Properties

Label 48.2.j.a.37.1
Level $48$
Weight $2$
Character 48.37
Analytic conductor $0.383$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [48,2,Mod(13,48)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(48, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("48.13");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 48.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.383281929702\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.18939904.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 14x^{6} - 28x^{5} + 43x^{4} - 44x^{3} + 30x^{2} - 12x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 37.1
Root \(0.500000 - 2.10607i\) of defining polynomial
Character \(\chi\) \(=\) 48.37
Dual form 48.2.j.a.13.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34277 + 0.443806i) q^{2} +(0.707107 - 0.707107i) q^{3} +(1.60607 - 1.19186i) q^{4} +(1.27133 + 1.27133i) q^{5} +(-0.635665 + 1.26330i) q^{6} -0.158942i q^{7} +(-1.62764 + 2.31318i) q^{8} -1.00000i q^{9} +O(q^{10})\) \(q+(-1.34277 + 0.443806i) q^{2} +(0.707107 - 0.707107i) q^{3} +(1.60607 - 1.19186i) q^{4} +(1.27133 + 1.27133i) q^{5} +(-0.635665 + 1.26330i) q^{6} -0.158942i q^{7} +(-1.62764 + 2.31318i) q^{8} -1.00000i q^{9} +(-2.27133 - 1.14288i) q^{10} +(-3.79793 - 3.79793i) q^{11} +(0.292893 - 1.97844i) q^{12} +(-4.21215 + 4.21215i) q^{13} +(0.0705392 + 0.213422i) q^{14} +1.79793 q^{15} +(1.15894 - 3.82843i) q^{16} +3.05320 q^{17} +(0.443806 + 1.34277i) q^{18} +(-2.15894 + 2.15894i) q^{19} +(3.55710 + 0.526602i) q^{20} +(-0.112389 - 0.112389i) q^{21} +(6.78530 + 3.41421i) q^{22} +2.82843i q^{23} +(0.484753 + 2.78658i) q^{24} -1.76744i q^{25} +(3.78658 - 7.52533i) q^{26} +(-0.707107 - 0.707107i) q^{27} +(-0.189436 - 0.255272i) q^{28} +(2.09976 - 2.09976i) q^{29} +(-2.41421 + 0.797933i) q^{30} +4.15894 q^{31} +(0.142883 + 5.65505i) q^{32} -5.37109 q^{33} +(-4.09976 + 1.35503i) q^{34} +(0.202067 - 0.202067i) q^{35} +(-1.19186 - 1.60607i) q^{36} +(-5.98737 - 5.98737i) q^{37} +(1.94082 - 3.85712i) q^{38} +5.95687i q^{39} +(-5.01008 + 0.871553i) q^{40} -2.60365i q^{41} +(0.200791 + 0.101034i) q^{42} +(5.75481 + 5.75481i) q^{43} +(-10.6264 - 1.57316i) q^{44} +(1.27133 - 1.27133i) q^{45} +(-1.25527 - 3.79793i) q^{46} -2.82843 q^{47} +(-1.88761 - 3.52660i) q^{48} +6.97474 q^{49} +(0.784399 + 2.37327i) q^{50} +(2.15894 - 2.15894i) q^{51} +(-1.74473 + 11.7853i) q^{52} +(3.55710 + 3.55710i) q^{53} +(1.26330 + 0.635665i) q^{54} -9.65685i q^{55} +(0.367661 + 0.258699i) q^{56} +3.05320i q^{57} +(-1.88761 + 3.75138i) q^{58} +(4.00000 + 4.00000i) q^{59} +(2.88761 - 2.14288i) q^{60} +(3.66949 - 3.66949i) q^{61} +(-5.58451 + 1.84576i) q^{62} -0.158942 q^{63} +(-2.70160 - 7.53003i) q^{64} -10.7101 q^{65} +(7.21215 - 2.38372i) q^{66} +(0.767438 - 0.767438i) q^{67} +(4.90367 - 3.63899i) q^{68} +(2.00000 + 