Properties

Label 48.28.a.g.1.2
Level $48$
Weight $28$
Character 48.1
Self dual yes
Analytic conductor $221.691$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [48,28,Mod(1,48)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(48, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 28, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("48.1");
 
S:= CuspForms(chi, 28);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 28 \)
Character orbit: \([\chi]\) \(=\) 48.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(221.690675922\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3386644380 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 6)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-58194.4\) of defining polynomial
Character \(\chi\) \(=\) 48.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.59432e6 q^{3} +4.36927e9 q^{5} -3.11219e11 q^{7} +2.54187e12 q^{9} +O(q^{10})\) \(q+1.59432e6 q^{3} +4.36927e9 q^{5} -3.11219e11 q^{7} +2.54187e12 q^{9} +6.06174e13 q^{11} +6.46570e14 q^{13} +6.96603e15 q^{15} +2.78493e16 q^{17} +3.23609e17 q^{19} -4.96184e17 q^{21} -2.77958e18 q^{23} +1.16400e19 q^{25} +4.05256e18 q^{27} -4.40804e18 q^{29} -1.35313e20 q^{31} +9.66437e19 q^{33} -1.35980e21 q^{35} +2.42430e21 q^{37} +1.03084e21 q^{39} -1.00752e22 q^{41} -6.87508e21 q^{43} +1.11061e22 q^{45} +7.32039e22 q^{47} +3.11452e22 q^{49} +4.44008e22 q^{51} +2.25305e23 q^{53} +2.64854e23 q^{55} +5.15938e23 q^{57} +6.81895e22 q^{59} +2.06905e24 q^{61} -7.91078e23 q^{63} +2.82504e24 q^{65} -5.18244e24 q^{67} -4.43155e24 q^{69} -9.12560e24 q^{71} -6.99708e24 q^{73} +1.85579e25 q^{75} -1.88653e25 q^{77} -3.46799e25 q^{79} +6.46108e24 q^{81} +5.24073e25 q^{83} +1.21681e26 q^{85} -7.02784e24 q^{87} +2.05205e26 q^{89} -2.01225e26 q^{91} -2.15733e26 q^{93} +1.41394e27 q^{95} +3.43252e26 q^{97} +1.54081e26 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3188646 q^{3} + 291441036 q^{5} - 121646295328 q^{7} + 5083731656658 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 3188646 q^{3} + 291441036 q^{5} - 121646295328 q^{7} + 5083731656658 q^{9} + 231807361766376 q^{11} - 11\!\cdots\!64 q^{13}+ \cdots + 58\!\cdots\!04 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.59432e6 0.577350
\(4\) 0 0
\(5\) 4.36927e9 1.60072 0.800358 0.599523i \(-0.204643\pi\)
0.800358 + 0.599523i \(0.204643\pi\)
\(6\) 0 0
\(7\) −3.11219e11 −1.21407 −0.607034 0.794676i \(-0.707641\pi\)
−0.607034 + 0.794676i \(0.707641\pi\)
\(8\) 0 0
\(9\) 2.54187e12 0.333333
\(10\) 0 0
\(11\) 6.06174e13 0.529415 0.264707 0.964329i \(-0.414725\pi\)
0.264707 + 0.964329i \(0.414725\pi\)
\(12\) 0 0
\(13\) 6.46570e14 0.592080 0.296040 0.955176i \(-0.404334\pi\)
0.296040 + 0.955176i \(0.404334\pi\)
\(14\) 0 0
\(15\) 6.96603e15 0.924173
\(16\) 0 0
\(17\) 2.78493e16 0.681953 0.340976 0.940072i \(-0.389242\pi\)
0.340976 + 0.940072i \(0.389242\pi\)
\(18\) 0 0
\(19\) 3.23609e17 1.76542 0.882709 0.469920i \(-0.155717\pi\)
0.882709 + 0.469920i \(0.155717\pi\)
\(20\) 0 0
\(21\) −4.96184e17 −0.700943
\(22\) 0 0
\(23\) −2.77958e18 −1.14988 −0.574941 0.818195i \(-0.694975\pi\)
−0.574941 + 0.818195i \(0.694975\pi\)
\(24\) 0 0
\(25\) 1.16400e19 1.56229
\(26\) 0 0
\(27\) 4.05256e18 0.192450
\(28\) 0 0
\(29\) −4.40804e18 −0.0797761 −0.0398880 0.999204i \(-0.512700\pi\)
−0.0398880 + 0.999204i \(0.512700\pi\)
\(30\) 0 0
\(31\) −1.35313e20 −0.995309 −0.497654 0.867375i \(-0.665805\pi\)
−0.497654 + 0.867375i \(0.665805\pi\)
\(32\) 0 0
\(33\) 9.66437e19 0.305658
\(34\) 0 0
\(35\) −1.35980e21 −1.94338
\(36\) 0 0
\(37\) 2.42430e21 1.63630 0.818150 0.575005i \(-0.195000\pi\)
0.818150 + 0.575005i \(0.195000\pi\)
\(38\) 0 0
\(39\) 1.03084e21 0.341838
\(40\) 0 0
\(41\) −1.00752e22 −1.70088 −0.850439 0.526073i \(-0.823664\pi\)
−0.850439 + 0.526073i \(0.823664\pi\)
\(42\) 0 0
\(43\) −6.87508e21 −0.610174 −0.305087 0.952324i \(-0.598686\pi\)
−0.305087 + 0.952324i \(0.598686\pi\)
\(44\) 0 0
\(45\) 1.11061e22 0.533572
\(46\) 0 0
\(47\) 7.32039e22 1.95530 0.977650 0.210241i \(-0.0674249\pi\)
0.977650 + 0.210241i \(0.0674249\pi\)
\(48\) 0 0
\(49\) 3.11452e22 0.473962
\(50\) 0 0
\(51\) 4.44008e22 0.393726
\(52\) 0 0
\(53\) 2.25305e23 1.18863 0.594316 0.804232i \(-0.297423\pi\)
0.594316 + 0.804232i \(0.297423\pi\)
\(54\) 0 0
\(55\) 2.64854e23 0.847442
\(56\) 0 0
\(57\) 5.15938e23 1.01926
\(58\) 0 0
\(59\) 6.81895e22 0.0845698 0.0422849 0.999106i \(-0.486536\pi\)
