[N,k,chi] = [48,22,Mod(47,48)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(48, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1]))
N = Newforms(chi, 22, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("48.47");
S:= CuspForms(chi, 22);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/48\mathbb{Z}\right)^\times\).
\(n\)
\(17\)
\(31\)
\(37\)
\(\chi(n)\)
\(-1\)
\(-1\)
\(1\)
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{6} + \cdots + 90\!\cdots\!00 \)
T5^6 + 2013998593162176*T5^4 + 1019682397753142987729349504000*T5^2 + 90570694515423374488074569298677468160000000
acting on \(S_{22}^{\mathrm{new}}(48, [\chi])\).
$p$
$F_p(T)$
$2$
\( T^{12} \)
T^12
$3$
\( T^{12} - 3111589134 T^{10} + \cdots + 13\!\cdots\!29 \)
T^12 - 3111589134*T^10 + 60282365953174767207*T^8 + 742966831940131258332995648988*T^6 + 6596035545052280533302605381881937659263*T^4 - 37253548148710007055309262909759633466603149270254*T^2 + 1310020508637620352391208095712502073964245732475093456566329
$5$
\( (T^{6} + \cdots + 90\!\cdots\!00)^{2} \)
(T^6 + 2013998593162176*T^4 + 1019682397753142987729349504000*T^2 + 90570694515423374488074569298677468160000000)^2
$7$
\( (T^{6} + \cdots + 98\!\cdots\!68)^{2} \)
(T^6 + 2060004866502394980*T^4 + 354369870722522382386246590730826672*T^2 + 9859468284779075440683285700194101155189042714507968)^2
$11$
\( (T^{6} + \cdots - 53\!\cdots\!00)^{2} \)
(T^6 - 27213562023093075532608*T^4 + 217425290687478398094504706446540031577558016*T^2 - 536961215236981115821441831797015713911484641971824428074835968000)^2
$13$
\( (T^{3} + 389524907670 T^{2} + \cdots - 32\!\cdots\!40)^{4} \)
(T^3 + 389524907670*T^2 - 289209453400324280200884*T - 32331277704878882601631157143078840)^4
$17$
\( (T^{6} + \cdots + 75\!\cdots\!00)^{2} \)
(T^6 + 338709399914423962704632832*T^4 + 31918233888287943414232420563451728354325209205702656*T^2 + 754133881211269378573978686367628264182860720936939057050792071799400038400000)^2
$19$
\( (T^{6} + \cdots + 41\!\cdots\!00)^{2} \)
(T^6 + 2451895788634457603902716708*T^4 + 256993349578863535708248537439830223662411516512093616*T^2 + 4102369083561153586788746167879193983805444730419302861662039403358734434436800)^2
$23$
\( (T^{6} + \cdots - 34\!\cdots\!80)^{2} \)
(T^6 - 41304897001549010000146205952*T^4 + 96422340379250212722004264826600432400558152745907961856*T^2 - 34137163840271837249762377047314757032439724890679698855856158804955797012432814080)^2
$29$
\( (T^{6} + \cdots + 78\!\cdots\!00)^{2} \)
(T^6 + 15595340209212041653854954778560*T^4 + 65370155527797773133892805774370119027411212683856419273600000*T^2 + 78332293366988342091952803916170900749728436047993659189729691940155430491609929600000000000)^2
$31$
\( (T^{6} + \cdots + 14\!\cdots\!00)^{2} \)
(T^6 + 95355877064448509596918789691652*T^4 + 2237567157007230078474894017567162388350059157164151453831872176*T^2 + 14030948568257183323375473508194205251427749251147371785079676392383153332252819785708099396800)^2
$37$
\( (T^{3} + \cdots + 68\!\cdots\!20)^{4} \)
(T^3 - 49642916057957490*T^2 + 341546354384626778319391875374316*T + 6895694426226706420644067990808765349762015031720)^4
$41$
\( (T^{6} + \cdots + 36\!\cdots\!40)^{2} \)
(T^6 + 14027673357289695590878968706459392*T^4 + 14785260605114525166753187167475290261390698784916698839321274925056*T^2 + 3645074700427110072430629337191381440685458199690464560010662603076614736737484250724885193702768640)^2
