Properties

Label 48.3.i.a.5.1
Level $48$
Weight $3$
Character 48.5
Analytic conductor $1.308$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 48.i (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.30790526893\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.629407744.1
Defining polynomial: \( x^{8} - 2x^{6} + 2x^{4} - 8x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 5.1
Root \(-1.38255 + 0.297594i\) of defining polynomial
Character \(\chi\) \(=\) 48.5
Dual form 48.3.i.a.29.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.68014 - 1.08495i) q^{2} +(2.90783 - 0.737922i) q^{3} +(1.64575 + 3.64575i) q^{4} +(1.57472 - 1.57472i) q^{5} +(-5.68618 - 1.91505i) q^{6} -3.64575i q^{7} +(1.19038 - 7.91094i) q^{8} +(7.91094 - 4.29150i) q^{9} +O(q^{10})\) \(q+(-1.68014 - 1.08495i) q^{2} +(2.90783 - 0.737922i) q^{3} +(1.64575 + 3.64575i) q^{4} +(1.57472 - 1.57472i) q^{5} +(-5.68618 - 1.91505i) q^{6} -3.64575i q^{7} +(1.19038 - 7.91094i) q^{8} +(7.91094 - 4.29150i) q^{9} +(-4.35425 + 0.937254i) q^{10} +(1.19038 - 1.19038i) q^{11} +(7.47584 + 9.38679i) q^{12} +(-14.6458 + 14.6458i) q^{13} +(-3.95547 + 6.12538i) q^{14} +(3.41699 - 5.74103i) q^{15} +(-10.5830 + 12.0000i) q^{16} +28.0726i q^{17} +(-17.9476 - 1.37267i) q^{18} +(12.5830 - 12.5830i) q^{19} +(8.33263 + 3.14944i) q^{20} +(-2.69028 - 10.6012i) q^{21} +(-3.29150 + 0.708497i) q^{22} -29.2630 q^{23} +(-2.37625 - 23.8821i) q^{24} +20.0405i q^{25} +(40.4969 - 8.71697i) q^{26} +(19.8369 - 18.3166i) q^{27} +(13.2915 - 6.00000i) q^{28} +(-19.3557 - 19.3557i) q^{29} +(-11.9698 + 5.93847i) q^{30} +11.6458 q^{31} +(30.8004 - 8.67963i) q^{32} +(2.58301 - 4.33981i) q^{33} +(30.4575 - 47.1660i) q^{34} +(-5.74103 - 5.74103i) q^{35} +(28.6652 + 21.7786i) q^{36} +(0.771243 + 0.771243i) q^{37} +(-34.7932 + 7.48925i) q^{38} +(-31.7799 + 53.3948i) q^{39} +(-10.5830 - 14.3320i) q^{40} -25.6919 q^{41} +(-6.98178 + 20.7304i) q^{42} +(-40.5830 - 40.5830i) q^{43} +(6.29888 + 2.38075i) q^{44} +(5.69960 - 19.2154i) q^{45} +(49.1660 + 31.7490i) q^{46} +50.2681i q^{47} +(-21.9185 + 42.7034i) q^{48} +35.7085 q^{49} +(21.7430 - 33.6709i) q^{50} +(20.7154 + 81.6304i) q^{51} +(-77.4980 - 29.2915i) q^{52} +(46.2379 - 46.2379i) q^{53} +(-53.2014 + 9.25242i) q^{54} -3.74902i q^{55} +(-28.8413 - 4.33981i) q^{56} +(27.3040 - 45.8745i) q^{57} +(11.5203 + 53.5203i) q^{58} +(22.7533 - 22.7533i) q^{59} +(26.5539 + 3.00920i) q^{60} +(12.7712 - 12.7712i) q^{61} +(-19.5665 - 12.6351i) q^{62} +(-15.6458 - 28.8413i) q^{63} +(-61.1660 - 18.8340i) q^{64} +46.1259i q^{65} +(-9.04831 + 4.48906i) q^{66} +(10.6863 - 10.6863i) q^{67} +(-102.346 + 46.2006i) q^{68} +(-85.0919 + 21.5938i) q^{69} +(3.41699 + 15.8745i) q^{70} +122.086 q^{71} +(-24.5328 - 67.6915i) q^{72} -15.0405i q^{73} +(-0.459035 - 2.13256i) q^{74} +(14.7883 + 58.2744i) q^{75} +(66.5830 + 25.1660i) q^{76} +(-4.33981 - 4.33981i) q^{77} +(111.326 - 55.2310i) q^{78} -51.3948 q^{79} +(2.23137 + 35.5619i) q^{80} +(44.1660 - 67.8997i) q^{81} +(43.1660 + 27.8745i) q^{82} +(-37.8680 - 37.8680i) q^{83} +(34.2219 - 27.2551i) q^{84} +(44.2065 + 44.2065i) q^{85} +(24.1545 + 112.216i) q^{86} +(-70.5659 - 42.0000i) q^{87} +(-8.00000 - 10.8340i) q^{88} +5.45550 q^{89} +(-30.4240 + 26.1008i) q^{90} +(53.3948 + 53.3948i) q^{91} +(-48.1596 - 106.686i) q^{92} +(33.8639 - 8.59366i) q^{93} +(54.5385 - 84.4575i) q^{94} -39.6294i q^{95} +(83.1574 - 47.9672i) q^{96} -81.1660 q^{97} +(-59.9953 - 38.7421i) q^{98} +(4.30849 - 14.5255i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - 8 q^{4} + 16 q^{6}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{3} - 8 q^{4} + 16 q^{6} - 56 q^{10} + 56 q^{12} - 96 q^{13} + 112 q^{15} - 64 q^{18} + 16 q^{19} - 32 q^{21} + 16 q^{22} - 48 q^{24} - 68 q^{27} + 64 q^{28} + 56 q^{30} + 72 q^{31} - 64 q^{33} + 32 q^{34} + 104 q^{36} + 112 q^{37} - 24 q^{42} - 240 q^{43} - 112 q^{45} + 224 q^{46} - 64 q^{48} + 328 q^{49} - 32 q^{51} - 112 q^{52} - 168 q^{54} - 56 q^{58} - 336 q^{60} + 208 q^{61} - 104 q^{63} - 320 q^{64} - 80 q^{66} - 232 q^{67} + 112 q^{70} + 160 q^{72} + 324 q^{75} + 448 q^{76} + 152 q^{78} - 136 q^{79} + 184 q^{81} + 176 q^{82} + 64 q^{84} - 112 q^{85} - 64 q^{88} + 392 q^{90} + 152 q^{91} + 64 q^{93} - 368 q^{94} + 512 q^{96} - 480 q^{97} + 160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/48\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(31\) \(37\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.68014 1.08495i −0.840071 0.542477i
\(3\) 2.90783 0.737922i 0.969276 0.245974i
\(4\) 1.64575 + 3.64575i 0.411438 + 0.911438i
\(5\) 1.57472 1.57472i 0.314944 0.314944i −0.531877 0.846821i \(-0.678513\pi\)
0.846821 + 0.531877i \(0.178513\pi\)
\(6\) −5.68618 1.91505i −0.947696 0.319174i
\(7\) 3.64575i 0.520822i −0.965498 0.260411i \(-0.916142\pi\)
0.965498 0.260411i \(-0.0838580\pi\)
\(8\) 1.19038 7.91094i 0.148797 0.988868i
\(9\) 7.91094 4.29150i 0.878994 0.476834i
\(10\) −4.35425 + 0.937254i −0.435425 + 0.0937254i
\(11\) 1.19038 1.19038i 0.108216 0.108216i −0.650926 0.759142i \(-0.725619\pi\)
0.759142 + 0.650926i \(0.225619\pi\)
\(12\) 7.47584 + 9.38679i 0.622987 + 0.782232i
\(13\) −14.6458 + 14.6458i −1.12660 + 1.12660i −0.135870 + 0.990727i \(0.543383\pi\)
−0.990727 + 0.135870i \(0.956617\pi\)
\(14\) −3.95547 + 6.12538i −0.282534 + 0.437527i
\(15\) 3.41699 5.74103i 0.227800 0.382736i
\(16\) −10.5830 + 12.0000i −0.661438 + 0.750000i
\(17\) 28.0726i 1.65133i 0.564159 + 0.825666i \(0.309200\pi\)
−0.564159 + 0.825666i \(0.690800\pi\)
\(18\) −17.9476 1.37267i −0.997088 0.0762596i
\(19\) 12.5830 12.5830i 0.662263 0.662263i −0.293650 0.955913i \(-0.594870\pi\)
0.955913 + 0.293650i \(0.0948699\pi\)
\(20\) 8.33263 + 3.14944i 0.416632 + 0.157472i
\(21\) −2.69028 10.6012i −0.128109 0.504820i
\(22\) −3.29150 + 0.708497i −0.149614 + 0.0322044i
\(23\) −29.2630 −1.27231 −0.636153 0.771563i \(-0.719475\pi\)
−0.636153 + 0.771563i \(0.719475\pi\)
\(24\) −2.37625 23.8821i −0.0990104 0.995086i
\(25\) 20.0405i 0.801621i
\(26\) 40.4969 8.71697i 1.55757 0.335268i
