Newspace parameters
Level: | \( N \) | \(=\) | \( 48 = 2^{4} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 22 \) |
Character orbit: | \([\chi]\) | \(=\) | 48.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(134.149125258\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-3}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} - x + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2\cdot 3^{2} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 9\sqrt{-3}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/48\mathbb{Z}\right)^\times\).
\(n\) | \(17\) | \(31\) | \(37\) |
\(\chi(n)\) | \(-1\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
47.1 |
|
0 | − | 102276.i | 0 | 0 | 0 | 9.85315e8i | 0 | −1.04604e10 | 0 | |||||||||||||||||||||||
47.2 | 0 | 102276.i | 0 | 0 | 0 | − | 9.85315e8i | 0 | −1.04604e10 | 0 | ||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | CM by \(\Q(\sqrt{-3}) \) |
4.b | odd | 2 | 1 | inner |
12.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 48.22.c.a | ✓ | 2 |
3.b | odd | 2 | 1 | CM | 48.22.c.a | ✓ | 2 |
4.b | odd | 2 | 1 | inner | 48.22.c.a | ✓ | 2 |
12.b | even | 2 | 1 | inner | 48.22.c.a | ✓ | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
48.22.c.a | ✓ | 2 | 1.a | even | 1 | 1 | trivial |
48.22.c.a | ✓ | 2 | 3.b | odd | 2 | 1 | CM |
48.22.c.a | ✓ | 2 | 4.b | odd | 2 | 1 | inner |
48.22.c.a | ✓ | 2 | 12.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5} \)
acting on \(S_{22}^{\mathrm{new}}(48, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} \)
$3$
\( T^{2} + 10460353203 \)
$5$
\( T^{2} \)
$7$
\( T^{2} + 97\!\cdots\!28 \)
$11$
\( T^{2} \)
$13$
\( (T - 370076825230)^{2} \)
$17$
\( T^{2} \)
$19$
\( T^{2} + 15\!\cdots\!00 \)
$23$
\( T^{2} \)
$29$
\( T^{2} \)
$31$
\( T^{2} + 15\!\cdots\!00 \)
$37$
\( (T + 57\!\cdots\!90)^{2} \)
$41$
\( T^{2} \)
$43$
\( T^{2} + 99\!\cdots\!72 \)
$47$
\( T^{2} \)
$53$
\( T^{2} \)
$59$
\( T^{2} \)
$61$
\( (T + 10\!\cdots\!38)^{2} \)
$67$
\( T^{2} + 84\!\cdots\!68 \)
$71$
\( T^{2} \)
$73$
\( (T - 39\!\cdots\!90)^{2} \)
$79$
\( T^{2} + 81\!\cdots\!00 \)
$83$
\( T^{2} \)
$89$
\( T^{2} \)
$97$
\( (T - 11\!\cdots\!30)^{2} \)
show more
show less