2.00000i) q^{69} +(-0.181652 + 0.361009i) q^{70} +0.317883i q^{71} +(2.31318 + 1.62764i) q^{72} -1.33897i q^{73} +(10.6969 + 5.38244i) q^{74} +(-1.24977 - 1.24977i) q^{75} +(-0.894263 + 6.04057i) q^{76} +(-0.603650 + 0.603650i) q^{77} +(-2.64369 - 7.99872i) q^{78} -9.69382 q^{79} +(6.34059 - 3.39380i) q^{80} -1.00000 q^{81} +(1.15551 + 3.49611i) q^{82} +(0.115816 - 0.115816i) q^{83} +(-0.314456 - 0.0465529i) q^{84} +(3.88163 + 3.88163i) q^{85} +(-10.2814 - 5.17338i) q^{86} -2.96951i q^{87} +(14.9670 - 2.60365i) q^{88} +14.3990i q^{89} +(-1.14288 + 2.27133i) q^{90} +(0.669485 + 0.669485i) q^{91} +(3.37109 + 4.54266i) q^{92} +(2.94082 - 2.94082i) q^{93} +(3.79793 - 1.25527i) q^{94} -5.48946 q^{95} +(4.09976 + 3.89769i) q^{96} -0.571533 q^{97} +(-9.36548 + 3.09543i) q^{98} +(-3.79793 + 3.79793i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{4} - 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 4 q^{4} - 12 q^{8} - 8 q^{10} - 8 q^{11} + 8 q^{12} + 12 q^{14} - 8 q^{15} + 4 q^{18} - 8 q^{19} + 16 q^{20} + 4 q^{24} + 20 q^{26} + 8 q^{28} - 16 q^{29} - 8 q^{30} + 24 q^{31} + 24 q^{35} - 4 q^{36} - 16 q^{37} - 8 q^{38} + 16 q^{40} - 20 q^{42} - 8 q^{43} - 40 q^{44} - 8 q^{46} - 16 q^{48} - 8 q^{49} - 36 q^{50} + 8 q^{51} - 16 q^{52} + 16 q^{53} + 4 q^{54} - 16 q^{58} + 32 q^{59} + 24 q^{60} + 16 q^{61} - 12 q^{62} + 8 q^{63} + 8 q^{64} - 16 q^{65} + 24 q^{66} - 16 q^{67} + 32 q^{68} + 16 q^{69} + 32 q^{70} - 4 q^{72} + 52 q^{74} + 16 q^{75} + 8 q^{76} + 16 q^{77} - 12 q^{78} - 24 q^{79} + 8 q^{80} - 8 q^{81} + 40 q^{82} - 40 q^{83} - 24 q^{84} - 16 q^{85} - 16 q^{86} + 32 q^{88} - 8 q^{90} - 8 q^{91} - 16 q^{92} + 8 q^{94} - 48 q^{95} - 40 q^{98} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/48\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(31\) \(37\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34277 + 0.443806i −0.949483 + 0.313818i
\(3\) 0.707107 0.707107i 0.408248 0.408248i
\(4\) 1.60607 1.19186i 0.803037 0.595930i
\(5\) 1.27133 + 1.27133i 0.568556 + 0.568556i 0.931724 0.363168i \(-0.118305\pi\)
−0.363168 + 0.931724i \(0.618305\pi\)
\(6\) −0.635665 + 1.26330i −0.259509 + 0.515741i
\(7\) 0.158942i 0.0600743i −0.999549 0.0300371i \(-0.990437\pi\)
0.999549 0.0300371i \(-0.00956256\pi\)
\(8\) −1.62764 + 2.31318i −0.575456 + 0.817833i
\(9\) 1.00000i 0.333333i
\(10\) −2.27133 1.14288i −0.718258 0.361411i
\(11\) −3.79793 3.79793i −1.14512 1.14512i −0.987500 0.157620i \(-0.949618\pi\)
−0.157620 0.987500i \(-0.550382\pi\)
\(12\) 0.292893 1.97844i 0.0845510 0.571126i
\(13\) −4.21215 + 4.21215i −1.16824 + 1.16824i −0.185617 + 0.982622i \(0.559428\pi\)
−0.982622 + 0.185617i \(0.940572\pi\)
\(14\) 0.0705392 + 0.213422i 0.0188524 + 0.0570395i
\(15\) 1.79793 0.464224
\(16\) 1.15894 3.82843i 0.289735 0.957107i
\(17\) 3.05320 0.740511 0.370255 0.928930i \(-0.379270\pi\)