\(27\) 19.8369 18.3166i 0.734699 0.678393i
\(28\) 13.2915 6.00000i 0.474697 0.214286i
\(29\) −19.3557 19.3557i −0.667437 0.667437i 0.289685 0.957122i \(-0.406449\pi\)
−0.957122 + 0.289685i \(0.906449\pi\)
\(30\) −11.9698 + 5.93847i −0.398993 + 0.197949i
\(31\) 11.6458 0.375669 0.187835 0.982201i \(-0.439853\pi\)
0.187835 + 0.982201i \(0.439853\pi\)
\(32\) 30.8004 8.67963i 0.962512 0.271238i
\(33\) 2.58301 4.33981i 0.0782729 0.131510i
\(34\) 30.4575 47.1660i 0.895809 1.38724i
\(35\) −5.74103 5.74103i −0.164030 0.164030i
\(36\) 28.6652 + 21.7786i 0.796255 + 0.604961i
\(37\) 0.771243 + 0.771243i 0.0208444 + 0.0208444i 0.717452 0.696608i \(-0.245308\pi\)
−0.696608 + 0.717452i \(0.745308\pi\)
\(38\) −34.7932 + 7.48925i −0.915611 + 0.197086i
\(39\) −31.7799 + 53.3948i −0.814870 + 1.36910i
\(40\) −10.5830 14.3320i −0.264575 0.358301i
\(41\) −25.6919 −0.626631 −0.313316 0.949649i \(-0.601440\pi\)
−0.313316 + 0.949649i \(0.601440\pi\)
\(42\) −6.98178 + 20.7304i −0.166233 + 0.493581i
\(43\) −40.5830 40.5830i −0.943791 0.943791i 0.0547114 0.998502i \(-0.482576\pi\)
−0.998502 + 0.0547114i \(0.982576\pi\)
\(44\) 6.29888 + 2.38075i 0.143156 + 0.0541080i
\(45\) 5.69960 19.2154i 0.126658 0.427009i
\(46\) 49.1660 + 31.7490i 1.06883 + 0.690196i
\(47\) 50.2681i 1.06953i 0.845000 + 0.534767i \(0.179601\pi\)
−0.845000 + 0.534767i \(0.820399\pi\)
\(48\) −21.9185 + 42.7034i −0.456636 + 0.889654i
\(49\) 35.7085 0.728745
\(50\) 21.7430 33.6709i 0.434861 0.673418i
\(51\) 20.7154 + 81.6304i 0.406185 + 1.60060i
\(52\) −77.4980 29.2915i −1.49035 0.563298i
\(53\) 46.2379 46.2379i 0.872414 0.872414i −0.120321 0.992735i \(-0.538392\pi\)
0.992735 + 0.120321i \(0.0383925\pi\)
\(54\) −53.2014 + 9.25242i −0.985212 + 0.171341i
\(55\) 3.74902i 0.0681639i
\(56\) −28.8413 4.33981i −0.515024 0.0774967i
\(57\) 27.3040 45.8745i 0.479017 0.804816i
\(58\) 11.5203 + 53.5203i 0.198625 + 0.922763i
\(59\) 22.7533 22.7533i 0.385649 0.385649i −0.487483 0.873132i \(-0.662085\pi\)
0.873132 + 0.487483i \(0.162085\pi\)
\(60\) 26.5539 + 3.00920i 0.442565 + 0.0501533i
\(61\) 12.7712 12.7712i 0.209365 0.209365i −0.594633 0.803997i \(-0.702703\pi\)
0.803997 + 0.594633i \(0.202703\pi\)
\(62\) −19.5665 12.6351i −0.315589 0.203792i
\(63\) −15.6458 28.8413i −0.248345 0.457799i
\(64\) −61.1660 18.8340i −0.955719 0.294281i
\(65\) 46.1259i 0.709629i
\(66\) −9.04831 + 4.48906i −0.137096 + 0.0680161i
\(67\) 10.6863 10.6863i 0.159497 0.159497i −0.622847 0.782344i \(-0.714024\pi\)
0.782344 + 0.622847i \(0.214024\pi\)
\(68\) −102.346 + 46.2006i −1.50509 + 0.679420i
\(69\) −85.0919 + 21.5938i −1.23322 + 0.312954i
\(70\) 3.41699 + 15.8745i 0.0488142 + 0.226779i
\(71\) 122.086 1.71952 0.859760 0.510699i \(-0.170613\pi\)
0.859760 + 0.510699i \(0.170613\pi\)
\(72\) −24.5328 67.6915i −0.340734 0.940160i
\(73\) 15.0405i 0.206034i −0.994680 0.103017i \(-0.967150\pi\)
0.994680 0.103017i \(-0.0328497\pi\)
\(74\) −0.459035 2.13256i −0.00620317 0.0288184i
\(75\) 14.7883 + 58.2744i 0.197178 + 0.776992i
\(76\) 66.5830 + 25.1660i 0.876092 + 0.331132i
\(77\) −4.33981 4.33981i −0.0563612 0.0563612i
\(78\) 111.326 55.2310i 1.42725 0.708090i
\(79\) −51.3948 −0.650567 −0.325283 0.945617i \(-0.605460\pi\)
−0.325283 + 0.945617i \(0.605460\pi\)
\(80\) 2.23137 + 35.5619i 0.0278921 + 0.444524i
\(81\) 44.1660 67.8997i 0.545259 0.838267i
\(82\) 43.1660 + 27.8745i 0.526415 + 0.339933i
\(83\) −37.8680 37.8680i −0.456240 0.456240i 0.441179 0.897419i \(-0.354560\pi\)
−0.897419 + 0.441179i \(0.854560\pi\)
\(84\) 34.2219 27.2551i 0.407403 0.324465i
\(85\) 44.2065 + 44.2065i 0.520077 + 0.520077i
\(86\) 24.1545 + 112.216i 0.280866 + 1.30484i
\(87\) −70.5659 42.0000i −0.811103 0.482759i
\(88\) −8.00000 10.8340i −0.0909091 0.123114i
\(89\) 5.45550 0.0612977 0.0306489 0.999530i \(-0.490243\pi\)
0.0306489 + 0.999530i \(0.490243\pi\)
\(90\) −30.4240 + 26.1008i −0.338044 + 0.290009i
\(91\) 53.3948 + 53.3948i 0.586756 + 0.586756i
\(92\) −48.1596 106.686i −0.523474 1.15963i
\(93\) 33.8639 8.59366i 0.364127 0.0924049i
\(94\) 54.5385 84.4575i 0.580197 0.898484i
\(95\) 39.6294i 0.417152i
\(96\) 83.1574 47.9672i 0.866223 0.499658i
\(97\) −81.1660 −0.836763 −0.418381 0.908271i \(-0.637402\pi\)
−0.418381 + 0.908271i \(0.637402\pi\)
\(98\) −59.9953 38.7421i −0.612197 0.395327i
\(99\) 4.30849 14.5255i 0.0435201 0.146722i
\(100\) −73.0627 + 32.9817i −0.730627 + 0.329817i
\(101\) 32.4498 32.4498i 0.321285 0.321285i −0.527975 0.849260i \(-0.677048\pi\)
0.849260 + 0.527975i \(0.177048\pi\)
\(102\) 53.7604 159.626i 0.527063 1.56496i
\(103\) 51.1882i 0.496973i −0.968635 0.248487i \(-0.920067\pi\)
0.968635 0.248487i \(-0.0799332\pi\)
\(104\) 98.4277 + 133.296i 0.946421 + 1.28169i
\(105\) −20.9304 12.4575i −0.199337 0.118643i
\(106\) −127.852 + 27.5203i −1.20615 + 0.259625i
\(107\) −85.4698 + 85.4698i −0.798783 + 0.798783i −0.982904 0.184121i \(-0.941056\pi\)
0.184121 + 0.982904i \(0.441056\pi\)
\(108\) 99.4244 + 42.1757i 0.920596 + 0.390516i
\(109\) −52.8523 + 52.8523i −0.484883 + 0.484883i −0.906687 0.421804i \(-0.861397\pi\)
0.421804 + 0.906687i \(0.361397\pi\)
\(110\) −4.06751 + 6.29888i −0.0369773 + 0.0572625i
\(111\) 2.81176 + 1.67353i 0.0253312 + 0.0150768i
\(112\) 43.7490 + 38.5830i 0.390616 + 0.344491i
\(113\) 73.5045i 0.650483i −0.945631 0.325241i \(-0.894554\pi\)
0.945631 0.325241i \(-0.105446\pi\)
\(114\) −95.6462 + 47.4521i −0.839002 + 0.416247i
\(115\) −46.0810 + 46.0810i −0.400705 + 0.400705i
\(116\) 38.7113 102.421i 0.333718 0.882936i
\(117\) −53.0094 + 178.714i −0.453072 + 1.52747i
\(118\) −62.9150 + 13.5425i −0.533178 + 0.114767i
\(119\) 102.346 0.860049
\(120\) −41.3495 33.8656i −0.344579 0.282214i
\(121\) 118.166i 0.976579i
\(122\) −35.3137 + 7.60129i −0.289457 + 0.0623057i
\(123\) −74.7076 + 18.9586i −0.607379 + 0.154135i
\(124\) 19.1660 + 42.4575i 0.154565 + 0.342399i
\(125\) 70.9262 + 70.9262i 0.567409 + 0.567409i
\(126\) −5.00443 + 65.4324i −0.0397177 + 0.519305i
\(127\) 73.9333 0.582152 0.291076 0.956700i \(-0.405987\pi\)
0.291076 + 0.956700i \(0.405987\pi\)
