# Properties

 Label 48.3.i.a.5.1 Level $48$ Weight $3$ Character 48.5 Analytic conductor $1.308$ Analytic rank $0$ Dimension $8$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$48 = 2^{4} \cdot 3$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 48.i (of order $$4$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$1.30790526893$$ Analytic rank: $$0$$ Dimension: $$8$$ Relative dimension: $$4$$ over $$\Q(i)$$ Coefficient field: 8.0.629407744.1 Defining polynomial: $$x^{8} - 2x^{6} + 2x^{4} - 8x^{2} + 16$$ x^8 - 2*x^6 + 2*x^4 - 8*x^2 + 16 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$2^{3}$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

## Embedding invariants

 Embedding label 5.1 Root $$-1.38255 + 0.297594i$$ of defining polynomial Character $$\chi$$ $$=$$ 48.5 Dual form 48.3.i.a.29.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-1.68014 - 1.08495i) q^{2} +(2.90783 - 0.737922i) q^{3} +(1.64575 + 3.64575i) q^{4} +(1.57472 - 1.57472i) q^{5} +(-5.68618 - 1.91505i) q^{6} -3.64575i q^{7} +(1.19038 - 7.91094i) q^{8} +(7.91094 - 4.29150i) q^{9} +O(q^{10})$$ $$q+(-1.68014 - 1.08495i) q^{2} +(2.90783 - 0.737922i) q^{3} +(1.64575 + 3.64575i) q^{4} +(1.57472 - 1.57472i) q^{5} +(-5.68618 - 1.91505i) q^{6} -3.64575i q^{7} +(1.19038 - 7.91094i) q^{8} +(7.91094 - 4.29150i) q^{9} +(-4.35425 + 0.937254i) q^{10} +(1.19038 - 1.19038i) q^{11} +(7.47584 + 9.38679i) q^{12} +(-14.6458 + 14.6458i) q^{13} +(-3.95547 + 6.12538i) q^{14} +(3.41699 - 5.74103i) q^{15} +(-10.5830 + 12.0000i) q^{16} +28.0726i q^{17} +(-17.9476 - 1.37267i) q^{18} +(12.5830 - 12.5830i) q^{19} +(8.33263 + 3.14944i) q^{20} +(-2.69028 - 10.6012i) q^{21} +(-3.29150 + 0.708497i) q^{22} -29.2630 q^{23} +(-2.37625 - 23.8821i) q^{24} +20.0405i q^{25} +(40.4969 - 8.71697i) q^{26} +(19.8369 - 18.3166i) q^{27} +(13.2915 - 6.00000i) q^{28} +(-19.3557 - 19.3557i) q^{29} +(-11.9698 + 5.93847i) q^{30} +11.6458 q^{31} +(30.8004 - 8.67963i) q^{32} +(2.58301 - 4.33981i) q^{33} +(30.4575 - 47.1660i) q^{34} +(-5.74103 - 5.74103i) q^{35} +(28.6652 + 21.7786i) q^{36} +(0.771243 + 0.771243i) q^{37} +(-34.7932 + 7.48925i) q^{38} +(-31.7799 + 53.3948i) q^{39} +(-10.5830 - 14.3320i) q^{40} -25.6919 q^{41} +(-6.98178 + 20.7304i) q^{42} +(-40.5830 - 40.5830i) q^{43} +(6.29888 + 2.38075i) q^{44} +(5.69960 - 19.2154i) q^{45} +(49.1660 + 31.7490i) q^{46} +50.2681i q^{47} +(-21.9185 + 42.7034i) q^{48} +35.7085 q^{49} +(21.7430 - 33.6709i) q^{50} +(20.7154 + 81.6304i) q^{51} +(-77.4980 - 29.2915i) q^{52} +(46.2379 - 46.2379i) q^{53} +(-53.2014 + 9.25242i) q^{54} -3.74902i q^{55} +(-28.8413 - 4.33981i) q^{56} +(27.3040 - 45.8745i) q^{57} +(11.5203 + 53.5203i) q^{58} +(22.7533 - 22.7533i) q^{59} +(26.5539 + 3.00920i) q^{60} +(12.7712 - 12.7712i) q^{61} +(-19.5665 - 12.6351i) q^{62} +(-15.6458 - 28.8413i) q^{63} +(-61.1660 - 18.8340i) q^{64} +46.1259i q^{65} +(-9.04831 + 4.48906i) q^{66} +(10.6863 - 10.6863i) q^{67} +(-102.346 + 46.2006i) q^{68} +(-85.0919 + 21.5938i) q^{69} +(3.41699 + 15.8745i) q^{70} +122.086 q^{71} +(-24.5328 - 67.6915i) q^{72} -15.0405i q^{73} +(-0.459035 - 2.13256i) q^{74} +(14.7883 + 58.2744i) q^{75} +(66.5830 + 25.1660i) q^{76} +(-4.33981 - 4.33981i) q^{77} +(111.326 - 55.2310i) q^{78} -51.3948 q^{79} +(2.23137 + 35.5619i) q^{80} +(44.1660 - 67.8997i) q^{81} +(43.1660 + 27.8745i) q^{82} +(-37.8680 - 37.8680i) q^{83} +(34.2219 - 27.2551i) q^{84} +(44.2065 + 44.2065i) q^{85} +(24.1545 + 112.216i) q^{86} +(-70.5659 - 42.0000i) q^{87} +(-8.00000 - 10.8340i) q^{88} +5.45550 q^{89} +(-30.4240 + 26.1008i) q^{90} +(53.3948 + 53.3948i) q^{91} +(-48.1596 - 106.686i) q^{92} +(33.8639 - 8.59366i) q^{93} +(54.5385 - 84.4575i) q^{94} -39.6294i q^{95} +(83.1574 - 47.9672i) q^{96} -81.1660 q^{97} +(-59.9953 - 38.7421i) q^{98} +(4.30849 - 14.5255i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8 q + 4 q^{3} - 8 q^{4} + 16 q^{6}+O(q^{10})$$ 8 * q + 4 * q^3 - 8 * q^4 + 16 * q^6 $$8 q + 4 q^{3} - 8 q^{4} + 16 q^{6} - 56 q^{10} + 56 q^{12} - 96 q^{13} + 112 q^{15} - 64 q^{18} + 16 q^{19} - 32 q^{21} + 16 q^{22} - 48 q^{24} - 68 q^{27} + 64 q^{28} + 56 q^{30} + 72 q^{31} - 64 q^{33} + 32 q^{34} + 104 q^{36} + 112 q^{37} - 24 q^{42} - 240 q^{43} - 112 q^{45} + 224 q^{46} - 64 q^{48} + 328 q^{49} - 32 q^{51} - 112 q^{52} - 168 q^{54} - 56 q^{58} - 336 q^{60} + 208 q^{61} - 104 q^{63} - 320 q^{64} - 80 q^{66} - 232 q^{67} + 112 q^{70} + 160 q^{72} + 324 q^{75} + 448 q^{76} + 152 q^{78} - 136 q^{79} + 184 q^{81} + 176 q^{82} + 64 q^{84} - 112 q^{85} - 64 q^{88} + 392 q^{90} + 152 q^{91} + 64 q^{93} - 368 q^{94} + 512 q^{96} - 480 q^{97} + 160 q^{99}+O(q^{100})$$ 8 * q + 4 * q^3 - 8 * q^4 + 16 * q^6 - 56 * q^10 + 56 * q^12 - 96 * q^13 + 112 * q^15 - 64 * q^18 + 16 * q^19 - 32 * q^21 + 16 * q^22 - 48 * q^24 - 68 * q^27 + 64 * q^28 + 56 * q^30 + 72 * q^31 - 64 * q^33 + 32 * q^34 + 104 * q^36 + 112 * q^37 - 24 * q^42 - 240 * q^43 - 112 * q^45 + 224 * q^46 - 64 * q^48 + 328 * q^49 - 32 * q^51 - 112 * q^52 - 168 * q^54 - 56 * q^58 - 336 * q^60 + 208 * q^61 - 104 * q^63 - 320 * q^64 - 80 * q^66 - 232 * q^67 + 112 * q^70 + 160 * q^72 + 324 * q^75 + 448 * q^76 + 152 * q^78 - 136 * q^79 + 184 * q^81 + 176 * q^82 + 64 * q^84 - 112 * q^85 - 64 * q^88 + 392 * q^90 + 152 * q^91 + 64 * q^93 - 368 * q^94 + 512 * q^96 - 480 * q^97 + 160 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/48\mathbb{Z}\right)^\times$$.

