i
\(335\) 863.594i 2.57789i
\(336\) 74.5866 26.0234i 0.221984 0.0774506i
\(337\) 68.9595 0.204628 0.102314 0.994752i \(-0.467375\pi\)
0.102314 + 0.994752i \(0.467375\pi\)
\(338\) 11.7390 + 2.52683i 0.0347308 + 0.00747582i
\(339\) 9.41157 23.0904i 0.0277627 0.0681133i
\(340\) 144.413 + 382.081i 0.424744 + 1.12377i
\(341\) 30.1964 30.1964i 0.0885525 0.0885525i
\(342\) 43.5553 214.102i 0.127355 0.626030i
\(343\) 156.826i 0.457219i
\(344\) −217.233 + 32.6875i −0.631490 + 0.0950217i
\(345\) −399.181 + 168.000i −1.15705 + 0.486957i
\(346\) 97.0183 62.6497i 0.280400 0.181068i
\(347\) −54.0628 + 54.0628i −0.155801 + 0.155801i −0.780703 0.624902i \(-0.785139\pi\)
0.624902 + 0.780703i \(0.285139\pi\)
\(348\) −4.67860 + 182.212i −0.0134442 + 0.523598i
\(349\) 0.107201 0.107201i 0.000307168 0.000307168i −0.706953 0.707260i \(-0.749931\pi\)
0.707260 + 0.706953i \(0.249931\pi\)
\(350\) −37.4303 + 173.892i −0.106944 + 0.496833i
\(351\) 332.265 + 131.063i 0.946625 + 0.373400i
\(352\) −58.3320 + 206.996i −0.165716 + 0.588057i
\(353\) 194.223i 0.550208i 0.961414 + 0.275104i \(0.0887123\pi\)
−0.961414 + 0.275104i \(0.911288\pi\)
\(354\) −43.9693 233.220i −0.124207 0.658813i
\(355\) 255.749 255.749i 0.720420 0.720420i
\(356\) 287.304 + 129.694i 0.807033 + 0.364308i
\(357\) 52.5143 + 21.4047i 0.147099 + 0.0599570i
\(358\) −362.620 + 234.162i −1.01290 + 0.654084i
\(359\) 437.689 1.21919 0.609595 0.792713i \(-0.291332\pi\)
0.609595 + 0.792713i \(0.291332\pi\)
\(360\) −374.386 + 519.212i −1.03996 + 1.44226i
\(361\) 213.664i 0.591867i
\(362\) −395.858 + 255.626i −1.09353 + 0.706148i
\(363\) 85.8700 210.674i 0.236556 0.580369i
\(364\) 30.7895 + 81.4615i 0.0845866 + 0.223795i
\(365\) −371.159 371.159i −1.01687 1.01687i
\(366\) −61.6696 327.104i −0.168496 0.893728i
\(367\) −246.678 −0.672148 −0.336074 0.941836i \(-0.609099\pi\)
−0.336074 + 0.941836i \(0.609099\pi\)
\(368\) −171.848 194.857i −0.466978 0.529503i
\(369\) −12.7530 12.4674i −0.0345608 0.0337870i
\(370\) 144.081 669.365i 0.389408 1.80909i
\(371\) −6.59405 6.59405i −0.0177737 0.0177737i
\(372\) 52.5159 + 55.2838i 0.141172 + 0.148612i
\(373\) −349.678 349.678i −0.937476 0.937476i 0.0606816 0.998157i \(-0.480673\pi\)
−0.998157 + 0.0606816i \(0.980673\pi\)
\(374\) −129.694 + 83.7498i −0.346774 + 0.223930i
\(375\) −300.454 713.903i −0.801212 1.90374i
\(376\) 482.332 + 356.162i 1.28280 + 0.947240i
\(377\) −200.938 −0.532993
\(378\) 17.4526 + 87.1400i 0.0461708 + 0.230529i
\(379\) 235.668 + 235.668i 0.621815 + 0.621815i 0.945995 0.324180i \(-0.105088\pi\)
−0.324180 + 0.945995i \(0.605088\pi\)
\(380\) −177.600 + 393.429i −0.467369 + 1.03534i
\(381\) 544.321 + 221.864i 1.42866 + 0.582319i
\(382\) 28.0445 + 6.03658i 0.0734148 + 0.0158026i
\(383\) 64.2130i 0.167658i 0.996480 + 0.0838290i \(0.0267149\pi\)
−0.996480 + 0.0838290i \(0.973285\pi\)
\(384\) −366.809 113.608i −0.955233 0.295855i
\(385\) −98.3320 −0.255408
\(386\) −87.2751 + 405.458i −0.226101 + 1.05041i
\(387\) −2.79801 247.122i −0.00723000 0.638559i
\(388\) 141.579 + 63.9111i 0.364895 + 0.164719i