0.0422849 + 0.999106i \(0.486536\pi\)
\(60\) 0 0
\(61\) 2.06905e24 1.63613 0.818066 0.575124i \(-0.195046\pi\)
0.818066 + 0.575124i \(0.195046\pi\)
\(62\) 0 0
\(63\) −7.91078e23 −0.404689
\(64\) 0 0
\(65\) 2.82504e24 0.947752
\(66\) 0 0
\(67\) −5.18244e24 −1.15485 −0.577424 0.816444i \(-0.695942\pi\)
−0.577424 + 0.816444i \(0.695942\pi\)
\(68\) 0 0
\(69\) −4.43155e24 −0.663885
\(70\) 0 0
\(71\) −9.12560e24 −0.929552 −0.464776 0.885428i \(-0.653865\pi\)
−0.464776 + 0.885428i \(0.653865\pi\)
\(72\) 0 0
\(73\) −6.99708e24 −0.489845 −0.244922 0.969543i \(-0.578762\pi\)
−0.244922 + 0.969543i \(0.578762\pi\)
\(74\) 0 0
\(75\) 1.85579e25 0.901988
\(76\) 0 0
\(77\) −1.88653e25 −0.642746
\(78\) 0 0
\(79\) −3.46799e25 −0.835818 −0.417909 0.908489i \(-0.637237\pi\)
−0.417909 + 0.908489i \(0.637237\pi\)
\(80\) 0 0
\(81\) 6.46108e24 0.111111
\(82\) 0 0
\(83\) 5.24073e25 0.648392 0.324196 0.945990i \(-0.394906\pi\)
0.324196 + 0.945990i \(0.394906\pi\)
\(84\) 0 0
\(85\) 1.21681e26 1.09161
\(86\) 0 0
\(87\) −7.02784e24 −0.0460587
\(88\) 0 0
\(89\) 2.05205e26 0.989516 0.494758 0.869031i \(-0.335257\pi\)
0.494758 + 0.869031i \(0.335257\pi\)
\(90\) 0 0
\(91\) −2.01225e26 −0.718826
\(92\) 0 0
\(93\) −2.15733e26 −0.574642
\(94\) 0 0
\(95\) 1.41394e27 2.82593
\(96\) 0 0
\(97\) 3.43252e26 0.517839 0.258919 0.965899i \(-0.416634\pi\)
0.258919 + 0.965899i \(0.416634\pi\)
\(98\) 0 0
\(99\) 1.54081e26 0.176472
\(100\) 0 0
\(101\) −5.43435e26 −0.475126 −0.237563 0.971372i \(-0.576349\pi\)
−0.237563 + 0.971372i \(0.576349\pi\)
\(102\) 0 0
\(103\) −5.07992e25 −0.0340843 −0.0170421 0.999855i \(-0.505425\pi\)
−0.0170421 + 0.999855i \(0.505425\pi\)
\(104\) 0 0
\(105\) −2.16796e27 −1.12201
\(106\) 0 0
\(107\) 1.31347e27 0.526913 0.263456 0.964671i \(-0.415138\pi\)
0.263456 + 0.964671i \(0.415138\pi\)
\(108\) 0 0
\(109\) 3.20537e27 1.00143 0.500715 0.865612i \(-0.333071\pi\)
0.500715 + 0.865612i \(0.333071\pi\)
\(110\) 0 0
\(111\) 3.86512e27 0.944718
\(112\) 0 0
\(113\) 1.64220e27 0.315403 0.157702 0.987487i \(-0.449592\pi\)
0.157702 + 0.987487i \(0.449592\pi\)
\(114\) 0 0
\(115\) −1.21447e28 −1.84063
\(116\) 0 0
\(117\) 1.64349e27 0.197360
\(118\) 0 0
\(119\) −8.66725e27 −0.827937
\(120\) 0 0
\(121\) −9.43553e27 −0.719720
\(122\) 0 0
\(123\) −1.60632e28 −0.982003
\(124\) 0 0
\(125\) 1.83045e28 0.900065
\(126\) 0 0
\(127\) −1.82085e28 −0.722644 −0.361322 0.932441i \(-0.617675\pi\)
−0.361322 + 0.932441i \(0.617675\pi\)
\(128\) 0 0
\(129\) −1.09611e28 −0.352284
\(130\) 0 0
\(131\) 4.91416e28 1.28318 0.641589 0.767049i \(-0.278275\pi\)
0.641589 + 0.767049i \(0.278275\pi\)
\(132\) 0 0
\(133\) −1.00714e29 −2.14334
\(134\) 0 0
\(135\) 1.77067e28 0.308058
\(136\) 0 0
\(137\) 5.37814e28 0.767193 0.383597 0.923501i \(-0.374685\pi\)
0.383597 + 0.923501i \(0.374685\pi\)
\(138\) 0 0
\(139\) −4.60592e28 −0.540277 −0.270138 0.962821i \(-0.587069\pi\)
−0.270138 + 0.962821i \(0.587069\pi\)
\(140\) 0 0
\(141\) 1.16711e29 1.12889
\(142\) 0 0
\(143\) 3.91934e28 0.313456
\(144\) 0 0
\(145\) −1.92599e28 −0.127699
\(146\) 0 0
\(147\) 4.96555e28 0.273642
\(148\) 0 0
\(149\) 6.39934e28 0.293846 0.146923 0.989148i \(-0.453063\pi\)
0.146923 + 0.989148i \(0.453063\pi\)
\(150\) 0 0
\(151\) 4.57912e29 1.75628 0.878139 0.478406i \(-0.158785\pi\)
0.878139 + 0.478406i \(0.158785\pi\)
\(152\) 0 0
\(153\) 7.07893e28 0.227318
\(154\) 0 0
\(155\) −5.91221e29 −1.59321
\(156\) 0 0
\(157\) −7.23684e29 −1.64023 −0.820113 0.572202i \(-0.806089\pi\)
−0.820113 + 0.572202i \(0.806089\pi\)
\(158\) 0 0
\(159\) 3.59209e29 0.686256
\(160\) 0 0
\(161\) 8.65059e29 1.39604
\(162\) 0 0
\(163\) −4.01419e29 −0.548360 −0.274180 0.961678i \(-0.588406\pi\)
−0.274180 + 0.961678i \(0.588406\pi\)
\(164\) 0 0
\(165\) 4.22263e29 0.489271
\(166\) 0 0
\(167\) 1.03017e30 1.01447 0.507233 0.861809i \(-0.330668\pi\)
0.507233 + 0.861809i \(0.330668\pi\)
\(168\) 0 0
\(169\) −7.74480e29 −0.649441
\(170\) 0 0
\(171\) 8.22572e29 0.588473
\(172\) 0 0
\(173\) −2.68290e30 −1.64052 −0.820261 0.571989i \(-0.806172\pi\)
−0.820261 + 0.571989i \(0.806172\pi\)
\(174\) 0 0
\(175\) −3.62258e30 −1.89673
\(176\) 0 0
\(177\) 1.08716e29 0.0488264
\(178\) 0 0
\(179\) −2.21883e30 −0.856264 −0.428132 0.903716i \(-0.640828\pi\)
−0.428132 + 0.903716i \(0.640828\pi\)
\(180\) 0 0
\(181\) 4.61780e30 1.53382 0.766911 0.641754i \(-0.221793\pi\)
0.766911 + 0.641754i \(0.221793\pi\)
\(182\) 0 0
\(183\) 3.29874e30 0.944622