 $$n$$ $$17$$ $$31$$ $$37$$ $$\chi(n)$$ $$-1$$ $$1$$ $$e\left(\frac{1}{4}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.68014 1.08495i −0.840071 0.542477i
$$3$$ 2.90783 0.737922i 0.969276 0.245974i
$$4$$ 1.64575 + 3.64575i 0.411438 + 0.911438i
$$5$$ 1.57472 1.57472i 0.314944 0.314944i −0.531877 0.846821i $$-0.678513\pi$$
0.846821 + 0.531877i $$0.178513\pi$$
$$6$$ −5.68618 1.91505i −0.947696 0.319174i
$$7$$ 3.64575i 0.520822i −0.965498 0.260411i $$-0.916142\pi$$
0.965498 0.260411i $$-0.0838580\pi$$
$$8$$ 1.19038 7.91094i 0.148797 0.988868i
$$9$$ 7.91094 4.29150i 0.878994 0.476834i
$$10$$ −4.35425 + 0.937254i −0.435425 + 0.0937254i
$$11$$ 1.19038 1.19038i 0.108216 0.108216i −0.650926 0.759142i $$-0.725619\pi$$
0.759142 + 0.650926i $$0.225619\pi$$
$$12$$ 7.47584 + 9.38679i 0.622987 + 0.782232i
$$13$$ −14.6458 + 14.6458i −1.12660 + 1.12660i −0.135870 + 0.990727i $$0.543383\pi$$
−0.990727 + 0.135870i $$0.956617\pi$$
$$14$$ −3.95547 + 6.12538i −0.282534 + 0.437527i
$$15$$ 3.41699 5.74103i 0.227800 0.382736i
$$16$$ −10.5830 + 12.0000i −0.661438 + 0.750000i
$$17$$ 28.0726i 1.65133i 0.564159 + 0.825666i $$0.309200\pi$$
−0.564159 + 0.825666i $$0.690800\pi$$
$$18$$ −17.9476 1.37267i −0.997088 0.0762596i
$$19$$ 12.5830 12.5830i 0.662263 0.662263i −0.293650 0.955913i $$-0.594870\pi$$
0.955913 + 0.293650i $$0.0948699\pi$$
$$20$$ 8.33263 + 3.14944i 0.416632 + 0.157472i
$$21$$ −2.69028 10.6012i −0.128109 0.504820i
$$22$$ −3.29150 + 0.708497i −0.149614 + 0.0322044i
$$23$$ −29.2630 −1.27231 −0.636153 0.771563i $$-0.719475\pi$$
−0.636153 + 0.771563i $$0.719475\pi$$
$$24$$ −2.37625 23.8821i −0.0990104 0.995086i
$$25$$ 20.0405i 0.801621i
$$26$$ 40.4969 8.71697i 1.55757 0.335268i
$$27$$ 19.8369 18.3166i 0.734699 0.678393i
$$28$$ 13.2915 6.00000i 0.474697 0.214286i
$$29$$ −19.3557 19.3557i −0.667437 0.667437i 0.289685 0.957122i $$-0.406449\pi$$
−0.957122 + 0.289685i $$0.906449\pi$$
$$30$$ −11.9698 + 5.93847i −0.398993 + 0.197949i
$$31$$ 11.6458 0.375669 0.187835 0.982201i $$-0.439853\pi$$
0.187835 + 0.982201i $$0.439853\pi$$
$$32$$ 30.8004 8.67963i 0.962512 0.271238i
$$33$$ 2.58301 4.33981i 0.0782729 0.131510i
$$34$$ 30.4575 47.1660i 0.895809 1.38724i
$$35$$ −5.74103 5.74103i −0.164030 0.164030i
$$36$$ 28.6652 + 21.7786i 0.796255 + 0.604961i
$$37$$ 0.771243 + 0.771243i 0.0208444 + 0.0208444i 0.717452 0.696608i $$-0.245308\pi$$
−0.696608 + 0.717452i $$0.745308\pi$$
$$38$$ −34.7932 + 7.48925i −0.915611 + 0.197086i
$$39$$ −31.7799 + 53.3948i −0.814870 + 1.36910i
$$40$$ −10.5830 14.3320i −0.264575 0.358301i
$$41$$ −25.6919 −0.626631 −0.313316 0.949649i $$-0.601440\pi$$
−0.313316 + 0.949649i $$0.601440\pi$$
$$42$$ −6.98178 + 20.7304i −0.166233 + 0.493581i
$$43$$ −40.5830 40.5830i −0.943791 0.943791i 0.0547114 0.998502i $$-0.482576\pi$$
−0.998502 + 0.0547114i $$0.982576\pi$$
$$44$$ 6.29888 + 2.38075i 0.143156 + 0.0541080i
$$45$$ 5.69960 19.2154i 0.126658 0.427009i
$$46$$ 49.1660 + 31.7490i 1.06883 + 0.690196i
$$47$$ 50.2681i 1.06953i 0.845000 + 0.534767i $$0.179601\pi$$
−0.845000 + 0.534767i $$0.820399\pi$$
$$48$$ −21.9185 + 42.7034i −0.456636 + 0.889654i
$$49$$ 35.7085 0.728745
$$50$$ 21.7430 33.6709i 0.434861 0.673418i
$$51$$ 20.7154 + 81.6304i 0.406185 + 1.60060i
$$52$$ −77.4980 29.2915i −1.49035 0.563298i
$$53$$ 46.2379 46.2379i 0.872414 0.872414i −0.120321 0.992735i $$-0.538392\pi$$
0.992735 + 0.120321i $$0.0383925\pi$$
$$54$$ −53.2014 + 9.25242i −0.985212 + 0.171341i
$$55$$ 3.74902i 0.0681639i
$$56$$ −28.8413 4.33981i −0.515024 0.0774967i
$$57$$ 27.3040 45.8745i 0.479017 0.804816i
$$58$$ 11.5203 + 53.5203i 0.198625 + 0.922763i
$$59$$ 22.7533 22.7533i 0.385649 0.385649i −0.487483 0.873132i $$-0.662085\pi$$
0.873132 + 0.487483i $$0.162085\pi$$
$$60$$ 26.5539 + 3.00920i 0.442565 + 0.0501533i
$$61$$ 12.7712 12.7712i 0.209365 0.209365i −0.594633 0.803997i $$-0.702703\pi$$
0.803997 + 0.594633i $$0.202703\pi$$
$$62$$ −19.5665 12.6351i −0.315589 0.203792i
$$63$$ −15.6458 28.8413i −0.248345 0.457799i
$$64$$ −61.1660 18.8340i −0.955719 0.294281i
$$65$$ 46.1259i 0.709629i
$$66$$ −9.04831 + 4.48906i −0.137096 + 0.0680161i
$$67$$ 10.6863 10.6863i 0.159497 0.159497i −0.622847 0.782344i $$-0.714024\pi$$
0.782344 + 0.622847i $$0.214024\pi$$
$$68$$ −102.346 + 46.2006i −1.50509 + 0.679420i
$$69$$ −85.0919 + 21.5938i −1.23322 + 0.312954i
$$70$$ 3.41699 + 15.8745i 0.0488142 + 0.226779i
$$71$$ 122.086 1.71952 0.859760 0.510699i $$-0.170613\pi$$
0.859760 + 0.510699i $$0.170613\pi$$
$$72$$ −24.5328 67.6915i −0.340734 0.940160i
$$73$$ 15.0405i 0.206034i −0.994680 0.103017i $$-0.967150\pi$$
0.994680 0.103017i $$-0.0328497\pi$$
$$74$$ −0.459035 2.13256i −0.00620317 0.0288184i
$$75$$ 14.7883 + 58.2744i 0.197178 + 0.776992i
$$76$$ 66.5830 + 25.1660i 0.876092 + 0.331132i
$$77$$ −4.33981 4.33981i −0.0563612 0.0563612i
$$78$$ 111.326 55.2310i 1.42725 0.708090i
$$79$$ −51.3948 −0.650567 −0.325283 0.945617i $$-0.605460\pi$$
−0.325283 + 0.945617i $$0.605460\pi$$
$$80$$ 2.23137 + 35.5619i 0.0278921 + 0.444524i
$$81$$ 44.1660 67.8997i 0.545259 0.838267i
$$82$$ 43.1660 + 27.8745i 0.526415 + 0.339933i
$$83$$ −37.8680 37.8680i −0.456240 0.456240i 0.441179 0.897419i $$-0.354560\pi$$
−0.897419 + 0.441179i $$0.854560\pi$$
$$84$$ 34.2219 27.2551i 0.407403 0.324465i
$$85$$ 44.2065 + 44.2065i 0.520077 + 0.520077i
$$86$$ 24.1545 + 112.216i 0.280866 + 1.30484i
$$87$$ −70.5659 42.0000i −0.811103 0.482759i
$$88$$ −8.00000 10.8340i −0.0909091 0.123114i
$$89$$ 5.45550 0.0612977 0.0306489 0.999530i $$-0.490243\pi$$
0.0306489 + 0.999530i $$0.490243\pi$$
$$90$$ −30.4240 + 26.1008i −0.338044 + 0.290009i
$$91$$ 53.3948 + 53.3948i 0.586756 + 0.586756i
$$92$$ −48.1596 106.686i −0.523474 1.15963i
$$93$$ 33.8639 8.59366i 0.364127 0.0924049i
$$94$$ 54.5385 84.4575i 0.580197 0.898484i
$$95$$ 39.6294i 0.417152i
$$96$$ 83.1574 47.9672i 0.866223 0.499658i
$$97$$ −81.1660 −0.836763 −0.418381 0.908271i $$-0.637402\pi$$
−0.418381 + 0.908271i $$0.637402\pi$$
$$98$$ −59.9953 38.7421i −0.612197 0.395327i
$$99$$ 4.30849 14.5255i 0.0435201 0.146722i
$$100$$ −73.0627 + 32.9817i −0.730627 + 0.329817i
$$101$$ 32.4498 32.4498i 0.321285 0.321285i −0.527975 0.849260i $$-0.677048\pi$$
0.849260 + 0.527975i $$0.177048\pi$$
$$102$$ 53.7604 159.626i 0.527063 1.56496i