\(389\) −273.321 + 273.321i −0.702624 + 0.702624i −0.964973 0.262349i \(-0.915503\pi\)
0.262349 + 0.964973i \(0.415503\pi\)
\(390\) −582.789 397.898i −1.49433 1.02025i
\(391\) 186.510i 0.477007i
\(392\) 219.985 297.914i 0.561185 0.759984i
\(393\) 233.905 + 555.778i 0.595179 + 1.41419i
\(394\) 149.233 + 231.099i 0.378763 + 0.586547i
\(395\) −109.352 + 109.352i −0.276842 + 0.276842i
\(396\) −221.626 97.0405i −0.559663 0.245052i
\(397\) 141.678 141.678i 0.356873 0.356873i −0.505786 0.862659i \(-0.668798\pi\)
0.862659 + 0.505786i \(0.168798\pi\)
\(398\) 161.828 + 34.8336i 0.406603 + 0.0875215i
\(399\) 23.2470 + 55.2368i 0.0582633 + 0.138438i
\(400\) 648.486 571.911i 1.62122 1.42978i
\(401\) 194.801i 0.485788i 0.970053 + 0.242894i \(0.0780967\pi\)
−0.970053 + 0.242894i \(0.921903\pi\)
\(402\) 107.978 + 572.733i 0.268603 + 1.42471i
\(403\) −59.4392 + 59.4392i −0.147492 + 0.147492i
\(404\) −219.773 + 83.0665i −0.543993 + 0.205610i
\(405\) −520.607 497.548i −1.28545 1.22851i
\(406\) −27.1216 42.0000i −0.0668019 0.103448i
\(407\) 258.791 0.635849
\(408\) −143.547 235.338i −0.351831 0.576809i
\(409\) 420.826i 1.02891i −0.857516 0.514457i \(-0.827993\pi\)
0.857516 0.514457i \(-0.172007\pi\)
\(410\) 19.1143 + 29.6000i 0.0466201 + 0.0721952i
\(411\) −140.251 57.1659i −0.341244 0.139090i
\(412\) −162.620 + 360.243i −0.394708 + 0.874376i
\(413\) 46.0307 + 46.0307i 0.111454 + 0.111454i
\(414\) 243.730 161.328i 0.588719 0.389681i
\(415\) −944.737 −2.27648
\(416\) 114.822 407.455i 0.276014 0.979460i
\(417\) −282.620 671.526i −0.677745 1.61038i
\(418\) −159.498 34.3320i −0.381574 0.0821340i
\(419\) 186.421 + 186.421i 0.444919 + 0.444919i 0.893661 0.448742i \(-0.148128\pi\)
−0.448742 + 0.893661i \(0.648128\pi\)
\(420\) 4.50677 175.520i 0.0107304 0.417905i
\(421\) −186.889 186.889i −0.443917 0.443917i 0.449409 0.893326i \(-0.351634\pi\)
−0.893326 + 0.449409i \(0.851634\pi\)
\(422\) −309.396 479.126i −0.733167 1.13537i
\(423\) −471.532 + 482.332i −1.11473 + 1.14026i
\(424\) 6.74508 + 44.8261i 0.0159082 + 0.105722i
\(425\) 620.706 1.46049
\(426\) −137.635 + 201.589i −0.323086 + 0.473214i
\(427\) 64.5608 + 64.5608i 0.151196 + 0.151196i
\(428\) −523.054 + 197.696i −1.22209 + 0.461906i
\(429\) 100.672 246.988i 0.234666 0.575731i
\(430\) −102.745 + 477.328i −0.238942 + 1.11007i
\(431\) 128.395i 0.297901i 0.988845 + 0.148950i \(0.0475895\pi\)
−0.988845 + 0.148950i \(0.952411\pi\)
\(432\) 183.372 391.150i 0.424473 0.905440i
\(433\) 684.737 1.58138 0.790690 0.612217i \(-0.209722\pi\)
0.790690 + 0.612217i \(0.209722\pi\)
\(434\) −20.4467 4.40116i −0.0471122 0.0101409i
\(435\) 375.155 + 152.912i 0.862426 + 0.351522i
\(436\) −364.332 + 137.705i −0.835624 + 0.315836i
\(437\) 139.372 139.372i 0.318928 0.318928i
\(438\) 292.559 + 199.744i 0.667942 + 0.456036i
\(439\) 239.107i 0.544663i 0.962203 + 0.272332i \(0.0877948\pi\)
−0.962203 + 0.272332i \(0.912205\pi\)
\(440\) 384.521 + 283.937i 0.873911 + 0.645311i
\(441\) 297.914 + 291.243i 0.675541 + 0.660415i
\(442\) 255.292 164.855i 0.577583 0.372975i