\(184\) 0 0
\(185\) 1.05924e31 2.61925
\(186\) 0 0
\(187\) 1.68815e30 0.361036
\(188\) 0 0
\(189\) −1.26123e30 −0.233648
\(190\) 0 0
\(191\) 4.74656e30 0.762831 0.381415 0.924404i \(-0.375437\pi\)
0.381415 + 0.924404i \(0.375437\pi\)
\(192\) 0 0
\(193\) 2.52769e30 0.352940 0.176470 0.984306i \(-0.443532\pi\)
0.176470 + 0.984306i \(0.443532\pi\)
\(194\) 0 0
\(195\) 4.50403e30 0.547185
\(196\) 0 0
\(197\) −2.31410e30 −0.244956 −0.122478 0.992471i \(-0.539084\pi\)
−0.122478 + 0.992471i \(0.539084\pi\)
\(198\) 0 0
\(199\) 3.03480e30 0.280294 0.140147 0.990131i \(-0.455242\pi\)
0.140147 + 0.990131i \(0.455242\pi\)
\(200\) 0 0
\(201\) −8.26249e30 −0.666752
\(202\) 0 0
\(203\) 1.37187e30 0.0968536
\(204\) 0 0
\(205\) −4.40215e31 −2.72262
\(206\) 0 0
\(207\) −7.06532e30 −0.383294
\(208\) 0 0
\(209\) 1.96164e31 0.934638
\(210\) 0 0
\(211\) 1.95873e31 0.820655 0.410328 0.911938i \(-0.365414\pi\)
0.410328 + 0.911938i \(0.365414\pi\)
\(212\) 0 0
\(213\) −1.45492e31 −0.536677
\(214\) 0 0
\(215\) −3.00391e31 −0.976715
\(216\) 0 0
\(217\) 4.21122e31 1.20837
\(218\) 0 0
\(219\) −1.11556e31 −0.282812
\(220\) 0 0
\(221\) 1.80065e31 0.403771
\(222\) 0 0
\(223\) 2.74869e31 0.545771 0.272886 0.962047i \(-0.412022\pi\)
0.272886 + 0.962047i \(0.412022\pi\)
\(224\) 0 0
\(225\) 2.95872e31 0.520763
\(226\) 0 0
\(227\) 1.10085e30 0.0171940 0.00859701 0.999963i \(-0.497263\pi\)
0.00859701 + 0.999963i \(0.497263\pi\)
\(228\) 0 0
\(229\) 7.85209e31 1.08945 0.544724 0.838615i \(-0.316634\pi\)
0.544724 + 0.838615i \(0.316634\pi\)
\(230\) 0 0
\(231\) −3.00774e31 −0.371089
\(232\) 0 0
\(233\) 1.08140e32 1.18763 0.593817 0.804600i \(-0.297620\pi\)
0.593817 + 0.804600i \(0.297620\pi\)
\(234\) 0 0
\(235\) 3.19848e32 3.12988
\(236\) 0 0
\(237\) −5.52909e31 −0.482560
\(238\) 0 0
\(239\) 3.85813e31 0.300612 0.150306 0.988640i \(-0.451974\pi\)
0.150306 + 0.988640i \(0.451974\pi\)
\(240\) 0 0
\(241\) 2.43286e32 1.69389 0.846947 0.531677i \(-0.178438\pi\)
0.846947 + 0.531677i \(0.178438\pi\)
\(242\) 0 0
\(243\) 1.03011e31 0.0641500
\(244\) 0 0
\(245\) 1.36082e32 0.758678
\(246\) 0 0
\(247\) 2.09236e32 1.04527
\(248\) 0 0
\(249\) 8.35542e31 0.374349
\(250\) 0 0
\(251\) −1.35106e31 −0.0543350 −0.0271675 0.999631i \(-0.508649\pi\)
−0.0271675 + 0.999631i \(0.508649\pi\)
\(252\) 0 0
\(253\) −1.68491e32 −0.608765
\(254\) 0 0
\(255\) 1.93999e32 0.630243
\(256\) 0 0
\(257\) −2.50576e32 −0.732559 −0.366280 0.930505i \(-0.619369\pi\)
−0.366280 + 0.930505i \(0.619369\pi\)
\(258\) 0 0
\(259\) −7.54489e32 −1.98658
\(260\) 0 0
\(261\) −1.12046e31 −0.0265920
\(262\) 0 0
\(263\) 4.15757e32 0.890096 0.445048 0.895507i \(-0.353187\pi\)
0.445048 + 0.895507i \(0.353187\pi\)
\(264\) 0 0
\(265\) 9.84420e32 1.90266
\(266\) 0 0
\(267\) 3.27163e32 0.571297
\(268\) 0 0
\(269\) −1.81575e32 −0.286682 −0.143341 0.989673i \(-0.545785\pi\)
−0.143341 + 0.989673i \(0.545785\pi\)
\(270\) 0 0
\(271\) 4.40915e32 0.629897 0.314949 0.949109i \(-0.398013\pi\)
0.314949 + 0.949109i \(0.398013\pi\)
\(272\) 0 0
\(273\) −3.20818e32 −0.415014
\(274\) 0 0
\(275\) 7.05584e32 0.827099
\(276\) 0 0
\(277\) 4.47660e32 0.475852 0.237926 0.971283i \(-0.423532\pi\)
0.237926 + 0.971283i \(0.423532\pi\)
\(278\) 0 0
\(279\) −3.43948e32 −0.331770
\(280\) 0 0
\(281\) −8.16751e32 −0.715409 −0.357704 0.933835i \(-0.616440\pi\)
−0.357704 + 0.933835i \(0.616440\pi\)
\(282\) 0 0
\(283\) 3.19801e32 0.254544 0.127272 0.991868i \(-0.459378\pi\)
0.127272 + 0.991868i \(0.459378\pi\)
\(284\) 0 0
\(285\) 2.25427e33 1.63155
\(286\) 0 0
\(287\) 3.13561e33 2.06498
\(288\) 0 0
\(289\) −8.92126e32 −0.534940
\(290\) 0 0
\(291\) 5.47255e32 0.298974
\(292\) 0 0
\(293\) 2.58899e33 1.28949 0.644744 0.764399i \(-0.276964\pi\)
0.644744 + 0.764399i \(0.276964\pi\)
\(294\) 0 0
\(295\) 2.97939e32 0.135372
\(296\) 0 0
\(297\) 2.45655e32 0.101886
\(298\) 0 0
\(299\) −1.79719e33 −0.680823
\(300\) 0 0
\(301\) 2.13966e33 0.740793
\(302\) 0 0
\(303\) −8.66410e32 −0.274314
\(304\) 0 0
\(305\) 9.04025e33 2.61898
\(306\) 0 0
\(307\) −1.64496e33 −0.436303 −0.218152 0.975915i \(-0.570003\pi\)
−0.218152 + 0.975915i \(0.570003\pi\)
\(308\) 0 0
\(309\) −8.09903e31 −0.0196786
\(310\) 0 0
\(311\) 6.49387e33 1.44623 0.723117 0.690725i \(-0.242709\pi\)
0.723117 + 0.690725i \(0.242709\pi\)
\(312\) 0 0
\(313\) −8.69247e33 −1.77539 −0.887697 0.460428i \(-0.847696\pi\)
−0.887697 + 0.460428i \(0.847696\pi\)
\(314\) 0 0
\(315\) −3.45644e33 −0.647793
