[N,k,chi] = [48,22,Mod(1,48)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(48, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 22, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("48.1");
S:= CuspForms(chi, 22);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2880\sqrt{3190177}\).
We also show the integral \(q\)-expansion of the trace form .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(2\)
\(-1\)
\(3\)
\(-1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{2} - 28827900T_{5} - 453753148117500 \)
T5^2 - 28827900*T5 - 453753148117500
acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(48))\).
$p$
$F_p(T)$
$2$
\( T^{2} \)
T^2
$3$
\( (T - 59049)^{2} \)
(T - 59049)^2
$5$
\( T^{2} + \cdots - 453753148117500 \)
T^2 - 28827900*T - 453753148117500
$7$
\( T^{2} + 509669728 T - 10\!\cdots\!04 \)
T^2 + 509669728*T - 1068869617548072704
$11$
\( T^{2} - 76050855288 T + 11\!\cdots\!36 \)
T^2 - 76050855288*T + 1131715696407824529936
$13$
\( T^{2} + 809326043300 T + 13\!\cdots\!00 \)
T^2 + 809326043300*T + 134441974199671034911300
$17$
\( T^{2} - 831385897668 T - 98\!\cdots\!44 \)
T^2 - 831385897668*T - 98377434657833008321349244
$19$
\( T^{2} + 29817568652920 T + 22\!\cdots\!00 \)
T^2 + 29817568652920*T + 221724396857612484997584400
$23$
\( T^{2} + 62680641406128 T - 11\!\cdots\!04 \)
T^2 + 62680641406128*T - 11911748604905548568583520704
$29$
\( T^{2} + \cdots - 68\!\cdots\!24 \)
T^2 + 2113791894718452*T - 6815648892596016920330654760924
$31$
\( T^{2} + \cdots + 85\!\cdots\!76 \)
T^2 + 6575738314225648*T + 8586213320250870312211971059776
$37$
\( T^{2} + \cdots - 10\!\cdots\!36 \)
T^2 - 34811548897106284*T - 1011406881237129839750911839956636
$41$
\( T^{2} + \cdots + 30\!\cdots\!00 \)
T^2 - 111628536749375220*T + 3039633994379144771366034742347300
$43$
\( T^{2} + \cdots + 15\!\cdots\!76 \)
T^2 + 250859109258832648*T + 15704400748956399781644343725173776
$47$
\( T^{2} + \cdots + 98\!\cdots\!16 \)
T^2 + 773718896888534592*T + 98770963654457401310088101983650816
$53$
\( T^{2} + \cdots + 81\!\cdots\!44 \)
T^2 + 589751680675248324*T + 81173021116621692858931661318522244
$59$
\( T^{2} + \cdots - 88\!\cdots\!64 \)
T^2 - 2865708124062989112*T - 8897087531566436233264640780638439664
$61$
\( T^{2} + \cdots + 75\!\cdots\!84 \)
T^2 + 17394704031104736356*T + 75250631868414293114747341532672786884
$67$
\( T^{2} + \cdots - 37\!\cdots\!24 \)
T^2 - 15757929817647896648*T - 3706042175369839148141239114723203824
$71$
\( T^{2} + \cdots - 77\!\cdots\!00 \)
T^2 + 9134476240415397840*T - 777226371507109639530150511147167153600
$73$
\( T^{2} + \cdots - 77\!\cdots\!16 \)
T^2 - 14362399003114082644*T - 779354113294873077199441037043804729116
$79$
\( T^{2} + \cdots - 86\!\cdots\!96 \)
T^2 - 347027209795696304*T - 863551614913434383557122146836754588096
$83$
\( T^{2} + \cdots + 25\!\cdots\!96 \)
T^2 + 320685874118443742328*T + 25001445911542127134648499428416377454096
$89$
\( T^{2} + \cdots + 96\!\cdots\!00 \)
T^2 - 691379668751362059060*T + 96233885512957909815736272391099325096100
$97$
\( T^{2} + \cdots + 34\!\cdots\!64 \)
T^2 + 1174056891416588162684*T + 340157960253008092691699164196914535228164
show more
show less