Newspace parameters
Level: | \( N \) | \(=\) | \( 48 = 2^{4} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 24 \) |
Character orbit: | \([\chi]\) | \(=\) | 48.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(160.897937926\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{530401}) \) |
Defining polynomial: |
\( x^{2} - x - 132600 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{9}\cdot 3 \) |
Twist minimal: | no (minimal twist has level 3) |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 768\sqrt{530401}\). We also show the integral \(q\)-expansion of the trace form.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | 177147. | 0 | −1.60439e8 | 0 | 8.06460e9 | 0 | 3.13811e10 | 0 | ||||||||||||||||||||||||
1.2 | 0 | 177147. | 0 | 1.13630e8 | 0 | −7.85264e9 | 0 | 3.13811e10 | 0 | |||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(-1\) |
\(3\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 48.24.a.g | 2 | |
4.b | odd | 2 | 1 | 3.24.a.b | ✓ | 2 | |
12.b | even | 2 | 1 | 9.24.a.c | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
3.24.a.b | ✓ | 2 | 4.b | odd | 2 | 1 | |
9.24.a.c | 2 | 12.b | even | 2 | 1 | ||
48.24.a.g | 2 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{2} + 46808820T_{5} - 18230649038977500 \)
acting on \(S_{24}^{\mathrm{new}}(\Gamma_0(48))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} \)
$3$
\( (T - 177147)^{2} \)
$5$
\( T^{2} + 46808820 T - 18\!\cdots\!00 \)
$7$
\( T^{2} - 211963904 T - 63\!\cdots\!80 \)
$11$
\( T^{2} + 1468972366488 T + 45\!\cdots\!72 \)
$13$
\( T^{2} - 10491654264748 T + 19\!\cdots\!72 \)
$17$
\( T^{2} + 210888011520828 T + 10\!\cdots\!96 \)
$19$
\( T^{2} - 907382448537944 T + 10\!\cdots\!80 \)
$23$
\( T^{2} + \cdots + 25\!\cdots\!60 \)
$29$
\( T^{2} + \cdots - 48\!\cdots\!40 \)
$31$
\( T^{2} + \cdots + 15\!\cdots\!00 \)
$37$
\( T^{2} + 478995036787364 T - 14\!\cdots\!80 \)
$41$
\( T^{2} + \cdots - 71\!\cdots\!20 \)
$43$
\( T^{2} + \cdots - 99\!\cdots\!24 \)
$47$
\( T^{2} + \cdots + 17\!\cdots\!44 \)
$53$
\( T^{2} + \cdots - 26\!\cdots\!80 \)
$59$
\( T^{2} + \cdots + 11\!\cdots\!00 \)
$61$
\( T^{2} + \cdots + 38\!\cdots\!76 \)
$67$
\( T^{2} + \cdots + 43\!\cdots\!36 \)
$71$
\( T^{2} + \cdots - 47\!\cdots\!56 \)
$73$
\( T^{2} + \cdots - 66\!\cdots\!80 \)
$79$
\( T^{2} + \cdots - 13\!\cdots\!00 \)
$83$
\( T^{2} + \cdots + 48\!\cdots\!68 \)
$89$
\( T^{2} + \cdots + 20\!\cdots\!80 \)
$97$
\( T^{2} + \cdots + 10\!\cdots\!16 \)
show more
show less