\(443\) −310.189 + 310.189i −0.700200 + 0.700200i −0.964453 0.264253i \(-0.914875\pi\)
0.264253 + 0.964453i \(0.414875\pi\)
\(444\) −11.8609 + 461.935i −0.0267138 + 1.04039i
\(445\) 495.409 495.409i 1.11328 1.11328i
\(446\) −98.1707 + 456.077i −0.220114 + 1.02259i
\(447\) 330.413 139.058i 0.739179 0.311092i
\(448\) 100.664 30.9961i 0.224697 0.0691876i
\(449\) 545.902i 1.21582i −0.794007 0.607908i \(-0.792009\pi\)
0.794007 0.607908i \(-0.207991\pi\)
\(450\) 536.901 + 811.135i 1.19311 + 1.80252i
\(451\) −9.41699 + 9.41699i −0.0208803 + 0.0208803i
\(452\) 13.6788 30.3020i 0.0302629 0.0670399i
\(453\) 34.0872 83.6297i 0.0752477 0.184613i
\(454\) −224.207 + 144.782i −0.493847 + 0.318902i
\(455\) 193.559 0.425404
\(456\) 68.5920 283.127i 0.150421 0.620892i
\(457\) 289.579i 0.633652i 0.948484 + 0.316826i \(0.102617\pi\)
−0.948484 + 0.316826i \(0.897383\pi\)
\(458\) 328.048 211.837i 0.716262 0.462527i
\(459\) 284.457 123.526i 0.619732 0.269121i
\(460\) −540.162 + 204.162i −1.17427 + 0.443831i
\(461\) −160.511 160.511i −0.348180 0.348180i 0.511251 0.859431i \(-0.329182\pi\)
−0.859431 + 0.511251i \(0.829182\pi\)
\(462\) 65.2134 12.2948i 0.141155 0.0266121i
\(463\) −197.573 −0.426723 −0.213361 0.976973i \(-0.568441\pi\)
−0.213361 + 0.976973i \(0.568441\pi\)
\(464\) −15.2192 + 242.553i −0.0328000 + 0.522743i
\(465\) 156.207 65.7413i 0.335928 0.141379i
\(466\) −166.996 + 775.822i −0.358361 + 1.66485i
\(467\) −52.7645 52.7645i −0.112986 0.112986i 0.648353 0.761339i \(-0.275458\pi\)
−0.761339 + 0.648353i \(0.775458\pi\)
\(468\) 436.254 + 191.017i 0.932167 + 0.408155i
\(469\) −113.041 113.041i −0.241025 0.241025i
\(470\) 1119.51 722.924i 2.38193 1.53814i
\(471\) 708.826 298.318i 1.50494 0.633371i
\(472\) −47.0850 312.915i −0.0997563 0.662956i
\(473\) −184.545 −0.390159
\(474\) 58.8494 86.1949i 0.124155 0.181846i
\(475\) 463.830 + 463.830i 0.976484 + 0.976484i
\(476\) 68.9156 + 31.1096i 0.144781 + 0.0653564i
\(477\) −50.9938 + 0.577371i −0.106905 + 0.00121042i
\(478\) −556.871 119.867i −1.16500 0.250767i
\(479\) 175.985i 0.367401i −0.982982 0.183700i \(-0.941192\pi\)
0.982982 0.183700i \(-0.0588076\pi\)
\(480\) −524.444 + 673.347i −1.09259 + 1.40281i
\(481\) −509.409 −1.05906
\(482\) 112.172 521.125i 0.232723 1.08117i
\(483\) −30.2606 + 74.2414i −0.0626513 + 0.153709i
\(484\) 124.804 276.472i 0.257859 0.571223i
\(485\) 244.130 244.130i 0.503362 0.503362i
\(486\) 407.474 + 264.878i 0.838425 + 0.545017i
\(487\) 965.217i 1.98196i −0.133991 0.990982i \(-0.542779\pi\)
0.133991 0.990982i \(-0.457221\pi\)
\(488\) −66.0395 438.882i −0.135327 0.899348i
\(489\) −782.404 + 329.284i −1.60001 + 0.673382i
\(490\) −446.516 691.468i −0.911258 1.41116i
\(491\) −600.614 + 600.614i −1.22325 + 1.22325i −0.256775 + 0.966471i \(0.582660\pi\)
−0.966471 + 0.256775i \(0.917340\pi\)
\(492\) −16.3775 17.2407i −0.0332876 0.0350421i
\(493\) −123.365 + 123.365i −0.250233 + 0.250233i
\(494\) 313.959 + 67.5799i 0.635545 + 0.136801i
\(495\) −375.911 + 384.521i −0.759416 + 0.776810i
\(496\) 67.2470 + 76.2510i 0.135579 + 0.153732i