\(316\) 0 0
\(317\) 1.93111e33 0.332282 0.166141 0.986102i \(-0.446869\pi\)
0.166141 + 0.986102i \(0.446869\pi\)
\(318\) 0 0
\(319\) −2.67204e32 −0.0422346
\(320\) 0 0
\(321\) 2.09409e33 0.304213
\(322\) 0 0
\(323\) 9.01231e33 1.20393
\(324\) 0 0
\(325\) 7.52605e33 0.925000
\(326\) 0 0
\(327\) 5.11039e33 0.578176
\(328\) 0 0
\(329\) −2.27825e34 −2.37387
\(330\) 0 0
\(331\) 8.64145e33 0.829676 0.414838 0.909895i \(-0.363838\pi\)
0.414838 + 0.909895i \(0.363838\pi\)
\(332\) 0 0
\(333\) 6.16224e33 0.545433
\(334\) 0 0
\(335\) −2.26435e34 −1.84858
\(336\) 0 0
\(337\) −2.03843e33 −0.153565 −0.0767826 0.997048i \(-0.524465\pi\)
−0.0767826 + 0.997048i \(0.524465\pi\)
\(338\) 0 0
\(339\) 2.61819e33 0.182098
\(340\) 0 0
\(341\) −8.20234e33 −0.526931
\(342\) 0 0
\(343\) 1.07580e34 0.638646
\(344\) 0 0
\(345\) −1.93626e34 −1.06269
\(346\) 0 0
\(347\) −8.12227e33 −0.412315 −0.206158 0.978519i \(-0.566096\pi\)
−0.206158 + 0.978519i \(0.566096\pi\)
\(348\) 0 0
\(349\) 4.94258e33 0.232172 0.116086 0.993239i \(-0.462965\pi\)
0.116086 + 0.993239i \(0.462965\pi\)
\(350\) 0 0
\(351\) 2.62026e33 0.113946
\(352\) 0 0
\(353\) 1.97509e34 0.795478 0.397739 0.917499i \(-0.369795\pi\)
0.397739 + 0.917499i \(0.369795\pi\)
\(354\) 0 0
\(355\) −3.98722e34 −1.48795
\(356\) 0 0
\(357\) −1.38184e34 −0.478010
\(358\) 0 0
\(359\) −1.80645e34 −0.579495 −0.289748 0.957103i \(-0.593571\pi\)
−0.289748 + 0.957103i \(0.593571\pi\)
\(360\) 0 0
\(361\) 7.11225e34 2.11670
\(362\) 0 0
\(363\) −1.50433e34 −0.415531
\(364\) 0 0
\(365\) −3.05722e34 −0.784102
\(366\) 0 0
\(367\) 2.27625e34 0.542286 0.271143 0.962539i \(-0.412598\pi\)
0.271143 + 0.962539i \(0.412598\pi\)
\(368\) 0 0
\(369\) −2.56099e34 −0.566960
\(370\) 0 0
\(371\) −7.01194e34 −1.44308
\(372\) 0 0
\(373\) −6.70992e34 −1.28425 −0.642123 0.766601i \(-0.721946\pi\)
−0.642123 + 0.766601i \(0.721946\pi\)
\(374\) 0 0
\(375\) 2.91833e34 0.519652
\(376\) 0 0
\(377\) −2.85011e33 −0.0472338
\(378\) 0 0
\(379\) 3.50560e34 0.540921 0.270460 0.962731i \(-0.412824\pi\)
0.270460 + 0.962731i \(0.412824\pi\)
\(380\) 0 0
\(381\) −2.90303e34 −0.417219
\(382\) 0 0
\(383\) −3.70361e33 −0.0495955 −0.0247978 0.999692i \(-0.507894\pi\)
−0.0247978 + 0.999692i \(0.507894\pi\)
\(384\) 0 0
\(385\) −8.24277e34 −1.02885
\(386\) 0 0
\(387\) −1.74755e34 −0.203391
\(388\) 0 0
\(389\) −7.02105e34 −0.762224 −0.381112 0.924529i \(-0.624459\pi\)
−0.381112 + 0.924529i \(0.624459\pi\)
\(390\) 0 0
\(391\) −7.74095e34 −0.784166
\(392\) 0 0
\(393\) 7.83476e34 0.740843
\(394\) 0 0
\(395\) −1.51526e35 −1.33791
\(396\) 0 0
\(397\) −1.30976e35 −1.08024 −0.540118 0.841589i \(-0.681620\pi\)
−0.540118 + 0.841589i \(0.681620\pi\)
\(398\) 0 0
\(399\) −1.60570e35 −1.23746
\(400\) 0 0
\(401\) 1.32379e35 0.953612 0.476806 0.879009i \(-0.341794\pi\)
0.476806 + 0.879009i \(0.341794\pi\)
\(402\) 0 0
\(403\) −8.74896e34 −0.589303
\(404\) 0 0
\(405\) 2.82302e34 0.177857
\(406\) 0 0
\(407\) 1.46955e35 0.866281
\(408\) 0 0
\(409\) −2.54536e35 −1.40438 −0.702190 0.711989i \(-0.747794\pi\)
−0.702190 + 0.711989i \(0.747794\pi\)
\(410\) 0 0
\(411\) 8.57450e34 0.442939
\(412\) 0 0
\(413\) −2.12219e34 −0.102674
\(414\) 0 0
\(415\) 2.28982e35 1.03789
\(416\) 0 0
\(417\) −7.34332e34 −0.311929
\(418\) 0 0
\(419\) 2.64873e35 1.05475 0.527373 0.849634i \(-0.323177\pi\)
0.527373 + 0.849634i \(0.323177\pi\)
\(420\) 0 0
\(421\) 8.67841e34 0.324065 0.162032 0.986785i \(-0.448195\pi\)
0.162032 + 0.986785i \(0.448195\pi\)
\(422\) 0 0
\(423\) 1.86075e35 0.651766
\(424\) 0 0
\(425\) 3.24165e35 1.06541
\(426\) 0 0
\(427\) −6.43929e35 −1.98638
\(428\) 0 0
\(429\) 6.24869e34 0.180974
\(430\) 0 0
\(431\) 8.57490e34 0.233231 0.116615 0.993177i \(-0.462796\pi\)
0.116615 + 0.993177i \(0.462796\pi\)
\(432\) 0 0
\(433\) −1.22839e35 −0.313870 −0.156935 0.987609i \(-0.550161\pi\)
−0.156935 + 0.987609i \(0.550161\pi\)
\(434\) 0 0
\(435\) −3.07065e34 −0.0737269
\(436\) 0 0
\(437\) −8.99499e35 −2.03002
\(438\) 0 0
\(439\) 2.95742e34 0.0627542 0.0313771 0.999508i \(-0.490011\pi\)
0.0313771 + 0.999508i \(0.490011\pi\)
\(440\) 0 0
\(441\) 7.91669e34 0.157987
\(442\) 0 0
\(443\) −2.15913e35 −0.405348 −0.202674 0.979246i \(-0.564963\pi\)
−0.202674 + 0.979246i \(0.564963\pi\)
\(444\) 0 0
\(445\) 8.96596e35 1.58393
\(446\) 0 0
\(447\) 1.02026e35 0.169652
\(448\) 0 0
\(449\) 2.22802e35 0.348813 0.174407 0.984674i \(-0.444199\pi\)
0.174407 + 0.984674i \(0.444199\pi\)
