[N,k,chi] = [48,22,Mod(1,48)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(48, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 22, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("48.1");
S:= CuspForms(chi, 22);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(2\)
\(-1\)
\(3\)
\(-1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5} + 41512770 \)
T5 + 41512770
acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(48))\).
$p$
$F_p(T)$
$2$
\( T \)
T
$3$
\( T - 59049 \)
T - 59049
$5$
\( T + 41512770 \)
T + 41512770
$7$
\( T + 538429808 \)
T + 538429808
$11$
\( T - 64113040188 \)
T - 64113040188
$13$
\( T + 130980107986 \)
T + 130980107986
$17$
\( T - 8242029723618 \)
T - 8242029723618
$19$
\( T + 13492101753020 \)
T + 13492101753020
$23$
\( T - 233184825844776 \)
T - 233184825844776
$29$
\( T + 2024562031123770 \)
T + 2024562031123770
$31$
\( T - 6869194988701768 \)
T - 6869194988701768
$37$
\( T - 3443998107027638 \)
T - 3443998107027638
$41$
\( T + 21\!\cdots\!58 \)
T + 21842403084625158
$43$
\( T - 71\!\cdots\!56 \)
T - 71792816814133756
$47$
\( T + 28\!\cdots\!48 \)
T + 283544719418655648
$53$
\( T + 21\!\cdots\!46 \)
T + 2172285419049898146
$59$
\( T + 15\!\cdots\!60 \)
T + 1534831476719068260
$61$
\( T - 43\!\cdots\!62 \)
T - 4311589520797626062
$67$
\( T + 92\!\cdots\!68 \)
T + 9243910904037307868
$71$
\( T - 20\!\cdots\!28 \)
T - 20387361256404760728
$73$
\( T - 16\!\cdots\!74 \)
T - 16617754439328636074
$79$
\( T + 67\!\cdots\!80 \)
T + 67940304745507627880
$83$
\( T + 39\!\cdots\!84 \)
T + 39503732340682314684
$89$
\( T - 41\!\cdots\!90 \)
T - 41611676186839694490
$97$
\( T - 57\!\cdots\!98 \)
T - 57181473208903260098
show more
show less