\(497\) 66.9527i 0.134714i
\(498\) 626.546 118.124i 1.25812 0.237197i
\(499\) −51.6092 + 51.6092i −0.103425 + 0.103425i −0.756926 0.653501i \(-0.773300\pi\)
0.653501 + 0.756926i \(0.273300\pi\)
\(500\) −365.127 966.036i −0.730255 1.93207i
\(501\) 479.653 + 195.505i 0.957391 + 0.390230i
\(502\) −236.207 365.786i −0.470531 0.728657i
\(503\) −847.530 −1.68495 −0.842475 0.538735i \(-0.818902\pi\)
−0.842475 + 0.538735i \(0.818902\pi\)
\(504\) 18.9570 + 116.968i 0.0376132 + 0.232079i
\(505\) 522.199i 1.03406i
\(506\) −118.400 183.353i −0.233992 0.362357i
\(507\) −6.79851 + 16.6795i −0.0134093 + 0.0328984i
\(508\) 714.324 + 322.458i 1.40615 + 0.634759i
\(509\) 128.457 + 128.457i 0.252372 + 0.252372i 0.821942 0.569570i \(-0.192890\pi\)
−0.569570 + 0.821942i \(0.692890\pi\)
\(510\) −602.086 + 113.512i −1.18056 + 0.222573i
\(511\) −97.1660 −0.190149
\(512\) −483.142 169.462i −0.943637 0.330981i
\(513\) 304.871 + 120.257i 0.594290 + 0.234420i
\(514\) 469.579 + 101.077i 0.913578 + 0.196648i
\(515\) 621.182 + 621.182i 1.20618 + 1.20618i
\(516\) 8.45811 329.409i 0.0163917 0.638389i
\(517\) 356.162 + 356.162i 0.688901 + 0.688901i
\(518\) −68.7572 106.476i −0.132736 0.205553i
\(519\) 67.1981 + 159.668i 0.129476 + 0.307645i
\(520\) −756.899 558.907i −1.45558 1.07482i
\(521\) −676.366 −1.29821 −0.649103 0.760700i \(-0.724856\pi\)
−0.649103 + 0.760700i \(0.724856\pi\)
\(522\) −267.921 54.5037i −0.513258 0.104413i
\(523\) −600.494 600.494i −1.14817 1.14817i −0.986912 0.161260i \(-0.948444\pi\)
−0.161260 0.986912i \(-0.551556\pi\)
\(524\) 284.254 + 752.064i 0.542469 + 1.43524i
\(525\) −247.076 100.707i −0.470621 0.191824i
\(526\) 59.2183 275.114i 0.112582 0.523030i
\(527\) 72.9845i 0.138491i
\(528\) −290.514 140.228i −0.550217 0.265583i
\(529\) −265.324 −0.501558
\(530\) 98.4970 + 21.2015i 0.185843 + 0.0400029i
\(531\) 355.970 4.03042i 0.670376 0.00759025i
\(532\) 28.2510 + 74.7451i 0.0531034 + 0.140498i
\(533\) 18.5366 18.5366i 0.0347779 0.0347779i
\(534\) −266.611 + 390.496i −0.499271 + 0.731266i
\(535\) 1242.82i 2.32302i
\(536\) 115.630 + 768.446i 0.215727 + 1.43367i
\(537\) −251.162 596.782i −0.467714 1.11133i
\(538\) 546.095 352.642i 1.01505 0.655468i
\(539\) 219.985 219.985i 0.408135 0.408135i
\(540\) −669.132 688.616i −1.23913 1.27521i
\(541\) 43.4797 43.4797i 0.0803692 0.0803692i −0.665779 0.746149i \(-0.731901\pi\)
0.746149 + 0.665779i \(0.231901\pi\)
\(542\) −96.2639 + 447.218i −0.177609 + 0.825126i
\(543\) −274.184 651.484i −0.504943 1.19979i
\(544\) −179.660 320.648i −0.330258 0.589427i
\(545\) 865.682i 1.58841i
\(546\) −128.367 + 24.2014i −0.235105 + 0.0443248i
\(547\) −125.498 + 125.498i −0.229430 + 0.229430i −0.812454 0.583025i \(-0.801869\pi\)
0.583025 + 0.812454i \(0.301869\pi\)
\(548\) −184.055 83.0852i −0.335866 0.151615i
\(549\) 499.269 5.65291i 0.909414 0.0102967i
\(550\) 610.199 394.037i 1.10945 0.716430i
\(551\) −184.371 −0.334612
\(552\) 332.706 202.938i 0.602729 0.367641i
\(553\) 28.6275i 0.0517676i
\(554\) 245.367 158.446i 0.442900 0.286003i