\(450\) 0 0
\(451\) −6.10735e35 −0.900470
\(452\) 0 0
\(453\) 7.30060e35 1.01399
\(454\) 0 0
\(455\) −8.79208e35 −1.15064
\(456\) 0 0
\(457\) −5.04203e35 −0.621923 −0.310961 0.950423i \(-0.600651\pi\)
−0.310961 + 0.950423i \(0.600651\pi\)
\(458\) 0 0
\(459\) 1.12861e35 0.131242
\(460\) 0 0
\(461\) −1.02767e36 −1.12691 −0.563456 0.826146i \(-0.690529\pi\)
−0.563456 + 0.826146i \(0.690529\pi\)
\(462\) 0 0
\(463\) −1.28910e36 −1.33335 −0.666673 0.745350i \(-0.732282\pi\)
−0.666673 + 0.745350i \(0.732282\pi\)
\(464\) 0 0
\(465\) −9.42597e35 −0.919838
\(466\) 0 0
\(467\) 1.89841e36 1.74829 0.874143 0.485668i \(-0.161424\pi\)
0.874143 + 0.485668i \(0.161424\pi\)
\(468\) 0 0
\(469\) 1.61288e36 1.40206
\(470\) 0 0
\(471\) −1.15379e36 −0.946985
\(472\) 0 0
\(473\) −4.16750e35 −0.323035
\(474\) 0 0
\(475\) 3.76680e36 2.75809
\(476\) 0 0
\(477\) 5.72696e35 0.396210
\(478\) 0 0
\(479\) 1.33288e36 0.871491 0.435746 0.900070i \(-0.356485\pi\)
0.435746 + 0.900070i \(0.356485\pi\)
\(480\) 0 0
\(481\) 1.56748e36 0.968821
\(482\) 0 0
\(483\) 1.37918e36 0.806002
\(484\) 0 0
\(485\) 1.49976e36 0.828913
\(486\) 0 0
\(487\) 3.24682e36 1.69753 0.848764 0.528772i \(-0.177347\pi\)
0.848764 + 0.528772i \(0.177347\pi\)
\(488\) 0 0
\(489\) −6.39992e35 −0.316596
\(490\) 0 0
\(491\) −5.80339e35 −0.271695 −0.135847 0.990730i \(-0.543376\pi\)
−0.135847 + 0.990730i \(0.543376\pi\)
\(492\) 0 0
\(493\) −1.22761e35 −0.0544035
\(494\) 0 0
\(495\) 6.73223e35 0.282481
\(496\) 0 0
\(497\) 2.84006e36 1.12854
\(498\) 0 0
\(499\) 2.77354e36 1.04394 0.521972 0.852963i \(-0.325197\pi\)
0.521972 + 0.852963i \(0.325197\pi\)
\(500\) 0 0
\(501\) 1.64243e36 0.585702
\(502\) 0 0
\(503\) −1.25022e36 −0.422491 −0.211245 0.977433i \(-0.567752\pi\)
−0.211245 + 0.977433i \(0.567752\pi\)
\(504\) 0 0
\(505\) −2.37441e36 −0.760541
\(506\) 0 0
\(507\) −1.23477e36 −0.374955
\(508\) 0 0
\(509\) 6.18070e36 1.77970 0.889852 0.456250i \(-0.150808\pi\)
0.889852 + 0.456250i \(0.150808\pi\)
\(510\) 0 0
\(511\) 2.17763e36 0.594705
\(512\) 0 0
\(513\) 1.31145e36 0.339755
\(514\) 0 0
\(515\) −2.21955e35 −0.0545592
\(516\) 0 0
\(517\) 4.43743e36 1.03516
\(518\) 0 0
\(519\) −4.27741e36 −0.947156
\(520\) 0 0
\(521\) −4.44502e36 −0.934468 −0.467234 0.884134i \(-0.654749\pi\)
−0.467234 + 0.884134i \(0.654749\pi\)
\(522\) 0 0
\(523\) −7.64607e36 −1.52639 −0.763195 0.646169i \(-0.776370\pi\)
−0.763195 + 0.646169i \(0.776370\pi\)
\(524\) 0 0
\(525\) −5.77557e36 −1.09508
\(526\) 0 0
\(527\) −3.76839e36 −0.678754
\(528\) 0 0
\(529\) 1.88286e36 0.322230
\(530\) 0 0
\(531\) 1.73329e35 0.0281899
\(532\) 0 0
\(533\) −6.51435e36 −1.00706
\(534\) 0 0
\(535\) 5.73890e36 0.843437
\(536\) 0 0
\(537\) −3.53753e36 −0.494364
\(538\) 0 0
\(539\) 1.88794e36 0.250923
\(540\) 0 0
\(541\) −1.30472e37 −1.64950 −0.824751 0.565495i \(-0.808685\pi\)
−0.824751 + 0.565495i \(0.808685\pi\)
\(542\) 0 0
\(543\) 7.36227e36 0.885552
\(544\) 0 0
\(545\) 1.40051e37 1.60300
\(546\) 0 0
\(547\) −1.03586e37 −1.12843 −0.564213 0.825629i \(-0.690820\pi\)
−0.564213 + 0.825629i \(0.690820\pi\)
\(548\) 0 0
\(549\) 5.25925e36 0.545378
\(550\) 0 0
\(551\) −1.42648e36 −0.140838
\(552\) 0 0
\(553\) 1.07931e37 1.01474
\(554\) 0 0
\(555\) 1.68877e37 1.51222
\(556\) 0 0
\(557\) −1.07139e37 −0.913904 −0.456952 0.889491i \(-0.651059\pi\)
−0.456952 + 0.889491i \(0.651059\pi\)
\(558\) 0 0
\(559\) −4.44522e36 −0.361272
\(560\) 0 0
\(561\) 2.69146e36 0.208444
\(562\) 0 0
\(563\) 1.24198e37 0.916749 0.458374 0.888759i \(-0.348432\pi\)
0.458374 + 0.888759i \(0.348432\pi\)
\(564\) 0 0
\(565\) 7.17521e36 0.504871
\(566\) 0 0
\(567\) −2.01081e36 −0.134896
\(568\) 0 0
\(569\) −6.72192e36 −0.430009 −0.215005 0.976613i \(-0.568977\pi\)
−0.215005 + 0.976613i \(0.568977\pi\)
\(570\) 0 0
\(571\) −6.75688e36 −0.412248 −0.206124 0.978526i \(-0.566085\pi\)
−0.206124 + 0.978526i \(0.566085\pi\)
\(572\) 0 0
\(573\) 7.56754e36 0.440420
\(574\) 0 0
\(575\) −3.23542e37 −1.79645
\(576\) 0 0
\(577\) −1.83494e37 −0.972184 −0.486092 0.873908i \(-0.661578\pi\)
−0.486092 + 0.873908i \(0.661578\pi\)
\(578\) 0 0
\(579\) 4.02996e36 0.203770
\(580\) 0 0
\(581\) −1.63102e37 −0.787193
\(582\) 0 0
\(583\) 1.36574e37 0.629279
\(584\) 0 0
\(585\) 7.18088e36 0.315917
\(586\) 0 0
\(587\) −1.38416e37 −0.581528 −0.290764 0.956795i \(-0.593910\pi\)
−0.290764 + 0.956795i \(0.593910\pi\)
\(588\) 0 0
\(589\) −4.37887e37 −1.75714
\(590\) 0 0
\(591\) −3.68943e36 −0.141426