$43$
\( (T^{6} + \cdots + 36\!\cdots\!92)^{2} \)
(T^6 + 6555943412238949650126699082761924*T^4 + 3818259106108224696358349554675281207081006083895852943201999857840*T^2 + 362901965493169234517929130244823435863705511134146005216809034314621449125825021847616136044748992)^2
$47$
\( (T^{6} + \cdots - 34\!\cdots\!00)^{2} \)
(T^6 - 533338768065733486639284911492551680*T^4 + 82453801457298534204586038503181268014725851471146345985134249345024000*T^2 - 3498332431253861111692304138212169215322978188664659041017523505883368339473996070817610186720333004800000)^2
$53$
\( (T^{6} + \cdots + 21\!\cdots\!00)^{2} \)
(T^6 + 8507199640722928053406930927786041792*T^4 + 23560207853457490869637386613077613703310748599506477077405668929905929216*T^2 + 21051835628662559119536059790583064509272237308459733526020888188279276121528178735647528104277426897936384000)^2
$59$
\( (T^{6} + \cdots - 11\!\cdots\!00)^{2} \)
(T^6 - 482479407563097218780719082098988352*T^4 + 61128871019594995947000867498911039658756469329215889934043068513176576*T^2 - 1148136271611932461753932112931940583056517691567605255940926761668993718290813984046624685003077427200000)^2
$61$
\( (T^{3} + \cdots - 67\!\cdots\!68)^{4} \)
(T^3 - 4705862677377220698*T^2 - 41703222359569005139204098758374644084*T - 6717446222515449393863819906389365071301165669577634168)^4
$67$
\( (T^{6} + \cdots + 53\!\cdots\!28)^{2} \)
(T^6 + 763335705837938048674908101026719240996*T^4 + 69902016769732061327334351269658429023171621916501280747271868214417696417200*T^2 + 5320700865607254952475411307247002574539963720217924180193656981577525283304944445876969148330452644798214964928)^2
$71$
\( (T^{6} + \cdots - 84\!\cdots\!00)^{2} \)
(T^6 - 1580788716113793164664590723810597799168*T^4 + 720985205727005790607830731635499267314744765610469658051489416288281727123456*T^2 - 84667161375530314043476916310149758899232519814889093924390869642493631553996801802467875163536466493430578020352000)^2
$73$
\( (T^{3} + \cdots - 44\!\cdots\!80)^{4} \)
(T^3 + 35440604943281097090*T^2 - 1350731053509581624742250219220455011156*T - 44198637734428042465382099575065766278231811762767527557480)^4
$79$
\( (T^{6} + \cdots + 15\!\cdots\!00)^{2} \)
(T^6 + 41545924972924125968728414397546727147588*T^4 + 465199069710633264260892179457505937832190700666758193255732549107200012688092336*T^2 + 1568907186847600511594308054040992974090288543605136389487310162832009025752184116970186047018465380643228077191184939200)^2
$83$
\( (T^{6} + \cdots - 96\!\cdots\!80)^{2} \)
(T^6 - 38196206290381081413731430190639834859328*T^4 + 364273304685665874162285432099243394016116764780752119260988453122513542087740416*T^2 - 968498426942479448992105323863578980629018742951574315576238099057616482305636047320248935709067526255042101416316436480)^2
$89$
\( (T^{6} + \cdots + 34\!\cdots\!40)^{2} \)
(T^6 + 462081656322586392634775586245576854134528*T^4 + 53942803358008883999748785306239850963117289990773754554165942668508242641447469056*T^2 + 340075025076401983028419720226798451213969526952518063501173391594184677045629127852492822465871623822932472967375817277440)^2
$97$
\( (T^{3} + \cdots - 19\!\cdots\!00)^{4} \)
(T^3 + 1179986463484917830250*T^2 + 108430030313921475165944385288956748909900*T - 19126263821404262090595653702551090267469939325601863543805000)^4
show more
show less