$$103$$ 51.1882i 0.496973i −0.968635 0.248487i $$-0.920067\pi$$
0.968635 0.248487i $$-0.0799332\pi$$
$$104$$ 98.4277 + 133.296i 0.946421 + 1.28169i
$$105$$ −20.9304 12.4575i −0.199337 0.118643i
$$106$$ −127.852 + 27.5203i −1.20615 + 0.259625i
$$107$$ −85.4698 + 85.4698i −0.798783 + 0.798783i −0.982904 0.184121i $$-0.941056\pi$$
0.184121 + 0.982904i $$0.441056\pi$$
$$108$$ 99.4244 + 42.1757i 0.920596 + 0.390516i
$$109$$ −52.8523 + 52.8523i −0.484883 + 0.484883i −0.906687 0.421804i $$-0.861397\pi$$
0.421804 + 0.906687i $$0.361397\pi$$
$$110$$ −4.06751 + 6.29888i −0.0369773 + 0.0572625i
$$111$$ 2.81176 + 1.67353i 0.0253312 + 0.0150768i
$$112$$ 43.7490 + 38.5830i 0.390616 + 0.344491i
$$113$$ 73.5045i 0.650483i −0.945631 0.325241i $$-0.894554\pi$$
0.945631 0.325241i $$-0.105446\pi$$
$$114$$ −95.6462 + 47.4521i −0.839002 + 0.416247i
$$115$$ −46.0810 + 46.0810i −0.400705 + 0.400705i
$$116$$ 38.7113 102.421i 0.333718 0.882936i
$$117$$ −53.0094 + 178.714i −0.453072 + 1.52747i
$$118$$ −62.9150 + 13.5425i −0.533178 + 0.114767i
$$119$$ 102.346 0.860049
$$120$$ −41.3495 33.8656i −0.344579 0.282214i
$$121$$ 118.166i 0.976579i
$$122$$ −35.3137 + 7.60129i −0.289457 + 0.0623057i
$$123$$ −74.7076 + 18.9586i −0.607379 + 0.154135i
$$124$$ 19.1660 + 42.4575i 0.154565 + 0.342399i
$$125$$ 70.9262 + 70.9262i 0.567409 + 0.567409i
$$126$$ −5.00443 + 65.4324i −0.0397177 + 0.519305i
$$127$$ 73.9333 0.582152 0.291076 0.956700i $$-0.405987\pi$$
0.291076 + 0.956700i $$0.405987\pi$$
$$128$$ 82.3336 + 98.0061i 0.643231 + 0.765672i
$$129$$ −147.956 88.0614i −1.14694 0.682646i
$$130$$ 50.0445 77.4980i 0.384957 0.596139i
$$131$$ −158.430 158.430i −1.20939 1.20939i −0.971226 0.238161i $$-0.923455\pi$$
−0.238161 0.971226i $$-0.576545\pi$$
$$132$$ 20.0729 + 2.27474i 0.152067 + 0.0172329i
$$133$$ −45.8745 45.8745i −0.344921 0.344921i
$$134$$ −29.5486 + 6.36034i −0.220512 + 0.0474652i
$$135$$ 2.39398 60.0810i 0.0177332 0.445045i
$$136$$ 222.081 + 33.4170i 1.63295 + 0.245713i
$$137$$ −100.734 −0.735283 −0.367642 0.929968i $$-0.619835\pi$$
−0.367642 + 0.929968i $$0.619835\pi$$
$$138$$ 166.395 + 56.0400i 1.20576 + 0.406087i
$$139$$ 18.2732 + 18.2732i 0.131462 + 0.131462i 0.769776 0.638314i $$-0.220368\pi$$
−0.638314 + 0.769776i $$0.720368\pi$$
$$140$$ 11.4821 30.3787i 0.0820148 0.216991i
$$141$$ 37.0939 + 146.171i 0.263078 + 1.03667i
$$142$$ −205.122 132.458i −1.44452 0.932799i
$$143$$ 34.8679i 0.243831i
$$144$$ −32.2235 + 140.348i −0.223774 + 0.974641i
$$145$$ −60.9595 −0.420410
$$146$$ −16.3183 + 25.2702i −0.111769 + 0.173084i
$$147$$ 103.834 26.3501i 0.706355 0.179252i
$$148$$ −1.54249 + 4.08104i −0.0104222 + 0.0275746i
$$149$$ 44.9729 44.9729i 0.301831 0.301831i −0.539899 0.841730i $$-0.681537\pi$$
0.841730 + 0.539899i $$0.181537\pi$$
$$150$$ 38.3785 113.954i 0.255857 0.759693i
$$151$$ 28.1033i 0.186114i −0.995661 0.0930572i $$-0.970336\pi$$
0.995661 0.0930572i $$-0.0296639\pi$$
$$152$$ −84.5649 114.522i −0.556348 0.753434i
$$153$$ 120.474 + 222.081i 0.787411 + 1.45151i
$$154$$ 2.58301 + 12.0000i 0.0167728 + 0.0779221i
$$155$$ 18.3388 18.3388i 0.118315 0.118315i
$$156$$ −246.966 27.9872i −1.58311 0.179405i
$$157$$ 173.265 173.265i 1.10360 1.10360i 0.109628 0.993973i $$-0.465034\pi$$
0.993973 0.109628i $$-0.0349660\pi$$
$$158$$ 86.3505 + 55.7609i 0.546522 + 0.352917i
$$159$$ 100.332 168.572i 0.631019 1.06020i
$$160$$ 34.8340 62.1699i 0.217712 0.388562i
$$161$$ 106.686i 0.662644i
$$162$$ −147.873 + 66.1630i −0.912797 + 0.408413i
$$163$$ 51.9190 51.9190i 0.318521 0.318521i −0.529678 0.848199i $$-0.677687\pi$$
0.848199 + 0.529678i $$0.177687\pi$$
$$164$$ −42.2825 93.6662i −0.257820 0.571136i
$$165$$ −2.76648 10.9015i −0.0167666 0.0660697i
$$166$$ 22.5385 + 104.708i 0.135774 + 0.630774i
$$167$$ 57.5333 0.344511 0.172255 0.985052i $$-0.444895\pi$$
0.172255 + 0.985052i $$0.444895\pi$$
$$168$$ −87.0681 + 8.66321i −0.518263 + 0.0515667i
$$169$$ 259.996i 1.53844i
$$170$$ −26.3112 122.235i −0.154772 0.719031i
$$171$$ 45.5434 153.543i 0.266336 0.897915i
$$172$$ 81.1660 214.745i 0.471895 1.24852i
$$173$$ 112.600 + 112.600i 0.650868 + 0.650868i 0.953202 0.302334i $$-0.0977657\pi$$
−0.302334 + 0.953202i $$0.597766\pi$$
$$174$$ 72.9927 + 147.127i 0.419498 + 0.845556i
$$175$$ 73.0627 0.417501
$$176$$ 1.68676 + 26.8823i 0.00958384 + 0.152740i
$$177$$ 49.3725 82.9529i 0.278941 0.468660i
$$178$$ −9.16601 5.91896i −0.0514944 0.0332526i
$$179$$ 22.4810 + 22.4810i 0.125592 + 0.125592i 0.767109 0.641517i $$-0.221695\pi$$
−0.641517 + 0.767109i $$0.721695\pi$$
$$180$$ 79.4348 10.8445i 0.441304 0.0602471i
$$181$$ −18.6013 18.6013i −0.102770 0.102770i 0.653852 0.756622i $$-0.273152\pi$$
−0.756622 + 0.653852i $$0.773152\pi$$
$$182$$ −31.7799 147.642i −0.174615 0.811218i
$$183$$ 27.7124 46.5608i 0.151434 0.254430i
$$184$$ −34.8340 + 231.498i −0.189315 + 1.25814i
$$185$$ 2.42898 0.0131296
$$186$$ −66.2198 22.3022i −0.356020 0.119904i
$$187$$ 33.4170 + 33.4170i 0.178701 + 0.178701i
$$188$$ −183.265 + 82.7288i −0.974814 + 0.440047i
$$189$$ −66.7778 72.3203i −0.353322 0.382647i
$$190$$ −42.9961 + 66.5830i −0.226295 + 0.350437i
$$191$$ 191.672i 1.00352i 0.865007 + 0.501760i $$0.167314\pi$$
−0.865007 + 0.501760i $$0.832686\pi$$
$$192$$ −191.758 9.63028i −0.998741 0.0501577i
$$193$$ 48.6275 0.251956 0.125978 0.992033i $$-0.459793\pi$$
0.125978 + 0.992033i $$0.459793\pi$$
$$194$$ 136.370 + 88.0614i 0.702940 + 0.453925i
$$195$$ 34.0373 + 134.126i 0.174550 + 0.687827i
$$196$$ 58.7673 + 130.184i 0.299833 + 0.664206i
$$197$$ −136.258 + 136.258i −0.691667 + 0.691667i −0.962599 0.270932i $$-0.912668\pi$$
0.270932 + 0.962599i $$0.412668\pi$$
$$198$$ −22.9984 + 19.7304i −0.116153 + 0.0996484i
$$199$$ 144.767i 0.727474i 0.931502 + 0.363737i $$0.118499\pi$$
−0.931502 + 0.363737i $$0.881501\pi$$
$$200$$ 158.539 + 23.8557i 0.792697 + 0.119279i
$$201$$ 23.1882 38.9595i 0.115364 0.193828i
$$202$$ −89.7268 + 19.3137i −0.444192 + 0.0956125i
$$203$$ −70.5659 + 70.5659i −0.347615 + 0.347615i
$$204$$ −263.512 + 209.867i −1.29172 + 1.02876i
$$205$$ −40.4575 + 40.4575i −0.197354 + 0.197354i
$$206$$ −55.5369 + 86.0035i −0.269596 + 0.417493i
$$207$$ −231.498 + 125.582i −1.11835 + 0.606678i
$$208$$ −20.7530 330.745i −0.0997738 1.59012i
$$209$$ 29.9570i 0.143335i
$$210$$ 21.6502 + 43.6389i 0.103096 + 0.207804i