\(592\) 0 0
\(593\) −5.74168e36 −0.210281 −0.105141 0.994457i \(-0.533529\pi\)
−0.105141 + 0.994457i \(0.533529\pi\)
\(594\) 0 0
\(595\) −3.78696e37 −1.32529
\(596\) 0 0
\(597\) 4.83845e36 0.161828
\(598\) 0 0
\(599\) −9.06518e36 −0.289811 −0.144905 0.989446i \(-0.546288\pi\)
−0.144905 + 0.989446i \(0.546288\pi\)
\(600\) 0 0
\(601\) 3.75922e36 0.114893 0.0574464 0.998349i \(-0.481704\pi\)
0.0574464 + 0.998349i \(0.481704\pi\)
\(602\) 0 0
\(603\) −1.31731e37 −0.384949
\(604\) 0 0
\(605\) −4.12264e37 −1.15207
\(606\) 0 0
\(607\) 4.26047e37 1.13870 0.569351 0.822094i \(-0.307194\pi\)
0.569351 + 0.822094i \(0.307194\pi\)
\(608\) 0 0
\(609\) 2.18720e36 0.0559184
\(610\) 0 0
\(611\) 4.73315e37 1.15769
\(612\) 0 0
\(613\) 5.38870e37 1.26115 0.630576 0.776127i \(-0.282819\pi\)
0.630576 + 0.776127i \(0.282819\pi\)
\(614\) 0 0
\(615\) −7.01844e37 −1.57191
\(616\) 0 0
\(617\) −3.49858e37 −0.749967 −0.374983 0.927031i \(-0.622352\pi\)
−0.374983 + 0.927031i \(0.622352\pi\)
\(618\) 0 0
\(619\) −3.09916e37 −0.635946 −0.317973 0.948100i \(-0.603002\pi\)
−0.317973 + 0.948100i \(0.603002\pi\)
\(620\) 0 0
\(621\) −1.12644e37 −0.221295
\(622\) 0 0
\(623\) −6.38638e37 −1.20134
\(624\) 0 0
\(625\) −6.74694e36 −0.121542
\(626\) 0 0
\(627\) 3.12748e37 0.539614
\(628\) 0 0
\(629\) 6.75151e37 1.11588
\(630\) 0 0
\(631\) 7.75162e36 0.122743 0.0613714 0.998115i \(-0.480453\pi\)
0.0613714 + 0.998115i \(0.480453\pi\)
\(632\) 0 0
\(633\) 3.12284e37 0.473806
\(634\) 0 0
\(635\) −7.95580e37 −1.15675
\(636\) 0 0
\(637\) 2.01375e37 0.280624
\(638\) 0 0
\(639\) −2.31961e37 −0.309851
\(640\) 0 0
\(641\) −7.99511e37 −1.02386 −0.511931 0.859027i \(-0.671070\pi\)
−0.511931 + 0.859027i \(0.671070\pi\)
\(642\) 0 0
\(643\) −2.47951e37 −0.304451 −0.152226 0.988346i \(-0.548644\pi\)
−0.152226 + 0.988346i \(0.548644\pi\)
\(644\) 0 0
\(645\) −4.78920e37 −0.563907
\(646\) 0 0
\(647\) 3.52397e37 0.397946 0.198973 0.980005i \(-0.436239\pi\)
0.198973 + 0.980005i \(0.436239\pi\)
\(648\) 0 0
\(649\) 4.13347e36 0.0447725
\(650\) 0 0
\(651\) 6.71404e37 0.697655
\(652\) 0 0
\(653\) 1.58081e37 0.157599 0.0787993 0.996891i \(-0.474891\pi\)
0.0787993 + 0.996891i \(0.474891\pi\)
\(654\) 0 0
\(655\) 2.14713e38 2.05400
\(656\) 0 0
\(657\) −1.77856e37 −0.163282
\(658\) 0 0
\(659\) −2.71928e37 −0.239608 −0.119804 0.992798i \(-0.538227\pi\)
−0.119804 + 0.992798i \(0.538227\pi\)
\(660\) 0 0
\(661\) 8.48665e36 0.0717821 0.0358911 0.999356i \(-0.488573\pi\)
0.0358911 + 0.999356i \(0.488573\pi\)
\(662\) 0 0
\(663\) 2.87083e37 0.233117
\(664\) 0 0
\(665\) −4.40045e38 −3.43087
\(666\) 0 0
\(667\) 1.22525e37 0.0917331
\(668\) 0 0
\(669\) 4.38230e37 0.315101
\(670\) 0 0
\(671\) 1.25421e38 0.866193
\(672\) 0 0
\(673\) 2.46452e38 1.63504 0.817522 0.575898i \(-0.195347\pi\)
0.817522 + 0.575898i \(0.195347\pi\)
\(674\) 0 0
\(675\) 4.71716e37 0.300663
\(676\) 0 0
\(677\) 2.19397e38 1.34364 0.671822 0.740713i \(-0.265512\pi\)
0.671822 + 0.740713i \(0.265512\pi\)
\(678\) 0 0
\(679\) −1.06827e38 −0.628692
\(680\) 0 0
\(681\) 1.75510e36 0.00992698
\(682\) 0 0
\(683\) −1.45078e38 −0.788717 −0.394358 0.918957i \(-0.629033\pi\)
−0.394358 + 0.918957i \(0.629033\pi\)
\(684\) 0 0
\(685\) 2.34986e38 1.22806
\(686\) 0 0
\(687\) 1.25188e38 0.628993
\(688\) 0 0
\(689\) 1.45676e38 0.703765
\(690\) 0 0
\(691\) −4.04073e38 −1.87718 −0.938591 0.345031i \(-0.887869\pi\)
−0.938591 + 0.345031i \(0.887869\pi\)
\(692\) 0 0
\(693\) −4.79531e37 −0.214249
\(694\) 0 0
\(695\) −2.01245e38 −0.864829
\(696\) 0 0
\(697\) −2.80589e38 −1.15992
\(698\) 0 0
\(699\) 1.72411e38 0.685681
\(700\) 0 0
\(701\) 6.40419e37 0.245059 0.122529 0.992465i \(-0.460899\pi\)
0.122529 + 0.992465i \(0.460899\pi\)
\(702\) 0 0
\(703\) 7.84526e38 2.88875
\(704\) 0 0
\(705\) 5.09941e38 1.80704
\(706\) 0 0
\(707\) 1.69127e38 0.576835
\(708\) 0 0
\(709\) 7.71389e37 0.253250 0.126625 0.991951i \(-0.459586\pi\)
0.126625 + 0.991951i \(0.459586\pi\)
\(710\) 0 0
\(711\) −8.81516e37 −0.278606
\(712\) 0 0
\(713\) 3.76114e38 1.14449
\(714\) 0 0
\(715\) 1.71247e38 0.501754
\(716\) 0 0
\(717\) 6.15111e37 0.173558
\(718\) 0 0
\(719\) −6.01226e38 −1.63380 −0.816898 0.576783i \(-0.804308\pi\)
−0.816898 + 0.576783i \(0.804308\pi\)
\(720\) 0 0
\(721\) 1.58097e37 0.0413806
\(722\) 0 0
\(723\) 3.87876e38 0.977971
\(724\) 0 0
\(725\) −5.13094e37 −0.124633
\(726\) 0 0
\(727\) 5.96046e38 1.39497 0.697486 0.716599i \(-0.254302\pi\)