\(555\) 951.074 + 387.655i 1.71365 + 0.698477i
\(556\) −343.454 908.693i −0.617722 1.63434i
\(557\) 184.272 + 184.272i 0.330829 + 0.330829i 0.852901 0.522072i \(-0.174841\pi\)
−0.522072 + 0.852901i \(0.674841\pi\)
\(558\) −95.3757 + 63.1304i −0.170924 + 0.113137i
\(559\) 363.263 0.649844
\(560\) 14.6603 233.645i 0.0261791 0.417223i
\(561\) −89.8301 213.443i −0.160125 0.380469i
\(562\) −119.336 + 554.405i −0.212342 + 0.986486i
\(563\) −523.489 523.489i −0.929820 0.929820i 0.0678736 0.997694i \(-0.478379\pi\)
−0.997694 + 0.0678736i \(0.978379\pi\)
\(564\) −652.064 + 619.417i −1.15614 + 1.09826i
\(565\) −52.2510 52.2510i −0.0924796 0.0924796i
\(566\) −55.7804 + 36.0202i −0.0985519 + 0.0636400i
\(567\) −133.272 + 3.01829i −0.235047 + 0.00532326i
\(568\) −193.328 + 261.814i −0.340366 + 0.460941i
\(569\) 52.6214 0.0924805 0.0462403 0.998930i \(-0.485276\pi\)
0.0462403 + 0.998930i \(0.485276\pi\)
\(570\) −534.739 365.092i −0.938139 0.640513i
\(571\) −114.561 114.561i −0.200632 0.200632i 0.599639 0.800271i \(-0.295311\pi\)
−0.800271 + 0.599639i \(0.795311\pi\)
\(572\) 146.317 324.128i 0.255798 0.566658i
\(573\) −16.2416 + 39.8473i −0.0283449 + 0.0695415i
\(574\) 6.37648 + 1.37254i 0.0111088 + 0.00239118i
\(575\) 877.515i 1.52611i
\(576\) 263.618 512.134i 0.457670 0.889122i
\(577\) 496.442 0.860384 0.430192 0.902737i \(-0.358446\pi\)
0.430192 + 0.902737i \(0.358446\pi\)
\(578\) −66.1060 + 307.112i −0.114370 + 0.531336i
\(579\) −576.100 234.817i −0.994992 0.405555i
\(580\) 492.324 + 222.243i 0.848835 + 0.383178i
\(581\) −123.662 + 123.662i −0.212843 + 0.212843i
\(582\) −131.382 + 192.431i −0.225742 + 0.330637i
\(583\) 38.0810i 0.0653191i
\(584\) 379.961 + 280.570i 0.650619 + 0.480428i
\(585\) 739.951 756.899i 1.26487 1.29384i
\(586\) 585.217 + 906.257i 0.998664 + 1.54651i
\(587\) −115.260 + 115.260i −0.196354 + 0.196354i −0.798435 0.602081i \(-0.794338\pi\)
0.602081 + 0.798435i \(0.294338\pi\)
\(588\) 382.585 + 402.749i 0.650654 + 0.684948i
\(589\) −54.5385 + 54.5385i −0.0925952 + 0.0925952i
\(590\) −687.572 148.000i −1.16538 0.250848i
\(591\) −380.332 + 160.067i −0.643540 + 0.270841i
\(592\) −38.5830 + 614.907i −0.0651740 + 1.03869i
\(593\) 227.756i 0.384074i 0.981388 + 0.192037i \(0.0615094\pi\)
−0.981388 + 0.192037i \(0.938491\pi\)
\(594\) 201.225 302.014i 0.338762 0.508442i
\(595\) 118.834 118.834i 0.199721 0.199721i
\(596\) 447.107 168.990i 0.750179 0.283541i
\(597\) −93.7209 + 229.935i −0.156986 + 0.385151i
\(598\) 233.061 + 360.915i 0.389735 + 0.603537i
\(599\) 760.308 1.26930 0.634648 0.772802i \(-0.281145\pi\)
0.634648 + 0.772802i \(0.281145\pi\)
\(600\) 675.379 + 1107.25i 1.12563 + 1.84542i
\(601\) 85.7856i 0.142738i 0.997450 + 0.0713690i \(0.0227368\pi\)
−0.997450 + 0.0713690i \(0.977263\pi\)
\(602\) 49.0312 + 75.9289i 0.0814472 + 0.126128i
\(603\) −874.177 + 9.89776i −1.44971 + 0.0164142i
\(604\) 49.5425 109.749i 0.0820240 0.181704i
\(605\) −476.731 476.731i −0.787986 0.787986i
\(606\) −65.2924 346.320i −0.107743 0.571485i
\(607\) 685.217 1.12886 0.564429 0.825482i \(-0.309096\pi\)