$$211$$ −196.354 + 196.354i −0.930589 + 0.930589i −0.997743 0.0671538i $$-0.978608\pi$$
0.0671538 + 0.997743i $$0.478608\pi$$
$$212$$ 244.668 + 92.4759i 1.15409 + 0.436207i
$$213$$ 355.005 90.0899i 1.66669 0.422957i
$$214$$ 236.332 50.8706i 1.10436 0.237713i
$$215$$ −127.814 −0.594482
$$216$$ −121.288 178.732i −0.561520 0.827463i
$$217$$ 42.4575i 0.195657i
$$218$$ 146.142 31.4570i 0.670374 0.144298i
$$219$$ −11.0987 43.7353i −0.0506791 0.199704i
$$220$$ 13.6680 6.16995i 0.0621272 0.0280452i
$$221$$ −411.145 411.145i −1.86038 1.86038i
$$222$$ −2.90846 5.86239i −0.0131012 0.0264072i
$$223$$ −375.261 −1.68279 −0.841393 0.540423i $$-0.818264\pi$$
−0.841393 + 0.540423i $$0.818264\pi$$
$$224$$ −31.6438 112.291i −0.141267 0.501297i
$$225$$ 86.0039 + 158.539i 0.382240 + 0.704619i
$$226$$ −79.7490 + 123.498i −0.352872 + 0.546451i
$$227$$ 181.108 + 181.108i 0.797834 + 0.797834i 0.982754 0.184920i $$-0.0592025\pi$$
−0.184920 + 0.982754i $$0.559203\pi$$
$$228$$ 212.183 + 24.0454i 0.930625 + 0.105462i
$$229$$ −153.937 153.937i −0.672215 0.672215i 0.286011 0.958226i $$-0.407671\pi$$
−0.958226 + 0.286011i $$0.907671\pi$$
$$230$$ 127.418 27.4269i 0.553993 0.119247i
$$231$$ −15.8219 9.41699i −0.0684930 0.0407662i
$$232$$ −176.162 + 130.081i −0.759319 + 0.560694i
$$233$$ −51.7790 −0.222228 −0.111114 0.993808i $$-0.535442\pi$$
−0.111114 + 0.993808i $$0.535442\pi$$
$$234$$ 282.960 242.752i 1.20923 1.03740i
$$235$$ 79.1581 + 79.1581i 0.336843 + 0.336843i
$$236$$ 120.399 + 45.5066i 0.510166 + 0.192825i
$$237$$ −149.447 + 37.9253i −0.630579 + 0.160022i
$$238$$ −171.956 111.041i −0.722502 0.466557i
$$239$$ 249.900i 1.04560i −0.852454 0.522802i $$-0.824887\pi$$
0.852454 0.522802i $$-0.175113\pi$$
$$240$$ 32.7303 + 101.761i 0.136376 + 0.424006i
$$241$$ 442.531 1.83623 0.918113 0.396318i $$-0.129712\pi$$
0.918113 + 0.396318i $$0.129712\pi$$
$$242$$ 128.205 198.536i 0.529771 0.820395i
$$243$$ 78.3226 230.032i 0.322315 0.946632i
$$244$$ 67.5791 + 25.5425i 0.276963 + 0.104682i
$$245$$ 56.2309 56.2309i 0.229514 0.229514i
$$246$$ 146.089 + 49.2012i 0.593856 + 0.200005i
$$247$$ 368.575i 1.49221i
$$248$$ 13.8628 92.1289i 0.0558985 0.371487i
$$249$$ −138.057 82.1699i −0.554446 0.330000i
$$250$$ −42.2144 196.118i −0.168858 0.784470i
$$251$$ 43.3235 43.3235i 0.172603 0.172603i −0.615519 0.788122i $$-0.711053\pi$$
0.788122 + 0.615519i $$0.211053\pi$$
$$252$$ 79.3993 104.506i 0.315077 0.414707i
$$253$$ −34.8340 + 34.8340i −0.137684 + 0.137684i
$$254$$ −124.218 80.2142i −0.489049 0.315804i
$$255$$ 161.166 + 95.9241i 0.632024 + 0.376173i
$$256$$ −32.0000 253.992i −0.125000 0.992157i
$$257$$ 179.197i 0.697266i 0.937259 + 0.348633i $$0.113354\pi$$
−0.937259 + 0.348633i $$0.886646\pi$$
$$258$$ 153.044 + 308.480i 0.593193 + 1.19566i
$$259$$ 2.81176 2.81176i 0.0108562 0.0108562i
$$260$$ −168.164 + 75.9118i −0.646783 + 0.291968i
$$261$$ −236.186 70.0567i −0.904929 0.268416i
$$262$$ 94.2954 + 438.073i 0.359906 + 1.67203i
$$263$$ −419.478 −1.59497 −0.797486 0.603338i $$-0.793837\pi$$
−0.797486 + 0.603338i $$0.793837\pi$$
$$264$$ −31.2573 25.6000i −0.118399 0.0969698i
$$265$$ 145.624i 0.549523i
$$266$$ 27.3040 + 126.847i 0.102646 + 0.476870i
$$267$$ 15.8637 4.02573i 0.0594145 0.0150777i
$$268$$ 56.5464 + 21.3725i 0.210994 + 0.0797483i
$$269$$ 33.7631 + 33.7631i 0.125513 + 0.125513i 0.767073 0.641560i $$-0.221712\pi$$
−0.641560 + 0.767073i $$0.721712\pi$$
$$270$$ −69.2074 + 98.3473i −0.256324 + 0.364249i
$$271$$ 329.269 1.21502 0.607508 0.794314i $$-0.292169\pi$$
0.607508 + 0.794314i $$0.292169\pi$$
$$272$$ −336.872 297.093i −1.23850 1.09225i
$$273$$ 194.664 + 115.862i 0.713055 + 0.424402i
$$274$$ 169.247 + 109.292i 0.617690 + 0.398874i
$$275$$ 23.8557 + 23.8557i 0.0867482 + 0.0867482i
$$276$$ −218.766 274.686i −0.792630 0.995238i
$$277$$ 251.265 + 251.265i 0.907095 + 0.907095i 0.996037 0.0889417i $$-0.0283485\pi$$
−0.0889417 + 0.996037i $$0.528348\pi$$
$$278$$ −10.8760 50.5272i −0.0391223 0.181752i
$$279$$ 92.1289 49.9778i 0.330211 0.179132i
$$280$$ −52.2510 + 38.5830i −0.186611 + 0.137796i
$$281$$ 171.809 0.611421 0.305711 0.952124i $$-0.401106\pi$$
0.305711 + 0.952124i $$0.401106\pi$$
$$282$$ 96.2657 285.833i 0.341368 1.01359i
$$283$$ −193.476 193.476i −0.683660 0.683660i 0.277163 0.960823i $$-0.410606\pi$$
−0.960823 + 0.277163i $$0.910606\pi$$
$$284$$ 200.923 + 445.095i 0.707475 + 1.56724i
$$285$$ −29.2434 115.236i −0.102608 0.404335i
$$286$$ 37.8301 58.5830i 0.132273 0.204836i
$$287$$ 93.6662i 0.326363i
$$288$$ 206.411 200.844i 0.716706 0.697375i
$$289$$ −499.073 −1.72690
$$290$$ 102.421 + 66.1382i 0.353174 + 0.228063i
$$291$$ −236.017 + 59.8942i −0.811055 + 0.205822i
$$292$$ 54.8340 24.7530i 0.187788 0.0847704i
$$293$$ 73.4937 73.4937i 0.250832 0.250832i −0.570480 0.821312i $$-0.693243\pi$$
0.821312 + 0.570480i $$0.193243\pi$$
$$294$$ −203.045 68.3834i −0.690629 0.232597i
$$295$$ 71.6601i 0.242916i
$$296$$ 7.01933 5.18319i 0.0237140 0.0175108i
$$297$$ 1.80968 45.4170i 0.00609320 0.152919i
$$298$$ −124.354 + 26.7673i −0.417296 + 0.0898232i
$$299$$ 428.579 428.579i 1.43337 1.43337i
$$300$$ −188.116 + 149.820i −0.627054 + 0.499399i
$$301$$ −147.956 + 147.956i −0.491547 + 0.491547i
$$302$$ −30.4907 + 47.2175i −0.100963 + 0.156349i
$$303$$ 70.4131 118.304i 0.232386 0.390442i
$$304$$ 17.8301 + 284.162i 0.0586515 + 0.934744i
$$305$$ 40.2222i 0.131876i
$$306$$ 38.5346 503.836i 0.125930 1.64652i
$$307$$ 283.055 283.055i 0.922003 0.922003i −0.0751680 0.997171i $$-0.523949\pi$$
0.997171 + 0.0751680i $$0.0239493\pi$$
$$308$$ 8.67963 22.9641i 0.0281806 0.0745589i
$$309$$ −37.7729 148.847i −0.122242 0.481704i
$$310$$ −50.7085 + 10.9150i −0.163576 + 0.0352098i
$$311$$ −54.0368 −0.173752 −0.0868759 0.996219i $$-0.527688\pi$$
−0.0868759 + 0.996219i $$0.527688\pi$$
$$312$$ 384.573 + 314.969i 1.23261 + 1.00952i
$$313$$ 490.280i 1.56639i 0.621777 + 0.783194i $$0.286411\pi$$
−0.621777 + 0.783194i $$0.713589\pi$$
$$314$$ −479.095 + 103.125i −1.52578 + 0.328425i
$$315$$ −70.0547 20.7793i −0.222396 0.0659661i
$$316$$ −84.5830 187.373i −0.267668 0.592951i
$$317$$ 319.550 + 319.550i 1.00804 + 1.00804i 0.999967 + 0.00807607i $$0.00257072\pi$$
0.00807607 + 0.999967i $$0.497429\pi$$
$$318$$ −351.465 + 174.369i −1.10524 + 0.548331i
$$319$$ −46.0810 −0.144455
$$320$$ −125.978 + 66.6610i −0.393680 + 0.208316i