0.370255 + 0.928930i \(0.379270\pi\)
\(18\) 0.443806 + 1.34277i 0.104606 + 0.316494i
\(19\) −2.15894 + 2.15894i −0.495295 + 0.495295i −0.909970 0.414675i \(-0.863895\pi\)
0.414675 + 0.909970i \(0.363895\pi\)
\(20\) 3.55710 + 0.526602i 0.795391 + 0.117752i
\(21\) −0.112389 0.112389i −0.0245252 0.0245252i
\(22\) 6.78530 + 3.41421i 1.44663 + 0.727913i
\(23\) 2.82843i 0.589768i 0.955533 + 0.294884i \(0.0952810\pi\)
−0.955533 + 0.294884i \(0.904719\pi\)
\(24\) 0.484753 + 2.78658i 0.0989497 + 0.568808i
\(25\) 1.76744i 0.353488i
\(26\) 3.78658 7.52533i 0.742609 1.47584i
\(27\) −0.707107 0.707107i −0.136083 0.136083i
\(28\) −0.189436 0.255272i −0.0358001 0.0482419i
\(29\) 2.09976 2.09976i 0.389915 0.389915i −0.484742 0.874657i \(-0.661087\pi\)
0.874657 + 0.484742i \(0.161087\pi\)
\(30\) −2.41421 + 0.797933i −0.440773 + 0.145682i
\(31\) 4.15894 0.746968 0.373484 0.927637i \(-0.378163\pi\)
0.373484 + 0.927637i \(0.378163\pi\)
\(32\) 0.142883 + 5.65505i 0.0252584 + 0.999681i
\(33\) −5.37109 −0.934986
\(34\) −4.09976 + 1.35503i −0.703103 + 0.232386i
\(35\) 0.202067 0.202067i 0.0341556 0.0341556i
\(36\) −1.19186 1.60607i −0.198643 0.267679i
\(37\) −5.98737 5.98737i −0.984317 0.984317i 0.0155615 0.999879i \(-0.495046\pi\)
−0.999879 + 0.0155615i \(0.995046\pi\)
\(38\) 1.94082 3.85712i 0.314842 0.625707i
\(39\) 5.95687i 0.953863i
\(40\) −5.01008 + 0.871553i −0.792163 + 0.137805i
\(41\) 2.60365i 0.406622i −0.979114 0.203311i \(-0.934830\pi\)
0.979114 0.203311i \(-0.0651702\pi\)
\(42\) 0.200791 + 0.101034i 0.0309828 + 0.0155898i
\(43\) 5.75481 + 5.75481i 0.877600 + 0.877600i 0.993286 0.115686i \(-0.0369066\pi\)
−0.115686 + 0.993286i \(0.536907\pi\)
\(44\) −10.6264 1.57316i −1.60198 0.237162i
\(45\) 1.27133 1.27133i 0.189519 0.189519i
\(46\) −1.25527 3.79793i −0.185080 0.559975i
\(47\) −2.82843 −0.412568 −0.206284 0.978492i \(-0.566137\pi\)
−0.206284 + 0.978492i \(0.566137\pi\)
\(48\) −1.88761 3.52660i −0.272453 0.509021i
\(49\) 6.97474 0.996391
\(50\) 0.784399 + 2.37327i 0.110931 + 0.335631i
\(51\) 2.15894 2.15894i 0.302312 0.302312i
\(52\) −1.74473 + 11.7853i −0.241950 + 1.63433i
\(53\) 3.55710 + 3.55710i 0.488605 + 0.488605i 0.907866 0.419261i \(-0.137711\pi\)
−0.419261 + 0.907866i \(0.637711\pi\)
\(54\) 1.26330 + 0.635665i 0.171914 + 0.0865031i
\(55\) 9.65685i 1.30213i
\(56\) 0.367661 + 0.258699i 0.0491307 + 0.0345701i
\(57\) 3.05320i 0.404407i
\(58\) −1.88761 + 3.75138i −0.247856 + 0.492580i
\(59\) 4.00000 + 4.00000i 0.520756 + 0.520756i 0.917800 0.397044i \(-0.129964\pi\)
−0.397044 + 0.917800i \(0.629964\pi\)
\(60\) 2.88761 2.14288i 0.372789 0.276645i
\(61\) 3.66949 3.66949i 0.469829 0.469829i −0.432030 0.901859i \(-0.642202\pi\)
0.901859 + 0.432030i \(0.142202\pi\)
\(62\) −5.58451 + 1.84576i −0.709234 + 0.234412i
\(63\) −0.158942 −0.0200248
\(64\) −2.70160 7.53003i −0.337700 0.941254i