0.564429 + 0.825482i \(0.309096\pi\)
\(608\) 105.355 373.861i 0.173281 0.614904i
\(609\) 69.1216 29.0906i 0.113500 0.0477678i
\(610\) −964.361 207.579i −1.58092 0.340294i
\(611\) −701.077 701.077i −1.14743 1.14743i
\(612\) 385.108 150.562i 0.629262 0.246016i
\(613\) −544.727 544.727i −0.888624 0.888624i 0.105767 0.994391i \(-0.466270\pi\)
−0.994391 + 0.105767i \(0.966270\pi\)
\(614\) −320.765 496.731i −0.522418 0.809008i
\(615\) −48.7143 + 20.5020i −0.0792102 + 0.0333365i
\(616\) 87.4980 13.1660i 0.142042 0.0213734i
\(617\) 383.577 0.621681 0.310840 0.950462i \(-0.399390\pi\)
0.310840 + 0.950462i \(0.399390\pi\)
\(618\) −489.634 334.297i −0.792288 0.540933i
\(619\) 81.7634 + 81.7634i 0.132089 + 0.132089i 0.770060 0.637971i \(-0.220226\pi\)
−0.637971 + 0.770060i \(0.720226\pi\)
\(620\) 211.375 79.8921i 0.340927 0.128858i
\(621\) 174.634 + 402.148i 0.281214 + 0.647581i
\(622\) −46.7895 + 217.373i −0.0752243 + 0.349474i
\(623\) 129.694i 0.208176i
\(624\) 571.855 + 276.027i 0.916434 + 0.442351i
\(625\) −944.365 −1.51098
\(626\) 551.918 + 118.801i 0.881658 + 0.189777i
\(627\) 92.3715 226.625i 0.147323 0.361443i
\(628\) 959.166 362.531i 1.52733 0.577278i
\(629\) −312.748 + 312.748i −0.497214 + 0.497214i
\(630\) 258.081 + 52.5020i 0.409652 + 0.0833365i
\(631\) 944.242i 1.49642i −0.663461 0.748211i \(-0.730913\pi\)
0.663461 0.748211i \(-0.269087\pi\)
\(632\) 82.6627 111.946i 0.130795 0.177129i
\(633\) 788.523 331.859i 1.24569 0.524263i
\(634\) −491.808 + 317.586i −0.775722 + 0.500924i
\(635\) 1231.74 1231.74i 1.93974 1.93974i
\(636\) −67.9737 1.74534i −0.106877 0.00274424i
\(637\) −433.022 + 433.022i −0.679784 + 0.679784i
\(638\) −42.9620 + 199.591i −0.0673385 + 0.312838i
\(639\) −261.814 255.952i −0.409725 0.400551i
\(640\) −731.984 + 871.320i −1.14373 + 1.36144i
\(641\) 1102.48i 1.71994i −0.510344 0.859970i \(-0.670482\pi\)
0.510344 0.859970i \(-0.329518\pi\)
\(642\) −155.394 824.232i −0.242047 1.28385i
\(643\) 794.664 794.664i 1.23587 1.23587i 0.274195 0.961674i \(-0.411588\pi\)
0.961674 0.274195i \(-0.0884115\pi\)
\(644\) −43.9808 + 97.4286i −0.0682932 + 0.151287i
\(645\) −678.217 276.439i −1.05150 0.428588i
\(646\) 234.243 151.263i 0.362605 0.234153i
\(647\) 768.446 1.18771 0.593853 0.804574i \(-0.297606\pi\)
0.593853 + 0.804574i \(0.297606\pi\)
\(648\) 529.866 + 373.023i 0.817694 + 0.575653i
\(649\) 265.830i 0.409599i
\(650\) −1201.13 + 775.630i −1.84789 + 1.19328i
\(651\) 11.8415 29.0519i 0.0181897 0.0446266i
\(652\) −1058.73 + 400.162i −1.62382 + 0.613746i
\(653\) 829.478 + 829.478i 1.27026 + 1.27026i 0.945953 + 0.324305i \(0.105130\pi\)
0.324305 + 0.945953i \(0.394870\pi\)
\(654\) −108.239 574.117i −0.165503 0.877854i
\(655\) 1786.96 2.72819
\(656\) −20.9715 23.7795i −0.0319688 0.0362492i
\(657\) −371.454 + 379.961i −0.565378 + 0.578328i
\(658\) 51.9111 241.166i 0.0788922 0.366514i
\(659\) 653.956 + 653.956i 0.992346 + 0.992346i 0.999971 0.00762509i \(-0.00242716\pi\)
−0.00762509 + 0.999971i \(0.502427\pi\)
\(660\) −519.834 + 493.807i −0.787627 + 0.748192i