$$321$$ −185.461 + 311.601i −0.577762 + 0.970721i
$$322$$ 115.749 179.247i 0.359469 0.556668i
$$323$$ 353.238 + 353.238i 1.09362 + 1.09362i
$$324$$ 320.232 + 49.2723i 0.988369 + 0.152075i
$$325$$ −293.508 293.508i −0.903103 0.903103i
$$326$$ −143.561 + 30.9015i −0.440371 + 0.0947900i
$$327$$ −114.685 + 192.686i −0.350717 + 0.589255i
$$328$$ −30.5830 + 203.247i −0.0932409 + 0.619656i
$$329$$ 183.265 0.557036
$$330$$ −7.17954 + 21.3176i −0.0217562 + 0.0645987i
$$331$$ −269.431 269.431i −0.813992 0.813992i 0.171238 0.985230i $$-0.445223\pi$$
−0.985230 + 0.171238i $$0.945223\pi$$
$$332$$ 75.7359 200.378i 0.228120 0.603549i
$$333$$ 9.41106 + 2.79147i 0.0282614 + 0.00838279i
$$334$$ −96.6640 62.4209i −0.289413 0.186889i
$$335$$ 33.6557i 0.100465i
$$336$$ 155.686 + 79.9094i 0.463351 + 0.237826i
$$337$$ 143.041 0.424453 0.212226 0.977221i $$-0.431929\pi$$
0.212226 + 0.977221i $$0.431929\pi$$
$$338$$ −282.084 + 436.830i −0.834567 + 1.29240i
$$339$$ −54.2406 213.739i −0.160002 0.630497i
$$340$$ −88.4131 + 233.919i −0.260038 + 0.687997i
$$341$$ 13.8628 13.8628i 0.0406534 0.0406534i
$$342$$ −243.107 + 208.562i −0.710839 + 0.609831i
$$343$$ 308.826i 0.900368i
$$344$$ −369.359 + 272.741i −1.07372 + 0.792851i
$$345$$ −99.9916 + 168.000i −0.289831 + 0.486957i
$$346$$ −67.0183 311.350i −0.193694 0.899856i
$$347$$ −126.922 + 126.922i −0.365770 + 0.365770i −0.865932 0.500162i $$-0.833274\pi$$
0.500162 + 0.865932i $$0.333274\pi$$
$$348$$ 36.9876 326.387i 0.106286 0.937895i
$$349$$ 195.893 195.893i 0.561297 0.561297i −0.368378 0.929676i $$-0.620087\pi$$
0.929676 + 0.368378i $$0.120087\pi$$
$$350$$ −122.756 79.2697i −0.350731 0.226485i
$$351$$ −22.2653 + 558.787i −0.0634340 + 1.59198i
$$352$$ 26.3320 46.9961i 0.0748069 0.133512i
$$353$$ 291.488i 0.825745i −0.910789 0.412873i $$-0.864525\pi$$
0.910789 0.412873i $$-0.135475\pi$$
$$354$$ −172.953 + 85.8056i −0.488567 + 0.242389i
$$355$$ 192.251 192.251i 0.541552 0.541552i
$$356$$ 8.97839 + 19.8894i 0.0252202 + 0.0558691i
$$357$$ 297.604 75.5233i 0.833626 0.211550i
$$358$$ −13.3804 62.1621i −0.0373755 0.173637i
$$359$$ 40.3499 0.112395 0.0561976 0.998420i $$-0.482102\pi$$
0.0561976 + 0.998420i $$0.482102\pi$$
$$360$$ −145.227 67.9628i −0.403410 0.188786i
$$361$$ 44.3360i 0.122814i
$$362$$ 11.0713 + 51.4344i 0.0305836 + 0.142084i
$$363$$ 87.1973 + 343.607i 0.240213 + 0.946575i
$$364$$ −106.790 + 282.539i −0.293378 + 0.776205i
$$365$$ −23.6846 23.6846i −0.0648893 0.0648893i
$$366$$ −97.0771 + 48.1620i −0.265238 + 0.131590i
$$367$$ 340.678 0.928279 0.464140 0.885762i $$-0.346364\pi$$
0.464140 + 0.885762i $$0.346364\pi$$
$$368$$ 309.691 351.156i 0.841551 0.954229i
$$369$$ −203.247 + 110.257i −0.550805 + 0.298799i
$$370$$ −4.08104 2.63533i −0.0110298 0.00712253i
$$371$$ −168.572 168.572i −0.454372 0.454372i
$$372$$ 87.0618 + 109.316i 0.234037 + 0.293861i
$$373$$ 237.678 + 237.678i 0.637207 + 0.637207i 0.949866 0.312658i $$-0.101219\pi$$
−0.312658 + 0.949866i $$0.601219\pi$$
$$374$$ −19.8894 92.4012i −0.0531802 0.247062i
$$375$$ 258.579 + 153.903i 0.689544 + 0.410409i
$$376$$ 397.668 + 59.8379i 1.05763 + 0.159143i
$$377$$ 566.957 1.50386
$$378$$ 33.7320 + 193.959i 0.0892381 + 0.513120i
$$379$$ 320.332 + 320.332i 0.845203 + 0.845203i 0.989530 0.144327i $$-0.0461017\pi$$
−0.144327 + 0.989530i $$0.546102\pi$$
$$380$$ 144.479 65.2201i 0.380208 0.171632i
$$381$$ 214.985 54.5570i 0.564266 0.143194i
$$382$$ 207.956 322.037i 0.544386 0.843028i
$$383$$ 632.700i 1.65196i −0.563702 0.825978i $$-0.690623\pi$$
0.563702 0.825978i $$-0.309377\pi$$
$$384$$ 311.733 + 224.229i 0.811804 + 0.583930i
$$385$$ −13.6680 −0.0355012
$$386$$ −81.7010 52.7585i −0.211661 0.136680i
$$387$$ −495.212 146.888i −1.27962 0.379555i
$$388$$ −133.579 295.911i −0.344276 0.762657i
$$389$$ −424.351 + 424.351i −1.09088 + 1.09088i −0.0954418 + 0.995435i $$0.530426\pi$$
−0.995435 + 0.0954418i $$0.969574\pi$$
$$390$$ 88.3332 262.280i 0.226495 0.672513i
$$391$$ 821.490i 2.10100i
$$392$$ 42.5065 282.488i 0.108435 0.720632i
$$393$$ −577.595 343.778i −1.46971 0.874752i
$$394$$ 376.767 81.0993i 0.956262 0.205836i
$$395$$ −80.9323 + 80.9323i −0.204892 + 0.204892i
$$396$$ 60.0471 8.19766i 0.151634 0.0207012i
$$397$$ −445.678 + 445.678i −1.12262 + 1.12262i −0.131269 + 0.991347i $$0.541905\pi$$
−0.991347 + 0.131269i $$0.958095\pi$$
$$398$$ 157.066 243.230i 0.394638 0.611130i
$$399$$ −167.247 99.5434i −0.419166 0.249482i
$$400$$ −240.486 212.089i −0.601216 0.530222i
$$401$$ 555.896i 1.38627i −0.720806 0.693137i $$-0.756228\pi$$
0.720806 0.693137i $$-0.243772\pi$$
$$402$$ −81.2287 + 40.2993i −0.202061 + 0.100247i
$$403$$ −170.561 + 170.561i −0.423228 + 0.423228i
$$404$$ 171.708 + 64.8996i 0.425020 + 0.160643i
$$405$$ −37.3738 176.472i −0.0922811 0.435733i
$$406$$ 195.122 42.0000i 0.480595 0.103448i
$$407$$ 1.83614 0.00451140
$$408$$ 670.433 66.7076i 1.64322 0.163499i
$$409$$ 44.8261i 0.109599i 0.998497 + 0.0547997i $$0.0174520\pi$$
−0.998497 + 0.0547997i $$0.982548\pi$$
$$410$$ 111.869 24.0798i 0.272851 0.0587313i
$$411$$ −292.917 + 74.3337i −0.712693 + 0.180861i
$$412$$ 186.620 84.2431i 0.452960 0.204474i
$$413$$ −82.9529 82.9529i −0.200854 0.200854i
$$414$$ 525.200 + 40.1686i 1.26860 + 0.0970255i
$$415$$ −119.263 −0.287380
$$416$$ −323.975 + 578.215i −0.778786 + 1.38994i
$$417$$ 66.6196 + 39.6512i 0.159759 + 0.0950868i
$$418$$ −32.5020 + 50.3320i −0.0777559 + 0.120412i
$$419$$ 15.2026 + 15.2026i 0.0362830 + 0.0362830i 0.725016 0.688733i $$-0.241833\pi$$
−0.688733 + 0.725016i $$0.741833\pi$$
$$420$$ 10.9708 96.8089i 0.0261209 0.230497i
$$421$$ 262.889 + 262.889i 0.624439 + 0.624439i 0.946663 0.322224i $$-0.104431\pi$$
−0.322224 + 0.946663i $$0.604431\pi$$
$$422$$ 542.938 116.868i 1.28658 0.276938i
$$423$$ 215.726 + 397.668i 0.509990 + 0.940113i
$$424$$ −310.745 420.826i −0.732889 0.992514i
$$425$$ −562.590 −1.32374
$$426$$ −694.202 233.800i −1.62958 0.548827i
$$427$$ −46.5608 46.5608i −0.109042 0.109042i
$$428$$ −452.263 170.940i −1.05669 0.399391i
$$429$$ 25.7298 + 101.390i 0.0599762 + 0.236340i
$$430$$ 214.745 + 138.672i 0.499407 + 0.322493i
$$431$$ 163.103i 0.378430i −0.981936 0.189215i $$-0.939406\pi$$
0.981936 0.189215i $$-0.0605943\pi$$
$$432$$ 9.86564 + 431.887i 0.0228371 + 0.999739i