\(128\) 82.3336 + 98.0061i 0.643231 + 0.765672i
\(129\) −147.956 88.0614i −1.14694 0.682646i
\(130\) 50.0445 77.4980i 0.384957 0.596139i
\(131\) −158.430 158.430i −1.20939 1.20939i −0.971226 0.238161i \(-0.923455\pi\)
−0.238161 0.971226i \(-0.576545\pi\)
\(132\) 20.0729 + 2.27474i 0.152067 + 0.0172329i
\(133\) −45.8745 45.8745i −0.344921 0.344921i
\(134\) −29.5486 + 6.36034i −0.220512 + 0.0474652i
\(135\) 2.39398 60.0810i 0.0177332 0.445045i
\(136\) 222.081 + 33.4170i 1.63295 + 0.245713i
\(137\) −100.734 −0.735283 −0.367642 0.929968i \(-0.619835\pi\)
−0.367642 + 0.929968i \(0.619835\pi\)
\(138\) 166.395 + 56.0400i 1.20576 + 0.406087i
\(139\) 18.2732 + 18.2732i 0.131462 + 0.131462i 0.769776 0.638314i \(-0.220368\pi\)
−0.638314 + 0.769776i \(0.720368\pi\)
\(140\) 11.4821 30.3787i 0.0820148 0.216991i
\(141\) 37.0939 + 146.171i 0.263078 + 1.03667i
\(142\) −205.122 132.458i −1.44452 0.932799i
\(143\) 34.8679i 0.243831i
\(144\) −32.2235 + 140.348i −0.223774 + 0.974641i
\(145\) −60.9595 −0.420410
\(146\) −16.3183 + 25.2702i −0.111769 + 0.173084i
\(147\) 103.834 26.3501i 0.706355 0.179252i
\(148\) −1.54249 + 4.08104i −0.0104222 + 0.0275746i
\(149\) 44.9729 44.9729i 0.301831 0.301831i −0.539899 0.841730i \(-0.681537\pi\)
0.841730 + 0.539899i \(0.181537\pi\)
\(150\) 38.3785 113.954i 0.255857 0.759693i
\(151\) 28.1033i 0.186114i −0.995661 0.0930572i \(-0.970336\pi\)
0.995661 0.0930572i \(-0.0296639\pi\)
\(152\) −84.5649 114.522i −0.556348 0.753434i
\(153\) 120.474 + 222.081i 0.787411 + 1.45151i
\(154\) 2.58301 + 12.0000i 0.0167728 + 0.0779221i
\(155\) 18.3388 18.3388i 0.118315 0.118315i
\(156\) −246.966 27.9872i −1.58311 0.179405i
\(157\) 173.265 173.265i 1.10360 1.10360i 0.109628 0.993973i \(-0.465034\pi\)
0.993973 0.109628i \(-0.0349660\pi\)
\(158\) 86.3505 + 55.7609i 0.546522 + 0.352917i
\(159\) 100.332 168.572i 0.631019 1.06020i
\(160\) 34.8340 62.1699i 0.217712 0.388562i
\(161\) 106.686i 0.662644i
\(162\) −147.873 + 66.1630i −0.912797 + 0.408413i
\(163\) 51.9190 51.9190i 0.318521 0.318521i −0.529678 0.848199i \(-0.677687\pi\)
0.848199 + 0.529678i \(0.177687\pi\)
\(164\) −42.2825 93.6662i −0.257820 0.571136i
\(165\) −2.76648 10.9015i −0.0167666 0.0660697i
\(166\) 22.5385 + 104.708i 0.135774 + 0.630774i
\(167\) 57.5333 0.344511 0.172255 0.985052i \(-0.444895\pi\)
0.172255 + 0.985052i \(0.444895\pi\)
\(168\) −87.0681 + 8.66321i −0.518263 + 0.0515667i
\(169\) 259.996i 1.53844i
\(170\) −26.3112 122.235i −0.154772 0.719031i
\(171\) 45.5434 153.543i 0.266336 0.897915i
\(172\) 81.1660 214.745i 0.471895 1.24852i
\(173\) 112.600 + 112.600i 0.650868 + 0.650868i 0.953202 0.302334i \(-0.0977657\pi\)
−0.302334 + 0.953202i \(0.597766\pi\)
\(174\) 72.9927 + 147.127i 0.419498 + 0.845556i
\(175\) 73.0627 0.417501
\(176\) 1.68676 + 26.8823i 0.00958384 + 0.152740i
\(177\) 49.3725 82.9529i 0.278941 0.468660i
\(178\) −9.16601 5.91896i −0.0514944 0.0332526i
\(179\) 22.4810 + 22.4810i 0.125592 + 0.125592i 0.767109 0.641517i \(-0.221695\pi\)
−0.641517 + 0.767109i \(0.721695\pi\)
\(180\) 79.4348 10.8445i 0.441304 0.0602471i
\(181\) −18.6013 18.6013i −0.102770 0.102770i 0.653852 0.756622i \(-0.273152\pi\)
−0.756622 + 0.653852i \(0.773152\pi\)
\(182\) −31.7799 147.642i −0.174615 0.811218i
\(183\) 27.7124 46.5608i 0.151434 0.254430i
\(184\) −34.8340 + 231.498i −0.189315 + 1.25814i
\(185\) 2.42898 0.0131296
\(186\) −66.2198 22.3022i −0.356020 0.119904i
\(187\) 33.4170 + 33.4170i 0.178701 + 0.178701i
\(188\) −183.265 + 82.7288i −0.974814 + 0.440047i
\(189\) −66.7778 72.3203i −0.353322 0.382647i
\(190\) −42.9961 + 66.5830i −0.226295 + 0.350437i
\(191\) 191.672i 1.00352i 0.865007 + 0.501760i \(0.167314\pi\)
−0.865007 + 0.501760i \(0.832686\pi\)
\(192\) −191.758 9.63028i −0.998741 0.0501577i
\(193\) 48.6275 0.251956 0.125978 0.992033i \(-0.459793\pi\)
0.125978 + 0.992033i \(0.459793\pi\)
\(194\) 136.370 + 88.0614i 0.702940 + 0.453925i
\(195\) 34.0373 + 134.126i 0.174550 + 0.687827i
\(196\) 58.7673 + 130.184i 0.299833 + 0.664206i
\(197\) −136.258 + 136.258i −0.691667 + 0.691667i −0.962599 0.270932i \(-0.912668\pi\)
0.270932 + 0.962599i \(0.412668\pi\)
\(198\) −22.9984 + 19.7304i −0.116153 + 0.0996484i
\(199\) 144.767i 0.727474i 0.931502 + 0.363737i \(0.118499\pi\)
−0.931502 + 0.363737i \(0.881501\pi\)
\(200\) 158.539 + 23.8557i 0.792697 + 0.119279i
\(201\) 23.1882 38.9595i 0.115364 0.193828i
\(202\) −89.7268 + 19.3137i −0.444192 + 0.0956125i
\(203\) −70.5659 + 70.5659i −0.347615 + 0.347615i
\(204\) −263.512 + 209.867i −1.29172 + 1.02876i
\(205\) −40.4575 + 40.4575i −0.197354 + 0.197354i
\(206\) −55.5369 + 86.0035i −0.269596 + 0.417493i
\(207\) −231.498 + 125.582i −1.11835 + 0.606678i
\(208\) −20.7530 330.745i −0.0997738 1.59012i
\(209\) 29.9570i 0.143335i
\(210\) 21.6502 + 43.6389i 0.103096 + 0.207804i
\(211\) −196.354 + 196.354i −0.930589 + 0.930589i −0.997743 0.0671538i \(-0.978608\pi\)
0.0671538 + 0.997743i \(0.478608\pi\)
\(212\) 244.668 + 92.4759i 1.15409 + 0.436207i
\(213\) 355.005 90.0899i 1.66669 0.422957i
\(214\) 236.332 50.8706i 1.10436 0.237713i
\(215\) −127.814 −0.594482
\(216\) −121.288 178.732i −0.561520 0.827463i
\(217\) 42.4575i 0.195657i
\(218\) 146.142 31.4570i 0.670374 0.144298i
\(219\) −11.0987 43.7353i −0.0506791 0.199704i
\(220\) 13.6680 6.16995i 0.0621272 0.0280452i
\(221\) −411.145 411.145i −1.86038 1.86038i
\(222\) −2.90846 5.86239i −0.0131012 0.0264072i
\(223\) −375.261 −1.68279 −0.841393 0.540423i \(-0.818264\pi\)
−0.841393 + 0.540423i \(0.818264\pi\)
\(224\) −31.6438 112.291i −0.141267 0.501297i
\(225\) 86.0039 + 158.539i 0.382240 + 0.704619i
\(226\) −79.7490 + 123.498i −0.352872 + 0.546451i
\(227\) 181.108 + 181.108i 0.797834 + 0.797834i 0.982754 0.184920i \(-0.0592025\pi\)
−0.184920 + 0.982754i \(0.559203\pi\)
\(228\) 212.183 + 24.0454i 0.930625 + 0.105462i
\(229\) −153.937 153.937i −0.672215 0.672215i 0.286011 0.958226i \(-0.407671\pi\)
−0.958226 + 0.286011i \(0.907671\pi\)
\(230\) 127.418 27.4269i 0.553993 0.119247i
\(231\) −15.8219 9.41699i −0.0684930 0.0407662i