\(661\) 734.342 + 734.342i 1.11096 + 1.11096i 0.993021 + 0.117936i \(0.0376276\pi\)
0.117936 + 0.993021i \(0.462372\pi\)
\(662\) −302.787 + 195.525i −0.457382 + 0.295355i
\(663\) 176.823 + 420.146i 0.266702 + 0.633705i
\(664\) 840.648 126.494i 1.26604 0.190503i
\(665\) 177.600 0.267068
\(666\) −679.219 138.175i −1.01985 0.207470i
\(667\) −174.405 174.405i −0.261477 0.261477i
\(668\) 629.459 + 284.148i 0.942304 + 0.425371i
\(669\) −648.022 264.132i −0.968643 0.394816i
\(670\) 1688.51 + 363.454i 2.52017 + 0.542468i
\(671\) 372.842i 0.555652i
\(672\) 19.4908 + 156.785i 0.0290041 + 0.233311i
\(673\) 514.259 0.764129 0.382065 0.924136i \(-0.375213\pi\)
0.382065 + 0.924136i \(0.375213\pi\)
\(674\) −29.0224 + 134.831i −0.0430599 + 0.200046i
\(675\) −1338.35 + 581.183i −1.98274 + 0.861012i
\(676\) −9.88099 + 21.8889i −0.0146168 + 0.0323800i
\(677\) −662.519 + 662.519i −0.978610 + 0.978610i −0.999776 0.0211661i \(-0.993262\pi\)
0.0211661 + 0.999776i \(0.493262\pi\)
\(678\) 41.1858 + 28.1195i 0.0607460 + 0.0414742i
\(679\) 63.9111i 0.0941253i
\(680\) −807.829 + 121.556i −1.18798 + 0.178758i
\(681\) −155.293 368.988i −0.228037 0.541833i
\(682\) 46.3320 + 71.7490i 0.0679355 + 0.105204i
\(683\) 280.446 280.446i 0.410608 0.410608i −0.471342 0.881950i \(-0.656230\pi\)
0.881950 + 0.471342i \(0.156230\pi\)
\(684\) 400.286 + 175.268i 0.585213 + 0.256239i
\(685\) −317.373 + 317.373i −0.463318 + 0.463318i
\(686\) −306.629 66.0021i −0.446981 0.0962129i
\(687\) 227.217 + 539.885i 0.330738 + 0.785859i
\(688\) 27.5138 438.494i 0.0399910 0.637346i
\(689\) 74.9595i 0.108795i
\(690\) −160.477 851.191i −0.232575 1.23361i
\(691\) −631.830 + 631.830i −0.914371 + 0.914371i −0.996612 0.0822418i \(-0.973792\pi\)
0.0822418 + 0.996612i \(0.473792\pi\)
\(692\) 81.6625 + 216.059i 0.118009 + 0.312224i
\(693\) 1.12700 + 99.5370i 0.00162626 + 0.143632i
\(694\) −82.9516 128.458i −0.119527 0.185097i
\(695\) −2159.13 −3.10666
\(696\) −354.295 85.8337i −0.509045 0.123324i
\(697\) 22.7608i 0.0326554i
\(698\) 0.164485 + 0.254719i 0.000235652 + 0.000364927i
\(699\) −1102.34 449.309i −1.57702 0.642788i
\(700\) −324.243 146.369i −0.463204 0.209098i
\(701\) −160.480 160.480i −0.228930 0.228930i 0.583315 0.812246i \(-0.301755\pi\)
−0.812246 + 0.583315i \(0.801755\pi\)
\(702\) −396.095 + 594.491i −0.564238 + 0.846854i
\(703\) −467.409 −0.664878
\(704\) −380.173 201.168i −0.540018 0.285751i
\(705\) 775.409 + 1842.43i 1.09987 + 2.61338i
\(706\) −379.749 81.7411i −0.537888 0.115781i
\(707\) 68.3534 + 68.3534i 0.0966809 + 0.0966809i
\(708\) 474.500 + 12.1836i 0.670198 + 0.0172084i
\(709\) −410.261 410.261i −0.578648 0.578648i 0.355883 0.934531i \(-0.384180\pi\)
−0.934531 + 0.355883i \(0.884180\pi\)
\(710\) 392.410 + 607.680i 0.552690 + 0.855887i
\(711\) 111.946 + 109.439i 0.157448 + 0.153923i
\(712\) −374.494 + 507.158i −0.525975 + 0.712301i
\(713\) −103.181 −0.144714
\(714\) −63.9520 + 93.6685i −0.0895686 + 0.131188i
\(715\) −558.907 558.907i −0.781688 0.781688i
\(716\) −305.225 807.550i −0.426292 1.12786i