0.697486 + 0.716599i \(0.254302\pi\)
\(728\) 0 0
\(729\) 1.64232e37 0.0370370
\(730\) 0 0
\(731\) −1.91466e38 −0.416110
\(732\) 0 0
\(733\) −3.15157e38 −0.660120 −0.330060 0.943960i \(-0.607069\pi\)
−0.330060 + 0.943960i \(0.607069\pi\)
\(734\) 0 0
\(735\) 2.16958e38 0.438023
\(736\) 0 0
\(737\) −3.14146e38 −0.611393
\(738\) 0 0
\(739\) 3.24282e38 0.608447 0.304223 0.952601i \(-0.401603\pi\)
0.304223 + 0.952601i \(0.401603\pi\)
\(740\) 0 0
\(741\) 3.33590e38 0.603486
\(742\) 0 0
\(743\) −5.80289e38 −1.01227 −0.506134 0.862455i \(-0.668926\pi\)
−0.506134 + 0.862455i \(0.668926\pi\)
\(744\) 0 0
\(745\) 2.79604e38 0.470364
\(746\) 0 0
\(747\) 1.33212e38 0.216131
\(748\) 0 0
\(749\) −4.08777e38 −0.639708
\(750\) 0 0
\(751\) −2.21124e38 −0.333808 −0.166904 0.985973i \(-0.553377\pi\)
−0.166904 + 0.985973i \(0.553377\pi\)
\(752\) 0 0
\(753\) −2.15403e37 −0.0313703
\(754\) 0 0
\(755\) 2.00074e39 2.81130
\(756\) 0 0
\(757\) −2.01995e38 −0.273870 −0.136935 0.990580i \(-0.543725\pi\)
−0.136935 + 0.990580i \(0.543725\pi\)
\(758\) 0 0
\(759\) −2.68629e38 −0.351470
\(760\) 0 0
\(761\) 6.78605e38 0.856888 0.428444 0.903568i \(-0.359062\pi\)
0.428444 + 0.903568i \(0.359062\pi\)
\(762\) 0 0
\(763\) −9.97573e38 −1.21580
\(764\) 0 0
\(765\) 3.09298e38 0.363871
\(766\) 0 0
\(767\) 4.40893e37 0.0500721
\(768\) 0 0
\(769\) 9.79619e38 1.07412 0.537059 0.843545i \(-0.319535\pi\)
0.537059 + 0.843545i \(0.319535\pi\)
\(770\) 0 0
\(771\) −3.99500e38 −0.422943
\(772\) 0 0
\(773\) −1.58678e39 −1.62216 −0.811081 0.584934i \(-0.801120\pi\)
−0.811081 + 0.584934i \(0.801120\pi\)
\(774\) 0 0
\(775\) −1.57504e39 −1.55496
\(776\) 0 0
\(777\) −1.20290e39 −1.14695
\(778\) 0 0
\(779\) −3.26044e39 −3.00276
\(780\) 0 0
\(781\) −5.53170e38 −0.492119
\(782\) 0 0
\(783\) −1.78638e37 −0.0153529
\(784\) 0 0
\(785\) −3.16197e39 −2.62553
\(786\) 0 0
\(787\) 1.82547e39 1.46459 0.732296 0.680987i \(-0.238449\pi\)
0.732296 + 0.680987i \(0.238449\pi\)
\(788\) 0 0
\(789\) 6.62851e38 0.513897
\(790\) 0 0
\(791\) −5.11084e38 −0.382921
\(792\) 0 0
\(793\) 1.33779e39 0.968722
\(794\) 0 0
\(795\) 1.56948e39 1.09850
\(796\) 0 0
\(797\) −6.64299e38 −0.449445 −0.224723 0.974423i \(-0.572148\pi\)
−0.224723 + 0.974423i \(0.572148\pi\)
\(798\) 0 0
\(799\) 2.03868e39 1.33342
\(800\) 0 0
\(801\) 5.21603e38 0.329839
\(802\) 0 0
\(803\) −4.24145e38 −0.259331
\(804\) 0 0
\(805\) 3.77968e39 2.23466
\(806\) 0 0
\(807\) −2.89489e38 −0.165516
\(808\) 0 0
\(809\) −1.75085e39 −0.968150 −0.484075 0.875026i \(-0.660844\pi\)
−0.484075 + 0.875026i \(0.660844\pi\)
\(810\) 0 0
\(811\) −1.01209e39 −0.541301 −0.270651 0.962678i \(-0.587239\pi\)
−0.270651 + 0.962678i \(0.587239\pi\)
\(812\) 0 0
\(813\) 7.02961e38 0.363671
\(814\) 0 0
\(815\) −1.75391e39 −0.877768
\(816\) 0 0
\(817\) −2.22484e39 −1.07721
\(818\) 0 0
\(819\) −5.11488e38 −0.239609
\(820\) 0 0
\(821\) −8.40933e38 −0.381179 −0.190589 0.981670i \(-0.561040\pi\)
−0.190589 + 0.981670i \(0.561040\pi\)
\(822\) 0 0
\(823\) −2.05478e39 −0.901297 −0.450649 0.892701i \(-0.648807\pi\)
−0.450649 + 0.892701i \(0.648807\pi\)
\(824\) 0 0
\(825\) 1.12493e39 0.477526
\(826\) 0 0
\(827\) 9.27685e38 0.381133 0.190566 0.981674i \(-0.438968\pi\)
0.190566 + 0.981674i \(0.438968\pi\)
\(828\) 0 0
\(829\) 3.98790e39 1.58584 0.792918 0.609329i \(-0.208561\pi\)
0.792918 + 0.609329i \(0.208561\pi\)
\(830\) 0 0
\(831\) 7.13715e38 0.274733
\(832\) 0 0
\(833\) 8.67372e38 0.323220
\(834\) 0 0
\(835\) 4.50110e39 1.62387
\(836\) 0 0
\(837\) −5.48365e38 −0.191547
\(838\) 0 0
\(839\) −4.87871e39 −1.65013 −0.825066 0.565036i \(-0.808862\pi\)
−0.825066 + 0.565036i \(0.808862\pi\)
\(840\) 0 0
\(841\) −3.03370e39 −0.993636
\(842\) 0 0
\(843\) −1.30216e39 −0.413042
\(844\) 0 0
\(845\) −3.38391e39 −1.03957
\(846\) 0 0
\(847\) 2.93652e39 0.873789
\(848\) 0 0
\(849\) 5.09866e38 0.146961
\(850\) 0 0
\(851\) −6.73853e39 −1.88155
\(852\) 0 0
\(853\) 4.52266e38 0.122344 0.0611720 0.998127i \(-0.480516\pi\)
0.0611720 + 0.998127i \(0.480516\pi\)
\(854\) 0 0
\(855\) 3.59404e39 0.941977
\(856\) 0 0
\(857\) −7.11106e39 −1.80590 −0.902949 0.429748i \(-0.858602\pi\)
−0.902949 + 0.429748i \(0.858602\pi\)
\(858\) 0 0
\(859\) −3.37936e39 −0.831624 −0.415812 0.909451i \(-0.636503\pi\)
−0.415812 + 0.909451i \(0.636503\pi\)
\(860\) 0 0
\(861\) 4.99918e39 1.19222
\(862\) 0 0
\(863\) 4.33269e39 1.00141 0.500705 0.865618i \(-0.333074\pi\)
0.500705 + 0.865618i \(0.333074\pi\)
\(864\) 0 0
