Newspace parameters
Level: | \( N \) | \(=\) | \( 48 = 2^{4} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 48.i (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.30790526893\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(i)\) |
Coefficient field: | 8.0.629407744.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - 2x^{6} + 2x^{4} - 8x^{2} + 16 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2^{3} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 2x^{6} + 2x^{4} - 8x^{2} + 16 \)
:
\(\beta_{1}\) | \(=\) |
\( ( \nu^{7} + 2\nu^{5} + 10\nu^{3} + 24\nu^{2} + 8\nu ) / 24 \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{6} + 2\nu^{4} - 2\nu^{2} - 4 ) / 12 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -\nu^{7} - 2\nu^{5} + 2\nu^{3} - 8\nu ) / 12 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -\nu^{7} - 2\nu^{5} + 2\nu^{3} + 16\nu ) / 12 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -\nu^{7} + 4\nu^{5} + 2\nu^{3} + 4\nu ) / 12 \)
|
\(\beta_{6}\) | \(=\) |
\( ( \nu^{7} - \nu^{5} + 4\nu^{3} - 10\nu ) / 6 \)
|
\(\beta_{7}\) | \(=\) |
\( ( -\nu^{7} - 8\nu^{6} - 2\nu^{5} + 8\nu^{4} - 10\nu^{3} - 8\nu^{2} - 8\nu + 32 ) / 24 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{4} - \beta_{3} ) / 2 \)
|
\(\nu^{2}\) | \(=\) |
\( ( -\beta_{6} - \beta_{5} - \beta_{4} + \beta_{3} + 2\beta_1 ) / 2 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{6} + \beta_{5} + \beta_{4} \)
|
\(\nu^{4}\) | \(=\) |
\( \beta_{7} + 4\beta_{2} + \beta_1 \)
|
\(\nu^{5}\) | \(=\) |
\( 2\beta_{5} - \beta_{4} - \beta_{3} \)
|
\(\nu^{6}\) | \(=\) |
\( -2\beta_{7} - \beta_{6} - \beta_{5} - \beta_{4} + \beta_{3} + 4\beta_{2} + 4 \)
|
\(\nu^{7}\) | \(=\) |
\( 2\beta_{6} - 2\beta_{5} - 6\beta_{3} \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/48\mathbb{Z}\right)^\times\).
\(n\) | \(17\) | \(31\) | \(37\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(-\beta_{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 |
|
−1.68014 | − | 1.08495i | 2.90783 | − | 0.737922i | 1.64575 | + | 3.64575i | 1.57472 | − | 1.57472i | −5.68618 | − | 1.91505i | − | 3.64575i | 1.19038 | − | 7.91094i | 7.91094 | − | 4.29150i | −4.35425 | + | 0.937254i | |||||||||||||||||||||||||
5.2 | −0.420861 | + | 1.95522i | −2.77809 | − | 1.13234i | −3.64575 | − | 1.64575i | −6.28651 | + | 6.28651i | 3.38317 | − | 4.95522i | 1.64575i | 4.75216 | − | 6.43560i | 6.43560 | + | 6.29150i | −9.64575 | − | 14.9373i | |||||||||||||||||||||||||||
5.3 | 0.420861 | − | 1.95522i | 1.13234 | + | 2.77809i | −3.64575 | − | 1.64575i | 6.28651 | − | 6.28651i | 5.90834 | − | 1.04478i | 1.64575i | −4.75216 | + | 6.43560i | −6.43560 | + | 6.29150i | −9.64575 | − | 14.9373i | |||||||||||||||||||||||||||
5.4 | 1.68014 | + | 1.08495i | 0.737922 | − | 2.90783i | 1.64575 | + | 3.64575i | −1.57472 | + | 1.57472i | 4.39467 | − | 4.08495i | − | 3.64575i | −1.19038 | + | 7.91094i | −7.91094 | − | 4.29150i | −4.35425 | + | 0.937254i | ||||||||||||||||||||||||||
29.1 | −1.68014 | + | 1.08495i | 2.90783 | + | 0.737922i | 1.64575 | − | 3.64575i | 1.57472 | + | 1.57472i | −5.68618 | + | 1.91505i | 3.64575i | 1.19038 | + | 7.91094i | 7.91094 | + | 4.29150i | −4.35425 | − | 0.937254i | |||||||||||||||||||||||||||
29.2 | −0.420861 | − | 1.95522i | −2.77809 | + | 1.13234i | −3.64575 | + | 1.64575i | −6.28651 | − | 6.28651i | 3.38317 | + | 4.95522i | − | 1.64575i | 4.75216 | + | 6.43560i | 6.43560 | − | 6.29150i | −9.64575 | + | 14.9373i | ||||||||||||||||||||||||||
