[N,k,chi] = [48,22,Mod(1,48)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(48, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 22, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("48.1");
S:= CuspForms(chi, 22);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(2\)
\(-1\)
\(3\)
\(1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5} + 23245050 \)
T5 + 23245050
acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(48))\).
$p$
$F_p(T)$
$2$
\( T \)
T
$3$
\( T + 59049 \)
T + 59049
$5$
\( T + 23245050 \)
T + 23245050
$7$
\( T - 1322977768 \)
T - 1322977768
$11$
\( T - 109174443828 \)
T - 109174443828
$13$
\( T - 468325115966 \)
T - 468325115966
$17$
\( T - 2654798072562 \)
T - 2654798072562
$19$
\( T - 43712786306860 \)
T - 43712786306860
$23$
\( T - 216861233964744 \)
T - 216861233964744
$29$
\( T - 2535247265345310 \)
T - 2535247265345310
$31$
\( T + 5132915444930672 \)
T + 5132915444930672
$37$
\( T + 8126962096433578 \)
T + 8126962096433578
$41$
\( T + 28\!\cdots\!18 \)
T + 28546174551317718
$43$
\( T + 60\!\cdots\!16 \)
T + 60426656396902316
$47$
\( T - 31\!\cdots\!88 \)
T - 316578527337771888
$53$
\( T - 23\!\cdots\!86 \)
T - 237962956198086486
$59$
\( T - 19\!\cdots\!40 \)
T - 1932323017293179940
$61$
\( T + 55\!\cdots\!78 \)
T + 5540333075504971378
$67$
\( T + 19\!\cdots\!72 \)
T + 19977690098489923172
$71$
\( T - 43\!\cdots\!68 \)
T - 43257338948428460568
$73$
\( T - 16\!\cdots\!06 \)
T - 1683404149334166506
$79$
\( T + 15\!\cdots\!60 \)
T + 159081535530354452960
$83$
\( T - 26\!\cdots\!64 \)
T - 265853420659068579564
$89$
\( T + 17\!\cdots\!10 \)
T + 17496064778396968710
$97$
\( T + 36\!\cdots\!38 \)
T + 361656712539028124638
show more
show less