Defining parameters
Level: | \( N \) | = | \( 48 = 2^{4} \cdot 3 \) |
Weight: | \( k \) | = | \( 3 \) |
Nonzero newspaces: | \( 4 \) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(384\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(48))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 156 | 59 | 97 |
Cusp forms | 100 | 49 | 51 |
Eisenstein series | 56 | 10 | 46 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(48))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(48))\) into lower level spaces
\( S_{3}^{\mathrm{old}}(\Gamma_1(48)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 1}\)