29.3 | 0.420861 | + | 1.95522i | 1.13234 | − | 2.77809i | −3.64575 | + | 1.64575i | 6.28651 | + | 6.28651i | 5.90834 | + | 1.04478i | − | 1.64575i | −4.75216 | − | 6.43560i | −6.43560 | − | 6.29150i | −9.64575 | + | 14.9373i | ||||||||||||||||||||||||||
29.4 | 1.68014 | − | 1.08495i | 0.737922 | + | 2.90783i | 1.64575 | − | 3.64575i | −1.57472 | − | 1.57472i | 4.39467 | + | 4.08495i | 3.64575i | −1.19038 | − | 7.91094i | −7.91094 | + | 4.29150i | −4.35425 | − | 0.937254i | |||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
16.e | even | 4 | 1 | inner |
48.i | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 48.3.i.a | ✓ | 8 |
3.b | odd | 2 | 1 | inner | 48.3.i.a | ✓ | 8 |
4.b | odd | 2 | 1 | 192.3.i.a | 8 | ||
8.b | even | 2 | 1 | 384.3.i.a | 8 | ||
8.d | odd | 2 | 1 | 384.3.i.b | 8 | ||
12.b | even | 2 | 1 | 192.3.i.a | 8 | ||
16.e | even | 4 | 1 | inner | 48.3.i.a | ✓ | 8 |
16.e | even | 4 | 1 | 384.3.i.a | 8 | ||
16.f | odd | 4 | 1 | 192.3.i.a | 8 | ||
16.f | odd | 4 | 1 | 384.3.i.b | 8 | ||
24.f | even | 2 | 1 | 384.3.i.b | 8 | ||
24.h | odd | 2 | 1 | 384.3.i.a | 8 | ||
48.i | odd | 4 | 1 | inner | 48.3.i.a | ✓ | 8 |
48.i | odd | 4 | 1 | 384.3.i.a | 8 | ||
48.k | even | 4 | 1 | 192.3.i.a | 8 | ||
48.k | even | 4 | 1 | 384.3.i.b | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
48.3.i.a | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
48.3.i.a | ✓ | 8 | 3.b | odd | 2 | 1 | inner |
48.3.i.a | ✓ | 8 | 16.e | even | 4 | 1 | inner |
48.3.i.a | ✓ | 8 | 48.i | odd | 4 | 1 | inner |
192.3.i.a | 8 | 4.b | odd | 2 | 1 | ||
192.3.i.a | 8 | 12.b | even | 2 | 1 | ||
192.3.i.a | 8 | 16.f | odd | 4 | 1 | ||
192.3.i.a | 8 | 48.k | even | 4 | 1 | ||
384.3.i.a | 8 | 8.b | even | 2 | 1 | ||
384.3.i.a | 8 | 16.e | even | 4 | 1 | ||
384.3.i.a | 8 | 24.h | odd | 2 | 1 | ||
384.3.i.a | 8 | 48.i | odd | 4 | 1 | ||
384.3.i.b | 8 | 8.d | odd | 2 | 1 | ||
384.3.i.b | 8 | 16.f | odd | 4 | 1 | ||
384.3.i.b | 8 | 24.f | even | 2 | 1 | ||
384.3.i.b | 8 | 48.k | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{8} + 6272T_{5}^{4} + 153664 \)
acting on \(S_{3}^{\mathrm{new}}(48, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} + 4 T^{6} + 8 T^{4} + 64 T^{2} + \cdots + 256 \)
$3$
\( T^{8} - 4 T^{7} + 8 T^{6} + 12 T^{5} + \cdots + 6561 \)
$5$
\( T^{8} + 6272 T^{4} + 153664 \)
$7$
\( (T^{4} + 16 T^{2} + 36)^{2} \)
$11$
\( T^{8} + 2048 T^{4} + 16384 \)
$13$
\( (T^{4} + 48 T^{3} + 1152 T^{2} + \cdots + 75076)^{2} \)
$17$
\( (T^{4} + 920 T^{2} + 103968)^{2} \)
$19$
\( (T^{4} - 8 T^{3} + 32 T^{2} + 1728 T + 46656)^{2} \)
$23$
\( (T^{4} - 1120 T^{2} + 225792)^{2} \)
$29$
\( T^{8} + 614656 T^{4} + \cdots + 29884728384 \)
$31$
\( (T^{2} - 18 T + 74)^{4} \)
$37$
\( (T^{4} - 56 T^{3} + 1568 T^{2} + \cdots + 1764)^{2} \)
$41$
\( (T^{4} - 664 T^{2} + 2592)^{2} \)
$43$
\( (T^{4} + 120 T^{3} + 7200 T^{2} + \cdots + 2483776)^{2} \)
$47$
\( (T^{4} + 8144 T^{2} + 14193792)^{2} \)
$53$
\( T^{8} + 18284288 T^{4} + \cdots + 18847994944 \)
$59$
\( T^{8} + 3520000 T^{4} + \cdots + 2624400000000 \)
$61$
\( (T^{4} - 104 T^{3} + 5408 T^{2} + \cdots + 1004004)^{2} \)
$67$
\( (T^{4} + 116 T^{3} + 6728 T^{2} + \cdots + 2155024)^{2} \)
$71$
\( (T^{4} - 16560 T^{2} + 24668288)^{2} \)
$73$
\( (T^{4} + 3712 T^{2} + 788544)^{2} \)
$79$
\( (T^{2} + 34 T - 894)^{4} \)
$83$
\( T^{8} + 135735296 T^{4} + \cdots + 10\!\cdots\!04 \)
$89$
\( (T^{4} - 6240 T^{2} + 184832)^{2} \)
$97$
\( (T^{2} + 120 T + 3152)^{4} \)
show more
show less