$$433$$ −140.737 −0.325028 −0.162514 0.986706i $$-0.551960\pi$$
−0.162514 + 0.986706i $$0.551960\pi$$
$$434$$ −46.0644 + 71.3346i −0.106139 + 0.164366i
$$435$$ −177.260 + 44.9833i −0.407494 + 0.103410i
$$436$$ −279.668 105.705i −0.641440 0.242442i
$$437$$ −368.217 + 368.217i −0.842601 + 0.842601i
$$438$$ −28.8033 + 85.5230i −0.0657609 + 0.195258i
$$439$$ 434.893i 0.990644i 0.868709 + 0.495322i $$0.164950\pi$$
−0.868709 + 0.495322i $$0.835050\pi$$
$$440$$ −29.6582 4.46274i −0.0674051 0.0101426i
$$441$$ 282.488 153.243i 0.640562 0.347490i
$$442$$ 244.708 + 1136.85i 0.553639 + 2.57207i
$$443$$ −260.367 + 260.367i −0.587736 + 0.587736i −0.937018 0.349282i $$-0.886426\pi$$
0.349282 + 0.937018i $$0.386426\pi$$
$$444$$ −1.47380 + 13.0052i −0.00331937 + 0.0292910i
$$445$$ 8.59088 8.59088i 0.0193053 0.0193053i
$$446$$ 630.492 + 407.141i 1.41366 + 0.912873i
$$447$$ 97.5869 163.960i 0.218315 0.366801i
$$448$$ −68.6640 + 222.996i −0.153268 + 0.497759i
$$449$$ 98.9506i 0.220380i −0.993911 0.110190i $$-0.964854\pi$$
0.993911 0.110190i $$-0.0351459\pi$$
$$450$$ 27.5091 359.679i 0.0611313 0.799286i
$$451$$ −30.5830 + 30.5830i −0.0678115 + 0.0678115i
$$452$$ 267.979 120.970i 0.592874 0.267633i
$$453$$ −20.7380 81.7195i −0.0457793 0.180396i
$$454$$ −107.793 500.782i −0.237431 1.10304i
$$455$$ 168.164 0.369590
$$456$$ −330.409 270.608i −0.724580 0.593438i
$$457$$ 14.4209i 0.0315556i 0.999876 + 0.0157778i $$0.00502245\pi$$
−0.999876 + 0.0157778i $$0.994978\pi$$
$$458$$ 91.6216 + 425.651i 0.200047 + 0.929369i
$$459$$ 514.196 + 556.873i 1.12025 + 1.21323i
$$460$$ −243.838 92.1621i −0.530082 0.200352i
$$461$$ 328.278 + 328.278i 0.712099 + 0.712099i 0.966974 0.254875i $$-0.0820343\pi$$
−0.254875 + 0.966974i $$0.582034\pi$$
$$462$$ 16.3660 + 32.9879i 0.0354242 + 0.0714024i
$$463$$ −848.427 −1.83246 −0.916228 0.400657i $$-0.868782\pi$$
−0.916228 + 0.400657i $$0.868782\pi$$
$$464$$ 437.109 27.4269i 0.942045 0.0591096i
$$465$$ 39.7935 66.8587i 0.0855774 0.143782i
$$466$$ 86.9961 + 56.1778i 0.186687 + 0.120553i
$$467$$ 56.0706 + 56.0706i 0.120066 + 0.120066i 0.764587 0.644521i $$-0.222943\pi$$
−0.644521 + 0.764587i $$0.722943\pi$$
$$468$$ −738.787 + 100.860i −1.57860 + 0.215512i
$$469$$ −38.9595 38.9595i −0.0830693 0.0830693i
$$470$$ −47.1140 218.880i −0.100242 0.465702i
$$471$$ 375.970 631.682i 0.798237 1.34115i
$$472$$ −152.915 207.085i −0.323973 0.438739i
$$473$$ −96.6181 −0.204267
$$474$$ 292.240 + 98.4234i 0.616539 + 0.207644i
$$475$$ 252.170 + 252.170i 0.530884 + 0.530884i
$$476$$ 168.436 + 373.128i 0.353857 + 0.783881i
$$477$$ 167.355 564.216i 0.350850 1.18284i
$$478$$ −271.129 + 419.867i −0.567216 + 0.878382i
$$479$$ 648.794i 1.35448i 0.735764 + 0.677238i $$0.236823\pi$$
−0.735764 + 0.677238i $$0.763177\pi$$
$$480$$ 55.4147 206.484i 0.115447 0.430176i
$$481$$ −22.5909 −0.0469665
$$482$$ −743.514 480.125i −1.54256 0.996110i
$$483$$ 78.7257 + 310.224i 0.162993 + 0.642285i
$$484$$ −430.804 + 194.472i −0.890091 + 0.401801i
$$485$$ −127.814 + 127.814i −0.263533 + 0.263533i
$$486$$ −381.167 + 301.509i −0.784294 + 0.620390i
$$487$$ 176.783i 0.363004i −0.983391 0.181502i $$-0.941904\pi$$
0.983391 0.181502i $$-0.0580959\pi$$
$$488$$ −85.8300 116.235i −0.175881 0.238187i
$$489$$ 112.659 189.284i 0.230387 0.387083i
$$490$$ −155.484 + 33.4679i −0.317314 + 0.0683019i
$$491$$ −317.369 + 317.369i −0.646373 + 0.646373i −0.952114 0.305742i $$-0.901096\pi$$
0.305742 + 0.952114i $$0.401096\pi$$
$$492$$ −192.069 241.164i −0.390383 0.490171i
$$493$$ 543.365 543.365i 1.10216 1.10216i
$$494$$ 399.887 619.258i 0.809488 1.25356i
$$495$$ −16.0889 29.6582i −0.0325029 0.0599156i
$$496$$ −123.247 + 139.749i −0.248482 + 0.281752i
$$497$$ 445.095i 0.895563i
$$498$$ 142.805 + 287.843i 0.286757 + 0.577997i
$$499$$ −374.391 + 374.391i −0.750282 + 0.750282i −0.974532 0.224250i $$-0.928007\pi$$
0.224250 + 0.974532i $$0.428007\pi$$
$$500$$ −141.852 + 375.306i −0.283705 + 0.750612i
$$501$$ 167.297 42.4551i 0.333926 0.0847407i
$$502$$ −119.793 + 25.7856i −0.238632 + 0.0513657i
$$503$$ 386.094 0.767583 0.383791 0.923420i $$-0.374618\pi$$
0.383791 + 0.923420i $$0.374618\pi$$
$$504$$ −246.786 + 89.4406i −0.489656 + 0.177462i
$$505$$ 102.199i 0.202374i
$$506$$ 96.3193 20.7328i 0.190354 0.0409739i
$$507$$ −191.857 756.024i −0.378416 1.49117i
$$508$$ 121.676 + 269.542i 0.239519 + 0.530595i
$$509$$ 41.6258 + 41.6258i 0.0817796 + 0.0817796i 0.746813 0.665034i $$-0.231583\pi$$
−0.665034 + 0.746813i $$0.731583\pi$$
$$510$$ −166.709 336.024i −0.326880 0.658870i
$$511$$ −54.8340 −0.107307
$$512$$ −221.805 + 461.461i −0.433213 + 0.901291i
$$513$$ 19.1294 480.086i 0.0372893 0.935839i
$$514$$ 194.421 301.077i 0.378251 0.585753i
$$515$$ −80.6071 80.6071i −0.156519 0.156519i
$$516$$ 77.5518 684.336i 0.150294 1.32623i
$$517$$ 59.8379 + 59.8379i 0.115741 + 0.115741i
$$518$$ −7.77479 + 1.67353i −0.0150092 + 0.00323075i
$$519$$ 410.512 + 244.332i 0.790968 + 0.470775i
$$520$$ 364.899 + 54.9072i 0.701729 + 0.105591i
$$521$$ 233.704 0.448569 0.224284 0.974524i $$-0.427996\pi$$
0.224284 + 0.974524i $$0.427996\pi$$
$$522$$ 320.818 + 373.956i 0.614595 + 0.716392i
$$523$$ −219.506 219.506i −0.419705 0.419705i 0.465397 0.885102i $$-0.345912\pi$$
−0.885102 + 0.465397i $$0.845912\pi$$
$$524$$ 316.859 838.331i 0.604693 1.59987i
$$525$$ 212.454 53.9146i 0.404674 0.102694i
$$526$$ 704.782 + 455.114i 1.33989 + 0.865235i
$$527$$ 326.927i 0.620355i
$$528$$ 24.7418 + 76.9243i 0.0468595 + 0.145690i
$$529$$ 327.324 0.618760
$$530$$ −157.995 + 244.668i −0.298103 + 0.461638i
$$531$$ 82.3542 277.646i 0.155093 0.522873i
$$532$$ 91.7490 242.745i 0.172461 0.456288i
$$533$$ 376.277 376.277i 0.705961 0.705961i
$$534$$ −31.0209 10.4475i −0.0580916 0.0195647i
$$535$$ 269.182i 0.503143i
$$536$$ −71.8178 97.2591i −0.133988 0.181454i
$$537$$ 81.9601 + 48.7817i 0.152626 + 0.0908411i
$$538$$ −20.0954 93.3582i −0.0373520 0.173528i
$$539$$ 42.5065 42.5065i 0.0788618 0.0788618i
$$540$$ 222.980 90.1506i 0.412927 0.166946i
$$541$$ 80.5203 80.5203i 0.148836 0.148836i −0.628762 0.777598i $$-0.716438\pi$$
0.777598 + 0.628762i $$0.216438\pi$$
$$542$$ −553.219 357.242i −1.02070 0.659118i
$$543$$ −67.8157 40.3631i −0.124891 0.0743335i
$$544$$ 243.660 + 864.648i 0.447905 + 1.58943i
$$545$$ 166.455i 0.305422i
$$546$$ −201.359 405.865i −0.368789 0.743343i