\(232\) −176.162 + 130.081i −0.759319 + 0.560694i
\(233\) −51.7790 −0.222228 −0.111114 0.993808i \(-0.535442\pi\)
−0.111114 + 0.993808i \(0.535442\pi\)
\(234\) 282.960 242.752i 1.20923 1.03740i
\(235\) 79.1581 + 79.1581i 0.336843 + 0.336843i
\(236\) 120.399 + 45.5066i 0.510166 + 0.192825i
\(237\) −149.447 + 37.9253i −0.630579 + 0.160022i
\(238\) −171.956 111.041i −0.722502 0.466557i
\(239\) 249.900i 1.04560i −0.852454 0.522802i \(-0.824887\pi\)
0.852454 0.522802i \(-0.175113\pi\)
\(240\) 32.7303 + 101.761i 0.136376 + 0.424006i
\(241\) 442.531 1.83623 0.918113 0.396318i \(-0.129712\pi\)
0.918113 + 0.396318i \(0.129712\pi\)
\(242\) 128.205 198.536i 0.529771 0.820395i
\(243\) 78.3226 230.032i 0.322315 0.946632i
\(244\) 67.5791 + 25.5425i 0.276963 + 0.104682i
\(245\) 56.2309 56.2309i 0.229514 0.229514i
\(246\) 146.089 + 49.2012i 0.593856 + 0.200005i
\(247\) 368.575i 1.49221i
\(248\) 13.8628 92.1289i 0.0558985 0.371487i
\(249\) −138.057 82.1699i −0.554446 0.330000i
\(250\) −42.2144 196.118i −0.168858 0.784470i
\(251\) 43.3235 43.3235i 0.172603 0.172603i −0.615519 0.788122i \(-0.711053\pi\)
0.788122 + 0.615519i \(0.211053\pi\)
\(252\) 79.3993 104.506i 0.315077 0.414707i
\(253\) −34.8340 + 34.8340i −0.137684 + 0.137684i
\(254\) −124.218 80.2142i −0.489049 0.315804i
\(255\) 161.166 + 95.9241i 0.632024 + 0.376173i
\(256\) −32.0000 253.992i −0.125000 0.992157i
\(257\) 179.197i 0.697266i 0.937259 + 0.348633i \(0.113354\pi\)
−0.937259 + 0.348633i \(0.886646\pi\)
\(258\) 153.044 + 308.480i 0.593193 + 1.19566i
\(259\) 2.81176 2.81176i 0.0108562 0.0108562i
\(260\) −168.164 + 75.9118i −0.646783 + 0.291968i
\(261\) −236.186 70.0567i −0.904929 0.268416i
\(262\) 94.2954 + 438.073i 0.359906 + 1.67203i
\(263\) −419.478 −1.59497 −0.797486 0.603338i \(-0.793837\pi\)
−0.797486 + 0.603338i \(0.793837\pi\)
\(264\) −31.2573 25.6000i −0.118399 0.0969698i
\(265\) 145.624i 0.549523i
\(266\) 27.3040 + 126.847i 0.102646 + 0.476870i
\(267\) 15.8637 4.02573i 0.0594145 0.0150777i
\(268\) 56.5464 + 21.3725i 0.210994 + 0.0797483i
\(269\) 33.7631 + 33.7631i 0.125513 + 0.125513i 0.767073 0.641560i \(-0.221712\pi\)
−0.641560 + 0.767073i \(0.721712\pi\)
\(270\) −69.2074 + 98.3473i −0.256324 + 0.364249i
\(271\) 329.269 1.21502 0.607508 0.794314i \(-0.292169\pi\)
0.607508 + 0.794314i \(0.292169\pi\)
\(272\) −336.872 297.093i −1.23850 1.09225i
\(273\) 194.664 + 115.862i 0.713055 + 0.424402i
\(274\) 169.247 + 109.292i 0.617690 + 0.398874i
\(275\) 23.8557 + 23.8557i 0.0867482 + 0.0867482i
\(276\) −218.766 274.686i −0.792630 0.995238i
\(277\) 251.265 + 251.265i 0.907095 + 0.907095i 0.996037 0.0889417i \(-0.0283485\pi\)
−0.0889417 + 0.996037i \(0.528348\pi\)
\(278\) −10.8760 50.5272i −0.0391223 0.181752i
\(279\) 92.1289 49.9778i 0.330211 0.179132i
\(280\) −52.2510 + 38.5830i −0.186611 + 0.137796i
\(281\) 171.809 0.611421 0.305711 0.952124i \(-0.401106\pi\)
0.305711 + 0.952124i \(0.401106\pi\)
\(282\) 96.2657 285.833i 0.341368 1.01359i
\(283\) −193.476 193.476i −0.683660 0.683660i 0.277163 0.960823i \(-0.410606\pi\)
−0.960823 + 0.277163i \(0.910606\pi\)
\(284\) 200.923 + 445.095i 0.707475 + 1.56724i
\(285\) −29.2434 115.236i −0.102608 0.404335i
\(286\) 37.8301 58.5830i 0.132273 0.204836i
\(287\) 93.6662i 0.326363i
\(288\) 206.411 200.844i 0.716706 0.697375i
\(289\) −499.073 −1.72690
\(290\) 102.421 + 66.1382i 0.353174 + 0.228063i
\(291\) −236.017 + 59.8942i −0.811055 + 0.205822i
\(292\) 54.8340 24.7530i 0.187788 0.0847704i
\(293\) 73.4937 73.4937i 0.250832 0.250832i −0.570480 0.821312i \(-0.693243\pi\)
0.821312 + 0.570480i \(0.193243\pi\)
\(294\) −203.045 68.3834i −0.690629 0.232597i
\(295\) 71.6601i 0.242916i
\(296\) 7.01933 5.18319i 0.0237140 0.0175108i
\(297\) 1.80968 45.4170i 0.00609320 0.152919i
\(298\) −124.354 + 26.7673i −0.417296 + 0.0898232i
\(299\) 428.579 428.579i 1.43337 1.43337i
\(300\) −188.116 + 149.820i −0.627054 + 0.499399i
\(301\) −147.956 + 147.956i −0.491547 + 0.491547i
\(302\) −30.4907 + 47.2175i −0.100963 + 0.156349i
\(303\) 70.4131 118.304i 0.232386 0.390442i
\(304\) 17.8301 + 284.162i 0.0586515 + 0.934744i
\(305\) 40.2222i 0.131876i
\(306\) 38.5346 503.836i 0.125930 1.64652i
\(307\) 283.055 283.055i 0.922003 0.922003i −0.0751680 0.997171i \(-0.523949\pi\)
0.997171 + 0.0751680i \(0.0239493\pi\)
\(308\) 8.67963 22.9641i 0.0281806 0.0745589i
\(309\) −37.7729 148.847i −0.122242 0.481704i
\(310\) −50.7085 + 10.9150i −0.163576 + 0.0352098i
\(311\) −54.0368 −0.173752 −0.0868759 0.996219i \(-0.527688\pi\)
−0.0868759 + 0.996219i \(0.527688\pi\)
\(312\) 384.573 + 314.969i 1.23261 + 1.00952i
\(313\) 490.280i 1.56639i 0.621777 + 0.783194i \(0.286411\pi\)
−0.621777 + 0.783194i \(0.713589\pi\)
\(314\) −479.095 + 103.125i −1.52578 + 0.328425i
\(315\) −70.0547 20.7793i −0.222396 0.0659661i
\(316\) −84.5830 187.373i −0.267668 0.592951i
\(317\) 319.550 + 319.550i 1.00804 + 1.00804i 0.999967 + 0.00807607i \(0.00257072\pi\)
0.00807607 + 0.999967i \(0.497429\pi\)
\(318\) −351.465 + 174.369i −1.10524 + 0.548331i
\(319\) −46.0810 −0.144455
\(320\) −125.978 + 66.6610i −0.393680 + 0.208316i
\(321\) −185.461 + 311.601i −0.577762 + 0.970721i
\(322\) 115.749 179.247i 0.359469 0.556668i
\(323\) 353.238 + 353.238i 1.09362 + 1.09362i
\(324\) 320.232 + 49.2723i 0.988369 + 0.152075i
\(325\) −293.508 293.508i −0.903103 0.903103i
\(326\) −143.561 + 30.9015i −0.440371 + 0.0947900i
\(327\) −114.685 + 192.686i −0.350717 + 0.589255i
\(328\) −30.5830 + 203.247i −0.0932409 + 0.619656i
\(329\) 183.265 0.557036
\(330\) −7.17954 + 21.3176i −0.0217562 + 0.0645987i
\(331\) −269.431 269.431i −0.813992 0.813992i 0.171238 0.985230i \(-0.445223\pi\)
−0.985230 + 0.171238i \(0.945223\pi\)
\(332\) 75.7359 200.378i 0.228120 0.603549i
\(333\) 9.41106 + 2.79147i 0.0282614 + 0.00838279i
\(334\) −96.6640 62.4209i −0.289413 0.186889i
\(335\) 33.6557i 0.100465i
\(336\) 155.686 + 79.9094i 0.463351 + 0.237826i
\(337\) 143.041 0.424453 0.212226 0.977221i \(-0.431929\pi\)
0.212226 + 0.977221i \(0.431929\pi\)
\(338\) −282.084 + 436.830i −0.834567 + 1.29240i
