Defining parameters
Level: | \( N \) | \(=\) | \( 48 = 2^{4} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 48.e (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(48, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 22 | 5 | 17 |
Cusp forms | 10 | 3 | 7 |
Eisenstein series | 12 | 2 | 10 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(48, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
48.3.e.a | $1$ | $1.308$ | \(\Q\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(3\) | \(0\) | \(-2\) | \(q+3q^{3}-2q^{7}+9q^{9}-22q^{13}-26q^{19}+\cdots\) |
48.3.e.b | $2$ | $1.308$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(-2\) | \(0\) | \(12\) | \(q+(-1+\beta )q^{3}+2\beta q^{5}+6q^{7}+(-7+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(48, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(48, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 2}\)