\(865\) −1.17223e40 −2.62601
\(866\) 0 0
\(867\) −1.42234e39 −0.308848
\(868\) 0 0
\(869\) −2.10220e39 −0.442494
\(870\) 0 0
\(871\) −3.35081e39 −0.683763
\(872\) 0 0
\(873\) 8.72501e38 0.172613
\(874\) 0 0
\(875\) −5.69673e39 −1.09274
\(876\) 0 0
\(877\) −5.02589e39 −0.934800 −0.467400 0.884046i \(-0.654809\pi\)
−0.467400 + 0.884046i \(0.654809\pi\)
\(878\) 0 0
\(879\) 4.12768e39 0.744486
\(880\) 0 0
\(881\) −8.13080e39 −1.42219 −0.711097 0.703094i \(-0.751801\pi\)
−0.711097 + 0.703094i \(0.751801\pi\)
\(882\) 0 0
\(883\) 8.35207e39 1.41685 0.708427 0.705784i \(-0.249405\pi\)
0.708427 + 0.705784i \(0.249405\pi\)
\(884\) 0 0
\(885\) 4.75010e38 0.0781572
\(886\) 0 0
\(887\) −3.26135e39 −0.520510 −0.260255 0.965540i \(-0.583807\pi\)
−0.260255 + 0.965540i \(0.583807\pi\)
\(888\) 0 0
\(889\) 5.66685e39 0.877339
\(890\) 0 0
\(891\) 3.91654e38 0.0588239
\(892\) 0 0
\(893\) 2.36895e40 3.45192
\(894\) 0 0
\(895\) −9.69467e39 −1.37064
\(896\) 0 0
\(897\) −2.86531e39 −0.393073
\(898\) 0 0
\(899\) 5.96467e38 0.0794018
\(900\) 0 0
\(901\) 6.27460e39 0.810590
\(902\) 0 0
\(903\) 3.41131e39 0.427697
\(904\) 0 0
\(905\) 2.01764e40 2.45521
\(906\) 0 0
\(907\) 1.85496e39 0.219096 0.109548 0.993981i \(-0.465060\pi\)
0.109548 + 0.993981i \(0.465060\pi\)
\(908\) 0 0
\(909\) −1.38134e39 −0.158375
\(910\) 0 0
\(911\) 1.23539e40 1.37501 0.687503 0.726182i \(-0.258707\pi\)
0.687503 + 0.726182i \(0.258707\pi\)
\(912\) 0 0
\(913\) 3.17680e39 0.343268
\(914\) 0 0
\(915\) 1.44131e40 1.51207
\(916\) 0 0
\(917\) −1.52938e40 −1.55787
\(918\) 0 0
\(919\) −9.73771e39 −0.963157 −0.481579 0.876403i \(-0.659936\pi\)
−0.481579 + 0.876403i \(0.659936\pi\)
\(920\) 0 0
\(921\) −2.62261e39 −0.251900
\(922\) 0 0
\(923\) −5.90034e39 −0.550369
\(924\) 0 0
\(925\) 2.82187e40 2.55637
\(926\) 0 0
\(927\) −1.29125e38 −0.0113614
\(928\) 0 0
\(929\) −6.31554e38 −0.0539757 −0.0269879 0.999636i \(-0.508592\pi\)
−0.0269879 + 0.999636i \(0.508592\pi\)
\(930\) 0 0
\(931\) 1.00789e40 0.836741
\(932\) 0 0
\(933\) 1.03533e40 0.834984
\(934\) 0 0
\(935\) 7.37600e39 0.577916
\(936\) 0 0
\(937\) 9.85113e38 0.0749897 0.0374948 0.999297i \(-0.488062\pi\)
0.0374948 + 0.999297i \(0.488062\pi\)
\(938\) 0 0
\(939\) −1.38586e40 −1.02502
\(940\) 0 0
\(941\) −1.59948e40 −1.14953 −0.574763 0.818320i \(-0.694906\pi\)
−0.574763 + 0.818320i \(0.694906\pi\)
\(942\) 0 0
\(943\) 2.80049e40 1.95581
\(944\) 0 0
\(945\) −5.51067e39 −0.374003
\(946\) 0 0
\(947\) 7.63606e38 0.0503669 0.0251834 0.999683i \(-0.491983\pi\)
0.0251834 + 0.999683i \(0.491983\pi\)
\(948\) 0 0
\(949\) −4.52411e39 −0.290027
\(950\) 0 0
\(951\) 3.07881e39 0.191843
\(952\) 0 0
\(953\) −2.87976e40 −1.74422 −0.872112 0.489307i \(-0.837250\pi\)
−0.872112 + 0.489307i \(0.837250\pi\)
\(954\) 0 0
\(955\) 2.07390e40 1.22107
\(956\) 0 0
\(957\) −4.26009e38 −0.0243842
\(958\) 0 0
\(959\) −1.67378e40 −0.931425
\(960\) 0 0
\(961\) −1.73001e38 −0.00936016
\(962\) 0 0
\(963\) 3.33866e39 0.175638
\(964\) 0 0
\(965\) 1.10442e40 0.564956
\(966\) 0 0
\(967\) −2.00353e39 −0.0996639 −0.0498319 0.998758i \(-0.515869\pi\)
−0.0498319 + 0.998758i \(0.515869\pi\)
\(968\) 0 0
\(969\) 1.43685e40 0.695090
\(970\) 0 0
\(971\) −1.39930e40 −0.658343 −0.329172 0.944270i \(-0.606769\pi\)
−0.329172 + 0.944270i \(0.606769\pi\)
\(972\) 0 0
\(973\) 1.43345e40 0.655933
\(974\) 0 0
\(975\) 1.19990e40 0.534049
\(976\) 0 0
\(977\) −1.69499e39 −0.0733824 −0.0366912 0.999327i \(-0.511682\pi\)
−0.0366912 + 0.999327i \(0.511682\pi\)
\(978\) 0 0
\(979\) 1.24390e40 0.523864
\(980\) 0 0
\(981\) 8.14762e39 0.333810
\(982\) 0 0
\(983\) −1.61199e40 −0.642526 −0.321263 0.946990i \(-0.604107\pi\)
−0.321263 + 0.946990i \(0.604107\pi\)
\(984\) 0 0
\(985\) −1.01110e40 −0.392106
\(986\) 0 0
\(987\) −3.63226e40 −1.37055
\(988\) 0 0
\(989\) 1.91098e40 0.701629
\(990\) 0 0
\(991\) −6.12985e39 −0.219006 −0.109503 0.993986i \(-0.534926\pi\)
−0.109503 + 0.993986i \(0.534926\pi\)
\(992\) 0 0
\(993\) 1.37773e40 0.479014
\(994\) 0 0
\(995\) 1.32599e40 0.448671
\(996\) 0 0
\(997\) 1.07857e40 0.355191 0.177596 0.984104i \(-0.443168\pi\)
0.177596 + 0.984104i \(0.443168\pi\)
\(998\) 0 0
\(999\) 9.82461e39 0.314906
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 48.28.a.g.1.2 2
4.3 odd 2 6.28.a.d.1.2 2
12.11 even 2 18.28.a.g.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6.28.a.d.1.2 2 4.3 odd 2
18.28.a.g.1.1 2 12.11 even 2
48.28.a.g.1.2 2 1.1 even 1 trivial