\(339\) −54.2406 213.739i −0.160002 0.630497i
\(340\) −88.4131 + 233.919i −0.260038 + 0.687997i
\(341\) 13.8628 13.8628i 0.0406534 0.0406534i
\(342\) −243.107 + 208.562i −0.710839 + 0.609831i
\(343\) 308.826i 0.900368i
\(344\) −369.359 + 272.741i −1.07372 + 0.792851i
\(345\) −99.9916 + 168.000i −0.289831 + 0.486957i
\(346\) −67.0183 311.350i −0.193694 0.899856i
\(347\) −126.922 + 126.922i −0.365770 + 0.365770i −0.865932 0.500162i \(-0.833274\pi\)
0.500162 + 0.865932i \(0.333274\pi\)
\(348\) 36.9876 326.387i 0.106286 0.937895i
\(349\) 195.893 195.893i 0.561297 0.561297i −0.368378 0.929676i \(-0.620087\pi\)
0.929676 + 0.368378i \(0.120087\pi\)
\(350\) −122.756 79.2697i −0.350731 0.226485i
\(351\) −22.2653 + 558.787i −0.0634340 + 1.59198i
\(352\) 26.3320 46.9961i 0.0748069 0.133512i
\(353\) 291.488i 0.825745i −0.910789 0.412873i \(-0.864525\pi\)
0.910789 0.412873i \(-0.135475\pi\)
\(354\) −172.953 + 85.8056i −0.488567 + 0.242389i
\(355\) 192.251 192.251i 0.541552 0.541552i
\(356\) 8.97839 + 19.8894i 0.0252202 + 0.0558691i
\(357\) 297.604 75.5233i 0.833626 0.211550i
\(358\) −13.3804 62.1621i −0.0373755 0.173637i
\(359\) 40.3499 0.112395 0.0561976 0.998420i \(-0.482102\pi\)
0.0561976 + 0.998420i \(0.482102\pi\)
\(360\) −145.227 67.9628i −0.403410 0.188786i
\(361\) 44.3360i 0.122814i
\(362\) 11.0713 + 51.4344i 0.0305836 + 0.142084i
\(363\) 87.1973 + 343.607i 0.240213 + 0.946575i
\(364\) −106.790 + 282.539i −0.293378 + 0.776205i
\(365\) −23.6846 23.6846i −0.0648893 0.0648893i
\(366\) −97.0771 + 48.1620i −0.265238 + 0.131590i
\(367\) 340.678 0.928279 0.464140 0.885762i \(-0.346364\pi\)
0.464140 + 0.885762i \(0.346364\pi\)
\(368\) 309.691 351.156i 0.841551 0.954229i
\(369\) −203.247 + 110.257i −0.550805 + 0.298799i
\(370\) −4.08104 2.63533i −0.0110298 0.00712253i
\(371\) −168.572 168.572i −0.454372 0.454372i
\(372\) 87.0618 + 109.316i 0.234037 + 0.293861i
\(373\) 237.678 + 237.678i 0.637207 + 0.637207i 0.949866 0.312658i \(-0.101219\pi\)
−0.312658 + 0.949866i \(0.601219\pi\)
\(374\) −19.8894 92.4012i −0.0531802 0.247062i
\(375\) 258.579 + 153.903i 0.689544 + 0.410409i
\(376\) 397.668 + 59.8379i 1.05763 + 0.159143i
\(377\) 566.957 1.50386
\(378\) 33.7320 + 193.959i 0.0892381 + 0.513120i
\(379\) 320.332 + 320.332i 0.845203 + 0.845203i 0.989530 0.144327i \(-0.0461017\pi\)
−0.144327 + 0.989530i \(0.546102\pi\)
\(380\) 144.479 65.2201i 0.380208 0.171632i
\(381\) 214.985 54.5570i 0.564266 0.143194i
\(382\) 207.956 322.037i 0.544386 0.843028i
\(383\) 632.700i 1.65196i −0.563702 0.825978i \(-0.690623\pi\)
0.563702 0.825978i \(-0.309377\pi\)
\(384\) 311.733 + 224.229i 0.811804 + 0.583930i
\(385\) −13.6680 −0.0355012
\(386\) −81.7010 52.7585i −0.211661 0.136680i
\(387\) −495.212 146.888i −1.27962 0.379555i
\(388\) −133.579 295.911i −0.344276 0.762657i
\(389\) −424.351 + 424.351i −1.09088 + 1.09088i −0.0954418 + 0.995435i \(0.530426\pi\)
−0.995435 + 0.0954418i \(0.969574\pi\)
\(390\) 88.3332 262.280i 0.226495 0.672513i
\(391\) 821.490i 2.10100i
\(392\) 42.5065 282.488i 0.108435 0.720632i
\(393\) −577.595 343.778i −1.46971 0.874752i
\(394\) 376.767 81.0993i 0.956262 0.205836i
\(395\) −80.9323 + 80.9323i −0.204892 + 0.204892i
\(396\) 60.0471 8.19766i 0.151634 0.0207012i
\(397\) −445.678 + 445.678i −1.12262 + 1.12262i −0.131269 + 0.991347i \(0.541905\pi\)
−0.991347 + 0.131269i \(0.958095\pi\)
\(398\) 157.066 243.230i 0.394638 0.611130i
\(399\) −167.247 99.5434i −0.419166 0.249482i
\(400\) −240.486 212.089i −0.601216 0.530222i
\(401\) 555.896i 1.38627i −0.720806 0.693137i \(-0.756228\pi\)
0.720806 0.693137i \(-0.243772\pi\)
\(402\) −81.2287 + 40.2993i −0.202061 + 0.100247i
\(403\) −170.561 + 170.561i −0.423228 + 0.423228i
\(404\) 171.708 + 64.8996i 0.425020 + 0.160643i
\(405\) −37.3738 176.472i −0.0922811 0.435733i
\(406\) 195.122 42.0000i 0.480595 0.103448i
\(407\) 1.83614 0.00451140
\(408\) 670.433 66.7076i 1.64322 0.163499i
\(409\) 44.8261i 0.109599i 0.998497 + 0.0547997i \(0.0174520\pi\)
−0.998497 + 0.0547997i \(0.982548\pi\)
\(410\) 111.869 24.0798i 0.272851 0.0587313i
\(411\) −292.917 + 74.3337i −0.712693 + 0.180861i
\(412\) 186.620 84.2431i 0.452960 0.204474i
\(413\) −82.9529 82.9529i −0.200854 0.200854i
\(414\) 525.200 + 40.1686i 1.26860 + 0.0970255i
\(415\) −119.263 −0.287380
\(416\) −323.975 + 578.215i −0.778786 + 1.38994i
\(417\) 66.6196 + 39.6512i 0.159759 + 0.0950868i
\(418\) −32.5020 + 50.3320i −0.0777559 + 0.120412i
\(419\) 15.2026 + 15.2026i 0.0362830 + 0.0362830i 0.725016 0.688733i \(-0.241833\pi\)
−0.688733 + 0.725016i \(0.741833\pi\)
\(420\) 10.9708 96.8089i 0.0261209 0.230497i
\(421\) 262.889 + 262.889i 0.624439 + 0.624439i 0.946663 0.322224i \(-0.104431\pi\)
−0.322224 + 0.946663i \(0.604431\pi\)
\(422\) 542.938 116.868i 1.28658 0.276938i
\(423\) 215.726 + 397.668i 0.509990 + 0.940113i
\(424\) −310.745 420.826i −0.732889 0.992514i
\(425\) −562.590 −1.32374
\(426\) −694.202 233.800i −1.62958 0.548827i
\(427\) −46.5608 46.5608i −0.109042 0.109042i
\(428\) −452.263 170.940i −1.05669 0.399391i
\(429\) 25.7298 + 101.390i 0.0599762 + 0.236340i
\(430\) 214.745 + 138.672i 0.499407 + 0.322493i
\(431\) 163.103i 0.378430i −0.981936 0.189215i \(-0.939406\pi\)
0.981936 0.189215i \(-0.0605943\pi\)
\(432\) 9.86564 + 431.887i 0.0228371 + 0.999739i
\(433\) −140.737 −0.325028 −0.162514 0.986706i \(-0.551960\pi\)
−0.162514 + 0.986706i \(0.551960\pi\)
\(434\) −46.0644 + 71.3346i −0.106139 + 0.164366i
\(435\) −177.260 + 44.9833i −0.407494 + 0.103410i
\(436\) −279.668 105.705i −0.641440 0.242442i
\(437\) −368.217 + 368.217i −0.842601 + 0.842601i
\(438\) −28.8033 + 85.5230i −0.0657609 + 0.195258i
\(439\) 434.893i 0.990644i 0.868709 + 0.495322i \(0.164950\pi\)
−0.868709 + 0.495322i \(0.835050\pi\)
\(440\) −29.6582 4.46274i −0.0674051 0.0101426i
\(441\) 282.488 153.243i 0.640562 0.347490i
\(442\) 244.708 + 1136.85i 0.553639 + 2.57207i
\(443\) −260.367 + 260.367i −0.587736 + 0.587736i −0.937018 0.349282i \(-0.886426\pi\)
0.349282 + 0.937018i \(0.386426\pi\)
\(444\) −1.47380 + 13.0052i −0.00331937 + 0.0292910i
