[N,k,chi] = [48,22,Mod(1,48)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(48, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 22, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("48.1");
S:= CuspForms(chi, 22);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 16128\sqrt{649}\).
We also show the integral \(q\)-expansion of the trace form .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(2\)
\(-1\)
\(3\)
\(1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{2} - 996876T_{5} - 473947100199900 \)
T5^2 - 996876*T5 - 473947100199900
acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(48))\).
$p$
$F_p(T)$
$2$
\( T^{2} \)
T^2
$3$
\( (T + 59049)^{2} \)
(T + 59049)^2
$5$
\( T^{2} + \cdots - 473947100199900 \)
T^2 - 996876*T - 473947100199900
$7$
\( T^{2} + 679896112 T + 30\!\cdots\!00 \)
T^2 + 679896112*T + 30226195943809600
$11$
\( T^{2} + 219869122968 T + 95\!\cdots\!12 \)
T^2 + 219869122968*T + 9567968315029628871312
$13$
\( T^{2} + 48468909956 T - 58\!\cdots\!92 \)
T^2 + 48468909956*T - 581175613138900030730492
$17$
\( T^{2} + 11333529041436 T + 24\!\cdots\!24 \)
T^2 + 11333529041436*T + 24865365883742002897661124
$19$
\( T^{2} + 11960585011624 T - 12\!\cdots\!20 \)
T^2 + 11960585011624*T - 1254902738782871092923486320
$23$
\( T^{2} - 146508390063504 T - 85\!\cdots\!00 \)
T^2 - 146508390063504*T - 8592493658094899828360971200
$29$
\( T^{2} + \cdots - 26\!\cdots\!00 \)
T^2 + 1798520043674052*T - 2678625580534482741391902181500
$31$
\( T^{2} + \cdots + 23\!\cdots\!00 \)
T^2 + 11169107526944992*T + 23459030795921047816036853920000
$37$
\( T^{2} + \cdots - 54\!\cdots\!20 \)
T^2 - 12736264858660012*T - 541976177001575793817733343976220
$41$
\( T^{2} + \cdots - 32\!\cdots\!80 \)
T^2 - 122972020616468052*T - 3236320683504071416217415206788380
$43$
\( T^{2} + \cdots + 20\!\cdots\!44 \)
T^2 + 288455418162270040*T + 20422014052056576252333627821382544
$47$
\( T^{2} + \cdots + 17\!\cdots\!16 \)
T^2 + 837243745741596960*T + 175145391146610038122501400267510016
$53$
\( T^{2} + \cdots - 20\!\cdots\!60 \)
T^2 + 43007964012775764*T - 207030050658774363076063899255717660
$59$
\( T^{2} + \cdots - 83\!\cdots\!20 \)
T^2 - 3523823330903857224*T - 8330218510901569204890916469617236720
$61$
\( T^{2} + \cdots - 74\!\cdots\!84 \)
T^2 + 1779023128451013860*T - 7499211833306953514709935971949729084
$67$
\( T^{2} + \cdots + 38\!\cdots\!04 \)
T^2 - 16454068667621610296*T + 38426138072633986075475758464585324304
$71$
\( T^{2} + \cdots + 73\!\cdots\!84 \)
T^2 + 17379227131150420944*T + 73731940006249948459840818142158840384
$73$
\( T^{2} + \cdots - 11\!\cdots\!40 \)
T^2 - 50891146268473989076*T - 1177475052967536980841330181448812006940
$79$
\( T^{2} + \cdots + 69\!\cdots\!00 \)
T^2 - 54055785594190591040*T + 696870771172646553940685208956000896000
$83$
\( T^{2} + \cdots + 33\!\cdots\!12 \)
T^2 + 111108429277666677288*T + 33821569729627591043863309060411124112
$89$
\( T^{2} + \cdots - 17\!\cdots\!80 \)
T^2 - 226920767965448065524*T - 1799807783379772542206757843646509935580
$97$
\( T^{2} + \cdots - 27\!\cdots\!76 \)
T^2 + 128331469252795746236*T - 274582606355521712179751768740010094660476
show more
show less