Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [48,22,Mod(47,48)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(48, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1]))
N = Newforms(chi, 22, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("48.47");
S:= CuspForms(chi, 22);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 48 = 2^{4} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 22 \) |
Character orbit: | \([\chi]\) | \(=\) | 48.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(134.149125258\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
47.1 | 0 | −102247. | − | 2435.85i | 0 | − | 1.44607e7i | 0 | 1.26694e9i | 0 | 1.04485e10 | + | 4.98117e8i | 0 | |||||||||||||
47.2 | 0 | −102247. | + | 2435.85i | 0 | 1.44607e7i | 0 | − | 1.26694e9i | 0 | 1.04485e10 | − | 4.98117e8i | 0 | |||||||||||||
47.3 | 0 | −102214. | − | 3563.40i | 0 | 3.58965e7i | 0 | − | 2.03455e8i | 0 | 1.04350e10 | + | 7.28456e8i | 0 | |||||||||||||
47.4 | 0 | −102214. | + | 3563.40i | 0 | − | 3.58965e7i | 0 | 2.03455e8i | 0 | 1.04350e10 | − | 7.28456e8i | 0 | |||||||||||||
47.5 | 0 | −87580.8 | − | 52820.0i | 0 | 2.44170e7i | 0 | 1.13340e9i | 0 | 4.88046e9 | + | 9.25203e9i | 0 | ||||||||||||||
47.6 | 0 | −87580.8 | + | 52820.0i | 0 | − | 2.44170e7i | 0 | − | 1.13340e9i | 0 | 4.88046e9 | − | 9.25203e9i | 0 | ||||||||||||
47.7 | 0 | −66724.2 | − | 77512.8i | 0 | − | 3.35931e6i | 0 | − | 5.38569e8i | 0 | −1.55613e9 | + | 1.03440e10i | 0 | ||||||||||||
47.8 | 0 | −66724.2 | + | 77512.8i | 0 | 3.35931e6i | 0 | 5.38569e8i | 0 | −1.55613e9 | − | 1.03440e10i | 0 | ||||||||||||||
47.9 | 0 | −51369.6 | − | 88439.3i | 0 | − | 1.40544e6i | 0 | − | 5.11154e8i | 0 | −5.18267e9 | + | 9.08619e9i | 0 | ||||||||||||
47.10 | 0 | −51369.6 | + | 88439.3i | 0 | 1.40544e6i | 0 | 5.11154e8i | 0 | −5.18267e9 | − | 9.08619e9i | 0 | ||||||||||||||
47.11 | 0 | −31002.5 | − | 97463.8i | 0 | − | 2.82711e7i | 0 | 1.02999e8i | 0 | −8.53805e9 | + | 6.04324e9i | 0 | |||||||||||||
47.12 | 0 | −31002.5 | + | 97463.8i | 0 | 2.82711e7i | 0 | − | 1.02999e8i | 0 | −8.53805e9 | − | 6.04324e9i | 0 | |||||||||||||
47.13 | 0 | −554.307 | − | 102274.i | 0 | 3.49802e7i | 0 | 7.47725e8i | 0 | −1.04597e10 | + | 1.13383e8i | 0 | ||||||||||||||
47.14 | 0 | −554.307 | + | 102274.i | 0 | − | 3.49802e7i | 0 | − | 7.47725e8i | 0 | −1.04597e10 | − | 1.13383e8i | 0 | ||||||||||||
47.15 | 0 | 554.307 | − | 102274.i | 0 | − | 3.49802e7i | 0 | 7.47725e8i | 0 | −1.04597e10 | − | 1.13383e8i | 0 | |||||||||||||
47.16 | 0 | 554.307 | + | 102274.i | 0 | 3.49802e7i | 0 | − | 7.47725e8i | 0 | −1.04597e10 | + | 1.13383e8i | 0 | |||||||||||||
47.17 | 0 | 31002.5 | − | 97463.8i | 0 | 2.82711e7i | 0 | 1.02999e8i | 0 | −8.53805e9 | − | 6.04324e9i | 0 | ||||||||||||||
47.18 | 0 | 31002.5 | + | 97463.8i | 0 | − | 2.82711e7i | 0 | − | 1.02999e8i | 0 | −8.53805e9 | + | 6.04324e9i | 0 | ||||||||||||
47.19 | 0 | 51369.6 | − | 88439.3i | 0 | 1.40544e6i | 0 | − | 5.11154e8i | 0 | −5.18267e9 | − | 9.08619e9i | 0 | |||||||||||||
47.20 | 0 | 51369.6 | + | 88439.3i | 0 | − | 1.40544e6i | 0 | 5.11154e8i | 0 | −5.18267e9 | + | 9.08619e9i | 0 | |||||||||||||
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
4.b | odd | 2 | 1 | inner |
12.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 48.22.c.c | ✓ | 28 |
3.b | odd | 2 | 1 | inner | 48.22.c.c | ✓ | 28 |
4.b | odd | 2 | 1 | inner | 48.22.c.c | ✓ | 28 |
12.b | even | 2 | 1 | inner | 48.22.c.c | ✓ | 28 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
48.22.c.c | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
48.22.c.c | ✓ | 28 | 3.b | odd | 2 | 1 | inner |
48.22.c.c | ✓ | 28 | 4.b | odd | 2 | 1 | inner |
48.22.c.c | ✓ | 28 | 12.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{14} + \cdots + 35\!\cdots\!00 \)
acting on \(S_{22}^{\mathrm{new}}(48, [\chi])\).