\(445\) 8.59088 8.59088i 0.0193053 0.0193053i
\(446\) 630.492 + 407.141i 1.41366 + 0.912873i
\(447\) 97.5869 163.960i 0.218315 0.366801i
\(448\) −68.6640 + 222.996i −0.153268 + 0.497759i
\(449\) 98.9506i 0.220380i −0.993911 0.110190i \(-0.964854\pi\)
0.993911 0.110190i \(-0.0351459\pi\)
\(450\) 27.5091 359.679i 0.0611313 0.799286i
\(451\) −30.5830 + 30.5830i −0.0678115 + 0.0678115i
\(452\) 267.979 120.970i 0.592874 0.267633i
\(453\) −20.7380 81.7195i −0.0457793 0.180396i
\(454\) −107.793 500.782i −0.237431 1.10304i
\(455\) 168.164 0.369590
\(456\) −330.409 270.608i −0.724580 0.593438i
\(457\) 14.4209i 0.0315556i 0.999876 + 0.0157778i \(0.00502245\pi\)
−0.999876 + 0.0157778i \(0.994978\pi\)
\(458\) 91.6216 + 425.651i 0.200047 + 0.929369i
\(459\) 514.196 + 556.873i 1.12025 + 1.21323i
\(460\) −243.838 92.1621i −0.530082 0.200352i
\(461\) 328.278 + 328.278i 0.712099 + 0.712099i 0.966974 0.254875i \(-0.0820343\pi\)
−0.254875 + 0.966974i \(0.582034\pi\)
\(462\) 16.3660 + 32.9879i 0.0354242 + 0.0714024i
\(463\) −848.427 −1.83246 −0.916228 0.400657i \(-0.868782\pi\)
−0.916228 + 0.400657i \(0.868782\pi\)
\(464\) 437.109 27.4269i 0.942045 0.0591096i
\(465\) 39.7935 66.8587i 0.0855774 0.143782i
\(466\) 86.9961 + 56.1778i 0.186687 + 0.120553i
\(467\) 56.0706 + 56.0706i 0.120066 + 0.120066i 0.764587 0.644521i \(-0.222943\pi\)
−0.644521 + 0.764587i \(0.722943\pi\)
\(468\) −738.787 + 100.860i −1.57860 + 0.215512i
\(469\) −38.9595 38.9595i −0.0830693 0.0830693i
\(470\) −47.1140 218.880i −0.100242 0.465702i
\(471\) 375.970 631.682i 0.798237 1.34115i
\(472\) −152.915 207.085i −0.323973 0.438739i
\(473\) −96.6181 −0.204267
\(474\) 292.240 + 98.4234i 0.616539 + 0.207644i
\(475\) 252.170 + 252.170i 0.530884 + 0.530884i
\(476\) 168.436 + 373.128i 0.353857 + 0.783881i
\(477\) 167.355 564.216i 0.350850 1.18284i
\(478\) −271.129 + 419.867i −0.567216 + 0.878382i
\(479\) 648.794i 1.35448i 0.735764 + 0.677238i \(0.236823\pi\)
−0.735764 + 0.677238i \(0.763177\pi\)
\(480\) 55.4147 206.484i 0.115447 0.430176i
\(481\) −22.5909 −0.0469665
\(482\) −743.514 480.125i −1.54256 0.996110i
\(483\) 78.7257 + 310.224i 0.162993 + 0.642285i
\(484\) −430.804 + 194.472i −0.890091 + 0.401801i
\(485\) −127.814 + 127.814i −0.263533 + 0.263533i
\(486\) −381.167 + 301.509i −0.784294 + 0.620390i
\(487\) 176.783i 0.363004i −0.983391 0.181502i \(-0.941904\pi\)
0.983391 0.181502i \(-0.0580959\pi\)
\(488\) −85.8300 116.235i −0.175881 0.238187i
\(489\) 112.659 189.284i 0.230387 0.387083i
\(490\) −155.484 + 33.4679i −0.317314 + 0.0683019i
\(491\) −317.369 + 317.369i −0.646373 + 0.646373i −0.952114 0.305742i \(-0.901096\pi\)
0.305742 + 0.952114i \(0.401096\pi\)
\(492\) −192.069 241.164i −0.390383 0.490171i
\(493\) 543.365 543.365i 1.10216 1.10216i
\(494\) 399.887 619.258i 0.809488 1.25356i
\(495\) −16.0889 29.6582i −0.0325029 0.0599156i
\(496\) −123.247 + 139.749i −0.248482 + 0.281752i
\(497\) 445.095i 0.895563i
\(498\) 142.805 + 287.843i 0.286757 + 0.577997i
\(499\) −374.391 + 374.391i −0.750282 + 0.750282i −0.974532 0.224250i \(-0.928007\pi\)
0.224250 + 0.974532i \(0.428007\pi\)
\(500\) −141.852 + 375.306i −0.283705 + 0.750612i
\(501\) 167.297 42.4551i 0.333926 0.0847407i
\(502\) −119.793 + 25.7856i −0.238632 + 0.0513657i
\(503\) 386.094 0.767583 0.383791 0.923420i \(-0.374618\pi\)
0.383791 + 0.923420i \(0.374618\pi\)
\(504\) −246.786 + 89.4406i −0.489656 + 0.177462i
\(505\) 102.199i 0.202374i
\(506\) 96.3193 20.7328i 0.190354 0.0409739i
\(507\) −191.857 756.024i −0.378416 1.49117i
\(508\) 121.676 + 269.542i 0.239519 + 0.530595i
\(509\) 41.6258 + 41.6258i 0.0817796 + 0.0817796i 0.746813 0.665034i \(-0.231583\pi\)
−0.665034 + 0.746813i \(0.731583\pi\)
\(510\) −166.709 336.024i −0.326880 0.658870i
\(511\) −54.8340 −0.107307
\(512\) −221.805 + 461.461i −0.433213 + 0.901291i
\(513\) 19.1294 480.086i 0.0372893 0.935839i
\(514\) 194.421 301.077i 0.378251 0.585753i
\(515\) −80.6071 80.6071i −0.156519 0.156519i
\(516\) 77.5518 684.336i 0.150294 1.32623i
\(517\) 59.8379 + 59.8379i 0.115741 + 0.115741i
\(518\) −7.77479 + 1.67353i −0.0150092 + 0.00323075i
\(519\) 410.512 + 244.332i 0.790968 + 0.470775i
\(520\) 364.899 + 54.9072i 0.701729 + 0.105591i
\(521\) 233.704 0.448569 0.224284 0.974524i \(-0.427996\pi\)
0.224284 + 0.974524i \(0.427996\pi\)
\(522\) 320.818 + 373.956i 0.614595 + 0.716392i
\(523\) −219.506 219.506i −0.419705 0.419705i 0.465397 0.885102i \(-0.345912\pi\)
−0.885102 + 0.465397i \(0.845912\pi\)
\(524\) 316.859 838.331i 0.604693 1.59987i
\(525\) 212.454 53.9146i 0.404674 0.102694i
\(526\) 704.782 + 455.114i 1.33989 + 0.865235i
\(527\) 326.927i 0.620355i
\(528\) 24.7418 + 76.9243i 0.0468595 + 0.145690i
\(529\) 327.324 0.618760
\(530\) −157.995 + 244.668i −0.298103 + 0.461638i
\(531\) 82.3542 277.646i 0.155093 0.522873i
\(532\) 91.7490 242.745i 0.172461 0.456288i
\(533\) 376.277 376.277i 0.705961 0.705961i
\(534\) −31.0209 10.4475i −0.0580916 0.0195647i
\(535\) 269.182i 0.503143i
\(536\) −71.8178 97.2591i −0.133988 0.181454i
\(537\) 81.9601 + 48.7817i 0.152626 + 0.0908411i
\(538\) −20.0954 93.3582i −0.0373520 0.173528i
\(539\) 42.5065 42.5065i 0.0788618 0.0788618i
\(540\) 222.980 90.1506i 0.412927 0.166946i
\(541\) 80.5203 80.5203i 0.148836 0.148836i −0.628762 0.777598i \(-0.716438\pi\)
0.777598 + 0.628762i \(0.216438\pi\)
\(542\) −553.219 357.242i −1.02070 0.659118i
\(543\) −67.8157 40.3631i −0.124891 0.0743335i
\(544\) 243.660 + 864.648i 0.447905 + 1.58943i
\(545\) 166.455i 0.305422i
\(546\) −201.359 405.865i −0.368789 0.743343i
\(547\) 1.49803 1.49803i 0.00273863 0.00273863i −0.705736 0.708475i \(-0.749384\pi\)
0.708475 + 0.705736i \(0.249384\pi\)
\(548\) −165.783 367.250i −0.302523 0.670165i
\(549\) 46.2247 155.840i 0.0841981 0.283862i
\(550\) −14.1987 65.9634i −0.0258157 0.119933i
\(551\) −487.105 −0.884038
\(552\) 69.5362 + 698.862i 0.125971 + 1.26605i
\(553\) 187.373i 0.338829i
\(554\) −149.550 694.773i −0.269946 1.25410i
\(555\) 7.06307 1.79240i 0.0127263 0.00322955i