$$547$$ 1.49803 1.49803i 0.00273863 0.00273863i −0.705736 0.708475i $$-0.749384\pi$$
0.708475 + 0.705736i $$0.249384\pi$$
$$548$$ −165.783 367.250i −0.302523 0.670165i
$$549$$ 46.2247 155.840i 0.0841981 0.283862i
$$550$$ −14.1987 65.9634i −0.0258157 0.119933i
$$551$$ −487.105 −0.884038
$$552$$ 69.5362 + 698.862i 0.125971 + 1.26605i
$$553$$ 187.373i 0.338829i
$$554$$ −149.550 694.773i −0.269946 1.25410i
$$555$$ 7.06307 1.79240i 0.0127263 0.00322955i
$$556$$ −36.5464 + 96.6927i −0.0657310 + 0.173908i
$$557$$ −322.326 322.326i −0.578682 0.578682i 0.355858 0.934540i $$-0.384189\pi$$
−0.934540 + 0.355858i $$0.884189\pi$$
$$558$$ −209.013 15.9858i −0.374575 0.0286484i
$$559$$ 1188.74 2.12654
$$560$$ 129.650 8.13502i 0.231518 0.0145268i
$$561$$ 121.830 + 72.5118i 0.217166 + 0.129255i
$$562$$ −288.664 186.405i −0.513637 0.331682i
$$563$$ 523.954 + 523.954i 0.930646 + 0.930646i 0.997746 0.0671003i $$-0.0213748\pi$$
−0.0671003 + 0.997746i $$0.521375\pi$$
$$564$$ −471.856 + 375.796i −0.836624 + 0.666306i
$$565$$ −115.749 115.749i −0.204866 0.204866i
$$566$$ 115.154 + 534.979i 0.203453 + 0.945193i
$$567$$ −247.545 161.018i −0.436588 0.283983i
$$568$$ 145.328 965.814i 0.255859 1.70038i
$$569$$ −767.880 −1.34952 −0.674762 0.738035i $$-0.735754\pi$$
−0.674762 + 0.738035i $$0.735754\pi$$
$$570$$ −75.8921 + 225.340i −0.133144 + 0.395333i
$$571$$ −3.43922 3.43922i −0.00602316 0.00602316i 0.704089 0.710112i $$-0.251356\pi$$
−0.710112 + 0.704089i $$0.751356\pi$$
$$572$$ −127.120 + 57.3839i −0.222237 + 0.100321i
$$573$$ 141.439 + 557.350i 0.246840 + 0.972688i
$$574$$ 101.624 157.373i 0.177044 0.274168i
$$575$$ 586.446i 1.01991i
$$576$$ −564.707 + 113.499i −0.980394 + 0.197048i
$$577$$ −572.442 −0.992100 −0.496050 0.868294i $$-0.665217\pi$$
−0.496050 + 0.868294i $$0.665217\pi$$
$$578$$ 838.514 + 541.471i 1.45072 + 0.936801i
$$579$$ 141.400 35.8833i 0.244215 0.0619746i
$$580$$ −100.324 222.243i −0.172973 0.383178i
$$581$$ −138.057 + 138.057i −0.237620 + 0.237620i
$$582$$ 461.524 + 155.437i 0.792997 + 0.267073i
$$583$$ 110.081i 0.188818i
$$584$$ −118.985 17.9039i −0.203741 0.0306573i
$$585$$ 197.949 + 364.899i 0.338375 + 0.623759i
$$586$$ −203.217 + 43.7425i −0.346787 + 0.0746460i
$$587$$ 446.694 446.694i 0.760977 0.760977i −0.215522 0.976499i $$-0.569145\pi$$
0.976499 + 0.215522i $$0.0691453\pi$$
$$588$$ 266.951 + 335.188i 0.453999 + 0.570048i
$$589$$ 146.539 146.539i 0.248792 0.248792i
$$590$$ −77.7479 + 120.399i −0.131776 + 0.204066i
$$591$$ −295.668 + 496.764i −0.500284 + 0.840548i
$$592$$ −17.4170 + 1.09285i −0.0294206 + 0.00184603i
$$593$$ 838.112i 1.41334i 0.707542 + 0.706671i $$0.249804\pi$$
−0.707542 + 0.706671i $$0.750196\pi$$
$$594$$ −52.3159 + 74.3436i −0.0880738 + 0.125158i
$$595$$ 161.166 161.166i 0.270867 0.270867i
$$596$$ 237.974 + 89.9457i 0.399285 + 0.150916i
$$597$$ 106.827 + 420.959i 0.178940 + 0.705123i
$$598$$ −1185.06 + 255.085i −1.98171 + 0.426564i
$$599$$ −414.241 −0.691555 −0.345777 0.938317i $$-0.612385\pi$$
−0.345777 + 0.938317i $$0.612385\pi$$
$$600$$ 478.609 47.6213i 0.797682 0.0793688i
$$601$$ 305.786i 0.508795i −0.967100 0.254397i $$-0.918123\pi$$
0.967100 0.254397i $$-0.0818771\pi$$
$$602$$ 409.111 88.0614i 0.679587 0.146281i
$$603$$ 38.6783 130.399i 0.0641431 0.216250i
$$604$$ 102.458 46.2510i 0.169632 0.0765745i
$$605$$ 186.078 + 186.078i 0.307567 + 0.307567i
$$606$$ −246.658 + 122.372i −0.407027 + 0.201935i
$$607$$ −103.217 −0.170044 −0.0850222 0.996379i $$-0.527096\pi$$
−0.0850222 + 0.996379i $$0.527096\pi$$
$$608$$ 278.346 496.777i 0.457805 0.817068i
$$609$$ −153.122 + 257.266i −0.251431 + 0.422440i
$$610$$ −43.6393 + 67.5791i −0.0715398 + 0.110785i
$$611$$ −736.214 736.214i −1.20493 1.20493i
$$612$$ −611.382 + 804.708i −0.998991 + 1.31488i
$$613$$ −391.273 391.273i −0.638292 0.638292i 0.311842 0.950134i $$-0.399054\pi$$
−0.950134 + 0.311842i $$0.899054\pi$$
$$614$$ −782.674 + 168.471i −1.27471 + 0.274382i
$$615$$ −87.7891 + 147.498i −0.142746 + 0.239834i
$$616$$ −39.4980 + 29.1660i −0.0641202 + 0.0473474i
$$617$$ 713.373 1.15620 0.578098 0.815967i $$-0.303795\pi$$
0.578098 + 0.815967i $$0.303795\pi$$
$$618$$ −98.0279 + 291.065i −0.158621 + 0.470979i
$$619$$ −399.763 399.763i −0.645821 0.645821i 0.306159 0.951980i $$-0.400956\pi$$
−0.951980 + 0.306159i $$0.900956\pi$$
$$620$$ 97.0398 + 36.6776i 0.156516 + 0.0591574i
$$621$$ −580.487 + 535.999i −0.934761 + 0.863123i
$$622$$ 90.7895 + 58.6275i 0.145964 + 0.0942564i
$$623$$ 19.8894i 0.0319252i
$$624$$ −304.410 946.436i −0.487837 1.51672i
$$625$$ −277.635 −0.444217
$$626$$ 531.931 823.739i 0.849730 1.31588i
$$627$$ −22.1059 87.1099i −0.0352567 0.138931i
$$628$$ 916.834 + 346.531i 1.45993 + 0.551800i
$$629$$ −21.6508 + 21.6508i −0.0344210 + 0.0344210i
$$630$$ 95.1571 + 110.918i 0.151043 + 0.176061i
$$631$$ 934.242i 1.48057i 0.672291 + 0.740287i $$0.265310\pi$$
−0.672291 + 0.740287i $$0.734690\pi$$
$$632$$ −61.1791 + 406.581i −0.0968024 + 0.643324i
$$633$$ −426.071 + 715.859i −0.673097 + 1.13090i
$$634$$ −190.192 883.586i −0.299988 1.39367i
$$635$$ 116.424 116.424i 0.183345 0.183345i
$$636$$ 779.693 + 88.3580i 1.22593 + 0.138928i
$$637$$ −522.978 + 522.978i −0.821001 + 0.821001i
$$638$$ 77.4227 + 49.9958i 0.121352 + 0.0783633i
$$639$$ 965.814 523.932i 1.51145 0.819925i
$$640$$ 283.984 + 24.6798i 0.443725 + 0.0385622i
$$641$$ 26.1836i 0.0408480i 0.999791 + 0.0204240i $$0.00650162\pi$$
−0.999791 + 0.0204240i $$0.993498\pi$$
$$642$$ 649.675 322.318i 1.01195 0.502052i
$$643$$ 625.336 625.336i 0.972529 0.972529i −0.0271039 0.999633i $$-0.508629\pi$$
0.999633 + 0.0271039i $$0.00862850\pi$$
$$644$$ −388.949 + 175.578i −0.603959 + 0.272637i
$$645$$ −371.660 + 94.3165i −0.576218 + 0.146227i
$$646$$ −210.243 976.737i −0.325454 1.51198i
$$647$$ −97.2591 −0.150323 −0.0751616 0.997171i $$-0.523947\pi$$
−0.0751616 + 0.997171i $$0.523947\pi$$
$$648$$ −484.576 430.221i −0.747803 0.663921i
$$649$$ 54.1699i 0.0834668i
$$650$$ 174.693 + 811.579i 0.268758 + 1.24858i
$$651$$ −31.3303 123.459i −0.0481265 0.189645i
$$652$$ 274.729 + 103.838i 0.421364 + 0.159261i
$$653$$ −129.213 129.213i −0.197875 0.197875i 0.601213 0.799089i $$-0.294684\pi$$
−0.799089 + 0.601213i $$0.794684\pi$$
$$654$$ 401.742 199.313i 0.614284 0.304760i
$$655$$ −498.965 −0.761778
