Properties

Label 48.24.a.a
Level $48$
Weight $24$
Character orbit 48.a
Self dual yes
Analytic conductor $160.898$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 24 \)
Character orbit: \([\chi]\) \(=\) 48.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(160.897937926\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 3)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 177147 q^{3} - 48863730 q^{5} + 1723688680 q^{7} + 31381059609 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 177147 q^{3} - 48863730 q^{5} + 1723688680 q^{7} + 31381059609 q^{9} + 1428263180124 q^{11} - 8220964044826 q^{13} + 8656063178310 q^{15} - 5989210330446 q^{17} - 680005481275676 q^{19} - 305346278595960 q^{21} - 15440648191080 q^{23} - 95\!\cdots\!25 q^{25}+ \cdots + 44\!\cdots\!16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −177147. 0 −4.88637e7 0 1.72369e9 0 3.13811e10 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 48.24.a.a 1
4.b odd 2 1 3.24.a.a 1
12.b even 2 1 9.24.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3.24.a.a 1 4.b odd 2 1
9.24.a.a 1 12.b even 2 1
48.24.a.a 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} + 48863730 \) acting on \(S_{24}^{\mathrm{new}}(\Gamma_0(48))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T + 177147 \) Copy content Toggle raw display
$5$ \( T + 48863730 \) Copy content Toggle raw display
$7$ \( T - 1723688680 \) Copy content Toggle raw display
$11$ \( T - 1428263180124 \) Copy content Toggle raw display
$13$ \( T + 8220964044826 \) Copy content Toggle raw display
$17$ \( T + 5989210330446 \) Copy content Toggle raw display
$19$ \( T + 680005481275676 \) Copy content Toggle raw display
$23$ \( T + 15440648191080 \) Copy content Toggle raw display
$29$ \( T - 11\!\cdots\!22 \) Copy content Toggle raw display
$31$ \( T - 90\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T + 12\!\cdots\!70 \) Copy content Toggle raw display
$41$ \( T - 52\!\cdots\!30 \) Copy content Toggle raw display
$43$ \( T - 24\!\cdots\!08 \) Copy content Toggle raw display
$47$ \( T - 23\!\cdots\!24 \) Copy content Toggle raw display
$53$ \( T + 44\!\cdots\!50 \) Copy content Toggle raw display
$59$ \( T - 32\!\cdots\!76 \) Copy content Toggle raw display
$61$ \( T + 19\!\cdots\!22 \) Copy content Toggle raw display
$67$ \( T - 64\!\cdots\!96 \) Copy content Toggle raw display
$71$ \( T + 35\!\cdots\!12 \) Copy content Toggle raw display
$73$ \( T - 33\!\cdots\!70 \) Copy content Toggle raw display
$79$ \( T - 68\!\cdots\!20 \) Copy content Toggle raw display
$83$ \( T - 11\!\cdots\!44 \) Copy content Toggle raw display
$89$ \( T + 23\!\cdots\!74 \) Copy content Toggle raw display
$97$ \( T + 30\!\cdots\!86 \) Copy content Toggle raw display
show more
show less