\(556\) −36.5464 + 96.6927i −0.0657310 + 0.173908i
\(557\) −322.326 322.326i −0.578682 0.578682i 0.355858 0.934540i \(-0.384189\pi\)
−0.934540 + 0.355858i \(0.884189\pi\)
\(558\) −209.013 15.9858i −0.374575 0.0286484i
\(559\) 1188.74 2.12654
\(560\) 129.650 8.13502i 0.231518 0.0145268i
\(561\) 121.830 + 72.5118i 0.217166 + 0.129255i
\(562\) −288.664 186.405i −0.513637 0.331682i
\(563\) 523.954 + 523.954i 0.930646 + 0.930646i 0.997746 0.0671003i \(-0.0213748\pi\)
−0.0671003 + 0.997746i \(0.521375\pi\)
\(564\) −471.856 + 375.796i −0.836624 + 0.666306i
\(565\) −115.749 115.749i −0.204866 0.204866i
\(566\) 115.154 + 534.979i 0.203453 + 0.945193i
\(567\) −247.545 161.018i −0.436588 0.283983i
\(568\) 145.328 965.814i 0.255859 1.70038i
\(569\) −767.880 −1.34952 −0.674762 0.738035i \(-0.735754\pi\)
−0.674762 + 0.738035i \(0.735754\pi\)
\(570\) −75.8921 + 225.340i −0.133144 + 0.395333i
\(571\) −3.43922 3.43922i −0.00602316 0.00602316i 0.704089 0.710112i \(-0.251356\pi\)
−0.710112 + 0.704089i \(0.751356\pi\)
\(572\) −127.120 + 57.3839i −0.222237 + 0.100321i
\(573\) 141.439 + 557.350i 0.246840 + 0.972688i
\(574\) 101.624 157.373i 0.177044 0.274168i
\(575\) 586.446i 1.01991i
\(576\) −564.707 + 113.499i −0.980394 + 0.197048i
\(577\) −572.442 −0.992100 −0.496050 0.868294i \(-0.665217\pi\)
−0.496050 + 0.868294i \(0.665217\pi\)
\(578\) 838.514 + 541.471i 1.45072 + 0.936801i
\(579\) 141.400 35.8833i 0.244215 0.0619746i
\(580\) −100.324 222.243i −0.172973 0.383178i
\(581\) −138.057 + 138.057i −0.237620 + 0.237620i
\(582\) 461.524 + 155.437i 0.792997 + 0.267073i
\(583\) 110.081i 0.188818i
\(584\) −118.985 17.9039i −0.203741 0.0306573i
\(585\) 197.949 + 364.899i 0.338375 + 0.623759i
\(586\) −203.217 + 43.7425i −0.346787 + 0.0746460i
\(587\) 446.694 446.694i 0.760977 0.760977i −0.215522 0.976499i \(-0.569145\pi\)
0.976499 + 0.215522i \(0.0691453\pi\)
\(588\) 266.951 + 335.188i 0.453999 + 0.570048i
\(589\) 146.539 146.539i 0.248792 0.248792i
\(590\) −77.7479 + 120.399i −0.131776 + 0.204066i
\(591\) −295.668 + 496.764i −0.500284 + 0.840548i
\(592\) −17.4170 + 1.09285i −0.0294206 + 0.00184603i
\(593\) 838.112i 1.41334i 0.707542 + 0.706671i \(0.249804\pi\)
−0.707542 + 0.706671i \(0.750196\pi\)
\(594\) −52.3159 + 74.3436i −0.0880738 + 0.125158i
\(595\) 161.166 161.166i 0.270867 0.270867i
\(596\) 237.974 + 89.9457i 0.399285 + 0.150916i
\(597\) 106.827 + 420.959i 0.178940 + 0.705123i
\(598\) −1185.06 + 255.085i −1.98171 + 0.426564i
\(599\) −414.241 −0.691555 −0.345777 0.938317i \(-0.612385\pi\)
−0.345777 + 0.938317i \(0.612385\pi\)
\(600\) 478.609 47.6213i 0.797682 0.0793688i
\(601\) 305.786i 0.508795i −0.967100 0.254397i \(-0.918123\pi\)
0.967100 0.254397i \(-0.0818771\pi\)
\(602\) 409.111 88.0614i 0.679587 0.146281i
\(603\) 38.6783 130.399i 0.0641431 0.216250i
\(604\) 102.458 46.2510i 0.169632 0.0765745i
\(605\) 186.078 + 186.078i 0.307567 + 0.307567i
\(606\) −246.658 + 122.372i −0.407027 + 0.201935i
\(607\) −103.217 −0.170044 −0.0850222 0.996379i \(-0.527096\pi\)
−0.0850222 + 0.996379i \(0.527096\pi\)
\(608\) 278.346 496.777i 0.457805 0.817068i
\(609\) −153.122 + 257.266i −0.251431 + 0.422440i
\(610\) −43.6393 + 67.5791i −0.0715398 + 0.110785i
\(611\) −736.214 736.214i −1.20493 1.20493i
\(612\) −611.382 + 804.708i −0.998991 + 1.31488i
\(613\) −391.273 391.273i −0.638292 0.638292i 0.311842 0.950134i \(-0.399054\pi\)
−0.950134 + 0.311842i \(0.899054\pi\)
\(614\) −782.674 + 168.471i −1.27471 + 0.274382i
\(615\) −87.7891 + 147.498i −0.142746 + 0.239834i
\(616\) −39.4980 + 29.1660i −0.0641202 + 0.0473474i
\(617\) 713.373 1.15620 0.578098 0.815967i \(-0.303795\pi\)
0.578098 + 0.815967i \(0.303795\pi\)
\(618\) −98.0279 + 291.065i −0.158621 + 0.470979i
\(619\) −399.763 399.763i −0.645821 0.645821i 0.306159 0.951980i \(-0.400956\pi\)
−0.951980 + 0.306159i \(0.900956\pi\)
\(620\) 97.0398 + 36.6776i 0.156516 + 0.0591574i
\(621\) −580.487 + 535.999i −0.934761 + 0.863123i
\(622\) 90.7895 + 58.6275i 0.145964 + 0.0942564i
\(623\) 19.8894i 0.0319252i
\(624\) −304.410 946.436i −0.487837 1.51672i
\(625\) −277.635 −0.444217
\(626\) 531.931 823.739i 0.849730 1.31588i
\(627\) −22.1059 87.1099i −0.0352567 0.138931i
\(628\) 916.834 + 346.531i 1.45993 + 0.551800i
\(629\) −21.6508 + 21.6508i −0.0344210 + 0.0344210i
\(630\) 95.1571 + 110.918i 0.151043 + 0.176061i
\(631\) 934.242i 1.48057i 0.672291 + 0.740287i \(0.265310\pi\)
−0.672291 + 0.740287i \(0.734690\pi\)
\(632\) −61.1791 + 406.581i −0.0968024 + 0.643324i
\(633\) −426.071 + 715.859i −0.673097 + 1.13090i
\(634\) −190.192 883.586i −0.299988 1.39367i
\(635\) 116.424 116.424i 0.183345 0.183345i
\(636\) 779.693 + 88.3580i 1.22593 + 0.138928i
\(637\) −522.978 + 522.978i −0.821001 + 0.821001i
\(638\) 77.4227 + 49.9958i 0.121352 + 0.0783633i
\(639\) 965.814 523.932i 1.51145 0.819925i
\(640\) 283.984 + 24.6798i 0.443725 + 0.0385622i
\(641\) 26.1836i 0.0408480i 0.999791 + 0.0204240i \(0.00650162\pi\)
−0.999791 + 0.0204240i \(0.993498\pi\)
\(642\) 649.675 322.318i 1.01195 0.502052i
\(643\) 625.336 625.336i 0.972529 0.972529i −0.0271039 0.999633i \(-0.508629\pi\)
0.999633 + 0.0271039i \(0.00862850\pi\)
\(644\) −388.949 + 175.578i −0.603959 + 0.272637i
\(645\) −371.660 + 94.3165i −0.576218 + 0.146227i
\(646\) −210.243 976.737i −0.325454 1.51198i
\(647\) −97.2591 −0.150323 −0.0751616 0.997171i \(-0.523947\pi\)
−0.0751616 + 0.997171i \(0.523947\pi\)
\(648\) −484.576 430.221i −0.747803 0.663921i
\(649\) 54.1699i 0.0834668i
\(650\) 174.693 + 811.579i 0.268758 + 1.24858i
\(651\) −31.3303 123.459i −0.0481265 0.189645i
\(652\) 274.729 + 103.838i 0.421364 + 0.159261i
\(653\) −129.213 129.213i −0.197875 0.197875i 0.601213 0.799089i \(-0.294684\pi\)
−0.799089 + 0.601213i \(0.794684\pi\)
\(654\) 401.742 199.313i 0.614284 0.304760i
\(655\) −498.965 −0.761778
\(656\) 271.897 308.303i 0.414478 0.469974i
\(657\) −64.5464 118.985i −0.0982442 0.181103i
\(658\) −307.911 198.834i −0.467950 0.302179i
\(659\) −3.10975 3.10975i −0.00471889 0.00471889i 0.704743 0.709462i \(-0.251062\pi\)
−0.709462 + 0.704743i \(0.751062\pi\)