\(717\) 322.505 791.236i 0.449798 1.10354i
\(718\) −184.207 + 855.778i −0.256555 + 1.19189i
\(719\) 1069.18i 1.48704i −0.668716 0.743518i \(-0.733156\pi\)
0.668716 0.743518i \(-0.266844\pi\)
\(720\) −857.608 950.523i −1.19112 1.32017i
\(721\) 162.620 0.225547
\(722\) −417.760 89.9230i −0.578615 0.124547i
\(723\) 740.447 + 301.804i 1.02413 + 0.417433i
\(724\) −333.203 881.571i −0.460225 1.21764i
\(725\) 580.422 580.422i 0.800582 0.800582i
\(726\) 375.774 + 256.559i 0.517595 + 0.353387i
\(727\) 148.864i 0.204765i −0.994745 0.102382i \(-0.967353\pi\)
0.994745 0.102382i \(-0.0326466\pi\)
\(728\) −172.233 + 25.9163i −0.236584 + 0.0355993i
\(729\) −497.678 + 532.689i −0.682686 + 0.730712i
\(730\) 881.903 569.490i 1.20809 0.780124i
\(731\) 223.022 223.022i 0.305092 0.305092i
\(732\) 665.515 + 17.0882i 0.909173 + 0.0233445i
\(733\) −690.136 + 690.136i −0.941522 + 0.941522i −0.998382 0.0568598i \(-0.981891\pi\)
0.0568598 + 0.998382i \(0.481891\pi\)
\(734\) 103.817 482.310i 0.141441 0.657098i
\(735\) 1137.98 478.934i 1.54828 0.651610i
\(736\) 453.312 253.992i 0.615913 0.345098i
\(737\) 652.816i 0.885775i
\(738\) 29.7437 19.6877i 0.0403031 0.0266772i
\(739\) −535.593 + 535.593i −0.724754 + 0.724754i −0.969570 0.244815i \(-0.921273\pi\)
0.244815 + 0.969570i \(0.421273\pi\)
\(740\) 1248.12 + 563.420i 1.68664 + 0.761378i
\(741\) −181.826 + 446.093i −0.245379 + 0.602014i
\(742\) 15.6680 10.1176i 0.0211159 0.0136356i
\(743\) −20.5116 −0.0276065 −0.0138032 0.999905i \(-0.504394\pi\)
−0.0138032 + 0.999905i \(0.504394\pi\)
\(744\) −130.194 + 79.4131i −0.174992 + 0.106738i
\(745\) 1062.36i 1.42599i
\(746\) 830.863 536.531i 1.11376 0.719211i
\(747\) 10.8278 + 956.315i 0.0144950 + 1.28021i
\(748\) −109.166 288.826i −0.145944 0.386131i
\(749\) 162.679 + 162.679i 0.217195 + 0.217195i
\(750\) 1522.29 286.999i 2.02971 0.382666i
\(751\) −15.8000 −0.0210385 −0.0105193 0.999945i \(-0.503348\pi\)
−0.0105193 + 0.999945i \(0.503348\pi\)
\(752\) −899.369 + 793.169i −1.19597 + 1.05475i
\(753\) 601.992 253.355i 0.799458 0.336461i
\(754\) 84.5673 392.878i 0.112158 0.521059i
\(755\) −189.245 189.245i −0.250655 0.250655i
\(756\) −177.723 2.55034i −0.235083 0.00337347i
\(757\) 810.497 + 810.497i 1.07067 + 1.07067i 0.997305 + 0.0733640i \(0.0233735\pi\)
0.0733640 + 0.997305i \(0.476627\pi\)
\(758\) −559.966 + 361.599i −0.738741 + 0.477043i
\(759\) 301.753 126.996i 0.397566 0.167320i
\(760\) −694.494 512.826i −0.913808 0.674771i
\(761\) −212.194 −0.278836 −0.139418 0.990234i \(-0.544523\pi\)
−0.139418 + 0.990234i \(0.544523\pi\)
\(762\) −662.875 + 970.892i −0.869915 + 1.27414i
\(763\) 113.314 + 113.314i 0.148511 + 0.148511i
\(764\) −23.6057 + 52.2924i −0.0308975 + 0.0684456i
\(765\) −10.4050 918.980i −0.0136014 1.20128i
\(766\) −125.550 27.0248i −0.163904 0.0352804i
\(767\) 523.266i 0.682224i
\(768\) 376.505 669.379i 0.490241 0.871587i
\(769\) −883.681 −1.14913 −0.574565 0.818459i \(-0.694829\pi\)
−0.574565 + 0.818459i \(0.694829\pi\)
\(770\) 41.3842 192.260i 0.0537457 0.249689i
\(771\) −271.951 + 667.207i −0.352725 + 0.865378i