$$656$$ 271.897 308.303i 0.414478 0.469974i
$$657$$ −64.5464 118.985i −0.0982442 0.181103i
$$658$$ −307.911 198.834i −0.467950 0.302179i
$$659$$ −3.10975 3.10975i −0.00471889 0.00471889i 0.704743 0.709462i $$-0.251062\pi$$
−0.709462 + 0.704743i $$0.751062\pi$$
$$660$$ 35.1912 28.0271i 0.0533200 0.0424652i
$$661$$ −22.3424 22.3424i −0.0338010 0.0338010i 0.690004 0.723805i $$-0.257609\pi$$
−0.723805 + 0.690004i $$0.757609\pi$$
$$662$$ 160.362 + 745.003i 0.242239 + 1.12538i
$$663$$ −1498.93 892.146i −2.26083 1.34562i
$$664$$ −344.648 + 254.494i −0.519049 + 0.383274i
$$665$$ −144.479 −0.217262
$$666$$ −12.7833 14.9006i −0.0191941 0.0223733i
$$667$$ 566.405 + 566.405i 0.849183 + 0.849183i
$$668$$ 94.6855 + 209.752i 0.141745 + 0.314000i
$$669$$ −1091.20 + 276.914i −1.63109 + 0.413922i
$$670$$ −36.5149 + 56.5464i −0.0544999 + 0.0843976i
$$671$$ 30.4052i 0.0453132i
$$672$$ −174.876 303.171i −0.260233 0.451148i
$$673$$ 1085.74 1.61329 0.806643 0.591039i $$-0.201282\pi$$
0.806643 + 0.591039i $$0.201282\pi$$
$$674$$ −240.328 155.192i −0.356570 0.230256i
$$675$$ 367.074 + 397.541i 0.543814 + 0.588950i
$$676$$ 947.881 427.889i 1.40219 0.632972i
$$677$$ 813.520 813.520i 1.20165 1.20165i 0.227991 0.973663i $$-0.426784\pi$$
0.973663 0.227991i $$-0.0732157\pi$$
$$678$$ −140.765 + 417.960i −0.207617 + 0.616460i
$$679$$ 295.911i 0.435804i
$$680$$ 402.338 297.093i 0.591673 0.436901i
$$681$$ 660.276 + 392.988i 0.969568 + 0.577075i
$$682$$ −38.3320 + 8.25098i −0.0562053 + 0.0120982i
$$683$$ −427.362 + 427.362i −0.625713 + 0.625713i −0.946986 0.321273i $$-0.895889\pi$$
0.321273 + 0.946986i $$0.395889\pi$$
$$684$$ 634.734 86.6543i 0.927974 0.126688i
$$685$$ −158.627 + 158.627i −0.231573 + 0.231573i
$$686$$ −335.062 + 518.872i −0.488429 + 0.756373i
$$687$$ −561.217 334.030i −0.816910 0.486215i
$$688$$ 916.486 57.5059i 1.33210 0.0835842i
$$689$$ 1354.38i 1.96572i
$$690$$ 350.272 173.778i 0.507641 0.251852i
$$691$$ −420.170 + 420.170i −0.608061 + 0.608061i −0.942439 0.334378i $$-0.891474\pi$$
0.334378 + 0.942439i $$0.391474\pi$$
$$692$$ −225.200 + 595.824i −0.325434 + 0.861018i
$$693$$ −52.9563 15.7077i −0.0764161 0.0226662i
$$694$$ 350.952 75.5425i 0.505694 0.108851i
$$695$$ 57.5504 0.0828063
$$696$$ −416.260 + 508.247i −0.598074 + 0.730240i
$$697$$ 721.239i 1.03478i
$$698$$ −541.662 + 116.593i −0.776020 + 0.167039i
$$699$$ −150.565 + 38.2089i −0.215400 + 0.0546622i
$$700$$ 120.243 + 266.369i 0.171776 + 0.380527i
$$701$$ −774.018 774.018i −1.10416 1.10416i −0.993903 0.110260i $$-0.964832\pi$$
−0.110260 0.993903i $$-0.535168\pi$$
$$702$$ 643.666 914.684i 0.916904 1.30297i
$$703$$ 19.4091 0.0276090
$$704$$ −95.2301 + 50.3910i −0.135270 + 0.0715781i
$$705$$ 288.591 + 171.766i 0.409349 + 0.243639i
$$706$$ −316.251 + 489.741i −0.447948 + 0.693684i
$$707$$ −118.304 118.304i −0.167332 0.167332i
$$708$$ 383.680 + 43.4802i 0.541921 + 0.0614128i
$$709$$ 198.261 + 198.261i 0.279635 + 0.279635i 0.832963 0.553328i $$-0.186642\pi$$
−0.553328 + 0.832963i $$0.686642\pi$$
$$710$$ −531.592 + 114.425i −0.748722 + 0.161163i
$$711$$ −406.581 + 220.561i −0.571844 + 0.310212i
$$712$$ 6.49409 43.1581i 0.00912092 0.0606154i
$$713$$ −340.790 −0.477966
$$714$$ −581.957 195.997i −0.815065 0.274506i
$$715$$ 54.9072 + 54.9072i 0.0767932 + 0.0767932i
$$716$$ −44.9620 + 118.958i −0.0627961 + 0.166143i
$$717$$ −184.406 726.665i −0.257192 1.01348i
$$718$$ −67.7935 43.7777i −0.0944199 0.0609718i
$$719$$ 639.218i 0.889037i 0.895770 + 0.444519i $$0.146625\pi$$
−0.895770 + 0.444519i $$0.853375\pi$$
$$720$$ 170.266 + 271.752i 0.236481 + 0.377434i
$$721$$ −186.620 −0.258834
$$722$$ 48.1025 74.4907i 0.0666239 0.103173i
$$723$$ 1286.80 326.553i 1.77981 0.451664i
$$724$$ 37.2026 98.4288i 0.0513848 0.135951i
$$725$$ 387.898 387.898i 0.535031 0.535031i
$$726$$ 226.293 671.913i 0.311699 0.925500i
$$727$$ 789.136i 1.08547i −0.839904 0.542734i $$-0.817389\pi$$
0.839904 0.542734i $$-0.182611\pi$$
$$728$$ 485.963 358.843i 0.667531 0.492916i
$$729$$ 58.0032 726.689i 0.0795654 0.996830i
$$730$$ 14.0968 + 65.4902i 0.0193107 + 0.0897125i
$$731$$ 1139.27 1139.27i 1.55851 1.55851i
$$732$$ 215.357 + 24.4051i 0.294203 + 0.0333403i
$$733$$ −49.8641 + 49.8641i −0.0680274 + 0.0680274i −0.740302 0.672275i $$-0.765317\pi$$
0.672275 + 0.740302i $$0.265317\pi$$
$$734$$ −572.388 369.620i −0.779820 0.503570i
$$735$$ 122.016 205.004i 0.166008 0.278917i
$$736$$ −901.312 + 253.992i −1.22461 + 0.345098i
$$737$$ 25.4414i 0.0345202i
$$738$$ 461.107 + 35.2666i 0.624807 + 0.0477867i
$$739$$ 157.593 157.593i 0.213252 0.213252i −0.592395 0.805647i $$-0.701818\pi$$
0.805647 + 0.592395i $$0.201818\pi$$
$$740$$ 3.99750 + 8.85547i 0.00540203 + 0.0119669i
$$741$$ 271.980 + 1071.75i 0.367044 + 1.44636i
$$742$$ 100.332 + 466.118i 0.135218 + 0.628191i
$$743$$ 1305.03 1.75643 0.878216 0.478265i $$-0.158734\pi$$
0.878216 + 0.478265i $$0.158734\pi$$
$$744$$ −27.6732 278.125i −0.0371952 0.373824i
$$745$$ 141.639i 0.190120i
$$746$$ −141.463 657.203i −0.189629 0.880970i
$$747$$ −462.082 137.061i −0.618583 0.183482i
$$748$$ −66.8340 + 176.826i −0.0893503 + 0.236399i
$$749$$ 311.601 + 311.601i 0.416023 + 0.416023i
$$750$$ −267.472 539.126i −0.356629 0.718834i
$$751$$ 793.800 1.05699 0.528495 0.848936i $$-0.322756\pi$$
0.528495 + 0.848936i $$0.322756\pi$$
$$752$$ −603.217 531.987i −0.802150 0.707430i
$$753$$ 94.0079 157.947i 0.124844 0.209756i
$$754$$ −952.567 615.122i −1.26335 0.815811i
$$755$$ −44.2548 44.2548i −0.0586156 0.0586156i
$$756$$ 153.762 362.477i 0.203389 0.479466i
$$757$$ −750.497 750.497i −0.991409 0.991409i 0.00855438 0.999963i $$-0.497277\pi$$
−0.999963 + 0.00855438i $$0.997277\pi$$
$$758$$ −190.658 885.749i −0.251527 1.16853i
$$759$$ −75.5865 + 126.996i −0.0995870 + 0.167320i
$$760$$ −313.506 47.1739i −0.412508 0.0620709i
$$761$$ 1055.45 1.38692 0.693462 0.720493i $$-0.256084\pi$$
0.693462 + 0.720493i $$0.256084\pi$$
$$762$$ −420.398 141.586i −0.551703 0.185808i
$$763$$ 192.686 + 192.686i 0.252538 + 0.252538i
$$764$$ −698.790 + 315.445i −0.914646 + 0.412886i
$$765$$ 539.428 + 160.003i 0.705134 + 0.209154i
$$766$$ −686.450 + 1063.02i −0.896148 + 1.38776i
$$767$$ 666.478i 0.868942i
$$768$$ −280.477 714.952i −0.365204 0.930927i
$$769$$ 883.681 1.14913 0.574565 0.818459i $$-0.305171\pi$$
0.574565 + 0.818459i