\(660\) 35.1912 28.0271i 0.0533200 0.0424652i
\(661\) −22.3424 22.3424i −0.0338010 0.0338010i 0.690004 0.723805i \(-0.257609\pi\)
−0.723805 + 0.690004i \(0.757609\pi\)
\(662\) 160.362 + 745.003i 0.242239 + 1.12538i
\(663\) −1498.93 892.146i −2.26083 1.34562i
\(664\) −344.648 + 254.494i −0.519049 + 0.383274i
\(665\) −144.479 −0.217262
\(666\) −12.7833 14.9006i −0.0191941 0.0223733i
\(667\) 566.405 + 566.405i 0.849183 + 0.849183i
\(668\) 94.6855 + 209.752i 0.141745 + 0.314000i
\(669\) −1091.20 + 276.914i −1.63109 + 0.413922i
\(670\) −36.5149 + 56.5464i −0.0544999 + 0.0843976i
\(671\) 30.4052i 0.0453132i
\(672\) −174.876 303.171i −0.260233 0.451148i
\(673\) 1085.74 1.61329 0.806643 0.591039i \(-0.201282\pi\)
0.806643 + 0.591039i \(0.201282\pi\)
\(674\) −240.328 155.192i −0.356570 0.230256i
\(675\) 367.074 + 397.541i 0.543814 + 0.588950i
\(676\) 947.881 427.889i 1.40219 0.632972i
\(677\) 813.520 813.520i 1.20165 1.20165i 0.227991 0.973663i \(-0.426784\pi\)
0.973663 0.227991i \(-0.0732157\pi\)
\(678\) −140.765 + 417.960i −0.207617 + 0.616460i
\(679\) 295.911i 0.435804i
\(680\) 402.338 297.093i 0.591673 0.436901i
\(681\) 660.276 + 392.988i 0.969568 + 0.577075i
\(682\) −38.3320 + 8.25098i −0.0562053 + 0.0120982i
\(683\) −427.362 + 427.362i −0.625713 + 0.625713i −0.946986 0.321273i \(-0.895889\pi\)
0.321273 + 0.946986i \(0.395889\pi\)
\(684\) 634.734 86.6543i 0.927974 0.126688i
\(685\) −158.627 + 158.627i −0.231573 + 0.231573i
\(686\) −335.062 + 518.872i −0.488429 + 0.756373i
\(687\) −561.217 334.030i −0.816910 0.486215i
\(688\) 916.486 57.5059i 1.33210 0.0835842i
\(689\) 1354.38i 1.96572i
\(690\) 350.272 173.778i 0.507641 0.251852i
\(691\) −420.170 + 420.170i −0.608061 + 0.608061i −0.942439 0.334378i \(-0.891474\pi\)
0.334378 + 0.942439i \(0.391474\pi\)
\(692\) −225.200 + 595.824i −0.325434 + 0.861018i
\(693\) −52.9563 15.7077i −0.0764161 0.0226662i
\(694\) 350.952 75.5425i 0.505694 0.108851i
\(695\) 57.5504 0.0828063
\(696\) −416.260 + 508.247i −0.598074 + 0.730240i
\(697\) 721.239i 1.03478i
\(698\) −541.662 + 116.593i −0.776020 + 0.167039i
\(699\) −150.565 + 38.2089i −0.215400 + 0.0546622i
\(700\) 120.243 + 266.369i 0.171776 + 0.380527i
\(701\) −774.018 774.018i −1.10416 1.10416i −0.993903 0.110260i \(-0.964832\pi\)
−0.110260 0.993903i \(-0.535168\pi\)
\(702\) 643.666 914.684i 0.916904 1.30297i
\(703\) 19.4091 0.0276090
\(704\) −95.2301 + 50.3910i −0.135270 + 0.0715781i
\(705\) 288.591 + 171.766i 0.409349 + 0.243639i
\(706\) −316.251 + 489.741i −0.447948 + 0.693684i
\(707\) −118.304 118.304i −0.167332 0.167332i
\(708\) 383.680 + 43.4802i 0.541921 + 0.0614128i
\(709\) 198.261 + 198.261i 0.279635 + 0.279635i 0.832963 0.553328i \(-0.186642\pi\)
−0.553328 + 0.832963i \(0.686642\pi\)
\(710\) −531.592 + 114.425i −0.748722 + 0.161163i
\(711\) −406.581 + 220.561i −0.571844 + 0.310212i
\(712\) 6.49409 43.1581i 0.00912092 0.0606154i
\(713\) −340.790 −0.477966
\(714\) −581.957 195.997i −0.815065 0.274506i
\(715\) 54.9072 + 54.9072i 0.0767932 + 0.0767932i
\(716\) −44.9620 + 118.958i −0.0627961 + 0.166143i
\(717\) −184.406 726.665i −0.257192 1.01348i
\(718\) −67.7935 43.7777i −0.0944199 0.0609718i
\(719\) 639.218i 0.889037i 0.895770 + 0.444519i \(0.146625\pi\)
−0.895770 + 0.444519i \(0.853375\pi\)
\(720\) 170.266 + 271.752i 0.236481 + 0.377434i
\(721\) −186.620 −0.258834
\(722\) 48.1025 74.4907i 0.0666239 0.103173i
\(723\) 1286.80 326.553i 1.77981 0.451664i
\(724\) 37.2026 98.4288i 0.0513848 0.135951i
\(725\) 387.898 387.898i 0.535031 0.535031i
\(726\) 226.293 671.913i 0.311699 0.925500i
\(727\) 789.136i 1.08547i −0.839904 0.542734i \(-0.817389\pi\)
0.839904 0.542734i \(-0.182611\pi\)
\(728\) 485.963 358.843i 0.667531 0.492916i
\(729\) 58.0032 726.689i 0.0795654 0.996830i
\(730\) 14.0968 + 65.4902i 0.0193107 + 0.0897125i
\(731\) 1139.27 1139.27i 1.55851 1.55851i
\(732\) 215.357 + 24.4051i 0.294203 + 0.0333403i
\(733\) −49.8641 + 49.8641i −0.0680274 + 0.0680274i −0.740302 0.672275i \(-0.765317\pi\)
0.672275 + 0.740302i \(0.265317\pi\)
\(734\) −572.388 369.620i −0.779820 0.503570i
\(735\) 122.016 205.004i 0.166008 0.278917i
\(736\) −901.312 + 253.992i −1.22461 + 0.345098i
\(737\) 25.4414i 0.0345202i
\(738\) 461.107 + 35.2666i 0.624807 + 0.0477867i
\(739\) 157.593 157.593i 0.213252 0.213252i −0.592395 0.805647i \(-0.701818\pi\)
0.805647 + 0.592395i \(0.201818\pi\)
\(740\) 3.99750 + 8.85547i 0.00540203 + 0.0119669i
\(741\) 271.980 + 1071.75i 0.367044 + 1.44636i
\(742\) 100.332 + 466.118i 0.135218 + 0.628191i
\(743\) 1305.03 1.75643 0.878216 0.478265i \(-0.158734\pi\)
0.878216 + 0.478265i \(0.158734\pi\)
\(744\) −27.6732 278.125i −0.0371952 0.373824i
\(745\) 141.639i 0.190120i
\(746\) −141.463 657.203i −0.189629 0.880970i
\(747\) −462.082 137.061i −0.618583 0.183482i
\(748\) −66.8340 + 176.826i −0.0893503 + 0.236399i
\(749\) 311.601 + 311.601i 0.416023 + 0.416023i
\(750\) −267.472 539.126i −0.356629 0.718834i
\(751\) 793.800 1.05699 0.528495 0.848936i \(-0.322756\pi\)
0.528495 + 0.848936i \(0.322756\pi\)
\(752\) −603.217 531.987i −0.802150 0.707430i
\(753\) 94.0079 157.947i 0.124844 0.209756i
\(754\) −952.567 615.122i −1.26335 0.815811i
\(755\) −44.2548 44.2548i −0.0586156 0.0586156i
\(756\) 153.762 362.477i 0.203389 0.479466i
\(757\) −750.497 750.497i −0.991409 0.991409i 0.00855438 0.999963i \(-0.497277\pi\)
−0.999963 + 0.00855438i \(0.997277\pi\)
\(758\) −190.658 885.749i −0.251527 1.16853i
\(759\) −75.5865 + 126.996i −0.0995870 + 0.167320i
\(760\) −313.506 47.1739i −0.412508 0.0620709i
\(761\) 1055.45 1.38692 0.693462 0.720493i \(-0.256084\pi\)
0.693462 + 0.720493i \(0.256084\pi\)
\(762\) −420.398 141.586i −0.551703 0.185808i
\(763\) 192.686 + 192.686i 0.252538 + 0.252538i
\(764\) −698.790 + 315.445i −0.914646 + 0.412886i
\(765\) 539.428 + 160.003i 0.705134 + 0.209154i
\(766\) −686.450 + 1063.02i −0.896148 + 1.38776i
\(767\) 666.478i 0.868942i
\(768\) −280.477 714.952i −0.365204 0.930927i
\(769\) 883.681 1.14913 0.574565 0.818459i \(-0.305171\pi\)
0.574565 + 0.818459i