Newspace parameters
Level: | \( N \) | \(=\) | \( 48 = 2^{4} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 48.e (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(1.30790526893\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 12) |
Sato-Tate group: | $\mathrm{U}(1)[D_{2}]$ |
$q$-expansion
Expression as an eta quotient
\(f(z) = \dfrac{\eta(4z)^{9}\eta(12z)^{9}}{\eta(2z)^{3}\eta(6z)^{3}\eta(8z)^{3}\eta(24z)^{3}}=q\prod_{n=1}^\infty(1 - q^{2n})^{-3}(1 - q^{4n})^{9}(1 - q^{6n})^{-3}(1 - q^{8n})^{-3}(1 - q^{12n})^{9}(1 - q^{24n})^{-3}\)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/48\mathbb{Z}\right)^\times\).
\(n\) | \(17\) | \(31\) | \(37\) |
\(\chi(n)\) | \(-1\) | \(1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17.1 |
|
0 | 3.00000 | 0 | 0 | 0 | −2.00000 | 0 | 9.00000 | 0 | |||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | CM by \(\Q(\sqrt{-3}) \) |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 48.3.e.a | 1 | |
3.b | odd | 2 | 1 | CM | 48.3.e.a | 1 | |
4.b | odd | 2 | 1 | 12.3.c.a | ✓ | 1 | |
5.b | even | 2 | 1 | 1200.3.l.b | 1 | ||
5.c | odd | 4 | 2 | 1200.3.c.c | 2 | ||
8.b | even | 2 | 1 | 192.3.e.a | 1 | ||
8.d | odd | 2 | 1 | 192.3.e.b | 1 | ||
9.c | even | 3 | 2 | 1296.3.q.b | 2 | ||
9.d | odd | 6 | 2 | 1296.3.q.b | 2 | ||
12.b | even | 2 | 1 | 12.3.c.a | ✓ | 1 | |
15.d | odd | 2 | 1 | 1200.3.l.b | 1 | ||
15.e | even | 4 | 2 | 1200.3.c.c | 2 | ||
16.e | even | 4 | 2 | 768.3.h.b | 2 | ||
16.f | odd | 4 | 2 | 768.3.h.a | 2 | ||
20.d | odd | 2 | 1 | 300.3.g.b | 1 | ||
20.e | even | 4 | 2 | 300.3.b.a | 2 | ||
24.f | even | 2 | 1 | 192.3.e.b | 1 | ||
24.h | odd | 2 | 1 | 192.3.e.a | 1 | ||
28.d | even | 2 | 1 | 588.3.c.c | 1 | ||
28.f | even | 6 | 2 | 588.3.p.b | 2 | ||
28.g | odd | 6 | 2 | 588.3.p.c | 2 | ||
36.f | odd | 6 | 2 | 324.3.g.b | 2 | ||
36.h | even | 6 | 2 | 324.3.g.b | 2 | ||
44.c | even | 2 | 1 | 1452.3.e.b | 1 | ||
48.i | odd | 4 | 2 | 768.3.h.b | 2 | ||
48.k | even | 4 | 2 | 768.3.h.a | 2 | ||
60.h | even | 2 | 1 | 300.3.g.b | 1 | ||
60.l | odd | 4 | 2 | 300.3.b.a | 2 | ||
84.h | odd | 2 | 1 | 588.3.c.c | 1 | ||
84.j | odd | 6 | 2 | 588.3.p.b | 2 | ||
84.n | even | 6 | 2 | 588.3.p.c | 2 | ||
132.d | odd | 2 | 1 | 1452.3.e.b | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
12.3.c.a | ✓ | 1 | 4.b | odd | 2 | 1 | |
12.3.c.a | ✓ | 1 | 12.b | even | 2 | 1 | |
48.3.e.a | 1 | 1.a | even | 1 | 1 | trivial | |
48.3.e.a | 1 | 3.b | odd | 2 | 1 | CM | |
192.3.e.a | 1 | 8.b | even | 2 | 1 | ||
192.3.e.a | 1 | 24.h | odd | 2 | 1 | ||
192.3.e.b | 1 | 8.d | odd | 2 | 1 | ||
192.3.e.b | 1 | 24.f | even | 2 | 1 | ||
300.3.b.a | 2 | 20.e | even | 4 | 2 | ||
300.3.b.a | 2 | 60.l | odd | 4 | 2 | ||
300.3.g.b | 1 | 20.d | odd | 2 | 1 | ||
300.3.g.b | 1 | 60.h | even | 2 | 1 | ||
324.3.g.b | 2 | 36.f | odd | 6 | 2 | ||
324.3.g.b | 2 | 36.h | even | 6 | 2 | ||
588.3.c.c | 1 | 28.d | even | 2 | 1 | ||
588.3.c.c | 1 | 84.h | odd | 2 | 1 | ||
588.3.p.b | 2 | 28.f | even | 6 | 2 | ||
588.3.p.b | 2 | 84.j | odd | 6 | 2 | ||
588.3.p.c | 2 | 28.g | odd | 6 | 2 | ||
588.3.p.c | 2 | 84.n | even | 6 | 2 | ||
768.3.h.a | 2 | 16.f | odd | 4 | 2 | ||
768.3.h.a | 2 | 48.k | even | 4 | 2 | ||
768.3.h.b | 2 | 16.e | even | 4 | 2 | ||
768.3.h.b | 2 | 48.i | odd | 4 | 2 | ||
1200.3.c.c | 2 | 5.c | odd | 4 | 2 | ||
1200.3.c.c | 2 | 15.e | even | 4 | 2 | ||
1200.3.l.b | 1 | 5.b | even | 2 | 1 | ||
1200.3.l.b | 1 | 15.d | odd | 2 | 1 | ||
1296.3.q.b | 2 | 9.c | even | 3 | 2 | ||
1296.3.q.b | 2 | 9.d | odd | 6 | 2 | ||
1452.3.e.b | 1 | 44.c | even | 2 | 1 | ||
1452.3.e.b | 1 | 132.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5} \)
acting on \(S_{3}^{\mathrm{new}}(48, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T \)
$3$
\( T - 3 \)
$5$
\( T \)
$7$
\( T + 2 \)
$11$
\( T \)
$13$
\( T + 22 \)
$17$
\( T \)
$19$
\( T + 26 \)
$23$
\( T \)
$29$
\( T \)
$31$
\( T - 46 \)
$37$
\( T - 26 \)
$41$
\( T \)
$43$
\( T - 22 \)
$47$
\( T \)
$53$
\( T \)
$59$
\( T \)
$61$
\( T - 74 \)
$67$
\( T + 122 \)
$71$
\( T \)
$73$
\( T + 46 \)
$79$
\( T - 142 \)
$83$
\( T \)
$89$
\( T \)
$97$
\( T - 2 \)
show more
show less