Defining parameters
Level: | \( N \) | \(=\) | \( 48 = 2^{4} \cdot 3 \) |
Weight: | \( k \) | \(=\) | \( 22 \) |
Character orbit: | \([\chi]\) | \(=\) | 48.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 12 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(176\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{22}(48, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 174 | 42 | 132 |
Cusp forms | 162 | 42 | 120 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{22}^{\mathrm{new}}(48, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
48.22.c.a | $2$ | $134.149$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-3^{8}\zeta_{6}q^{3}+63207986\zeta_{6}q^{7}-3^{21}q^{9}+\cdots\) |
48.22.c.b | $12$ | $134.149$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{3}-\beta _{5}q^{5}+(3727\beta _{1}+2\beta _{3}+\cdots)q^{7}+\cdots\) |
48.22.c.c | $28$ | $134.149$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{22}^{\mathrm{old}}(48, [\chi])\) into lower level spaces
\( S_{22}^{\mathrm{old}}(48, [\chi]) \cong \) \(S_{22}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 3}\)