\(65\) −10.7101 −1.32842
\(66\) 7.21215 2.38372i 0.887754 0.293416i
\(67\) 0.767438 0.767438i 0.0937575 0.0937575i −0.658672 0.752430i \(-0.728882\pi\)
0.752430 + 0.658672i \(0.228882\pi\)
\(68\) 4.90367 3.63899i 0.594657 0.441292i
\(69\) 2.00000 + 2.00000i 0.240772 + 0.240772i
\(70\) −0.181652 + 0.361009i −0.0217115 + 0.0431488i
\(71\) 0.317883i 0.0377258i 0.999822 + 0.0188629i \(0.00600460\pi\)
−0.999822 + 0.0188629i \(0.993995\pi\)
\(72\) 2.31318 + 1.62764i 0.272611 + 0.191819i
\(73\) 1.33897i 0.156715i −0.996925 0.0783573i \(-0.975032\pi\)
0.996925 0.0783573i \(-0.0249675\pi\)
\(74\) 10.6969 + 5.38244i 1.24349 + 0.625696i
\(75\) −1.24977 1.24977i −0.144311 0.144311i
\(76\) −0.894263 + 6.04057i −0.102579 + 0.692901i
\(77\) −0.603650 + 0.603650i −0.0687923 + 0.0687923i
\(78\) −2.64369 7.99872i −0.299339 0.905677i
\(79\) −9.69382 −1.09064 −0.545320 0.838228i \(-0.683592\pi\)
−0.545320 + 0.838228i \(0.683592\pi\)
\(80\) 6.34059 3.39380i 0.708900 0.379438i
\(81\) −1.00000 −0.111111
\(82\) 1.15551 + 3.49611i 0.127605 + 0.386081i
\(83\) 0.115816 0.115816i 0.0127125 0.0127125i −0.700722 0.713434i \(-0.747139\pi\)
0.713434 + 0.700722i \(0.247139\pi\)
\(84\) −0.314456 0.0465529i −0.0343100 0.00507934i
\(85\) 3.88163 + 3.88163i 0.421022 + 0.421022i
\(86\) −10.2814 5.17338i −1.10867 0.557860i
\(87\) 2.96951i 0.318364i
\(88\) 14.9670 2.60365i 1.59548 0.277550i
\(89\) 14.3990i 1.52629i 0.646225 + 0.763147i \(0.276347\pi\)
−0.646225 + 0.763147i \(0.723653\pi\)
\(90\) −1.14288 + 2.27133i −0.120470 + 0.239419i
\(91\) 0.669485 + 0.669485i 0.0701811 + 0.0701811i
\(92\) 3.37109 + 4.54266i 0.351460 + 0.473605i
\(93\) 2.94082 2.94082i 0.304948 0.304948i
\(94\) 3.79793 1.25527i 0.391727 0.129471i
\(95\) −5.48946 −0.563206
\(96\) 4.09976 + 3.89769i 0.418430 + 0.397806i
\(97\) −0.571533 −0.0580304 −0.0290152 0.999579i \(-0.509237\pi\)
−0.0290152 + 0.999579i \(0.509237\pi\)
\(98\) −9.36548 + 3.09543i −0.946057 + 0.312685i
\(99\) −3.79793 + 3.79793i −0.381707 + 0.381707i
\(100\) −2.10654 2.83863i −0.210654 0.283863i
\(101\) −7.15296 7.15296i −0.711746 0.711746i 0.255154 0.966900i \(-0.417874\pi\)
−0.966900 + 0.255154i \(0.917874\pi\)
\(102\) −1.94082 + 3.85712i −0.192169 + 0.381911i
\(103\) 11.3507i 1.11841i −0.829028 0.559207i \(-0.811106\pi\)
0.829028 0.559207i \(-0.188894\pi\)
\(104\) −2.88761 16.5993i −0.283154 1.62769i
\(105\) 0.285766i 0.0278879i
\(106\) −6.35503 3.19771i −0.617255 0.310589i
\(107\) −0.722018 0.722018i −0.0698001 0.0698001i 0.671345 0.741145i \(-0.265717\pi\)
−0.741145 + 0.671345i \(0.765717\pi\)
\(108\) −1.97844 0.292893i −0.190375 0.0281837i
\(109\) −1.44471 + 1.44471i −0.138378 + 0.138378i −0.772903 0.634525i \(-0.781196\pi\)
0.634525 + 0.772903i \(0.281196\pi\)
\(110\) 4.28577 + 12.9670i 0.408632 + 1.23635i
\(111\) −8.46742 −0.803692
\(112\) −0.608497 0.184204i −0.0574975 0.0174057i
\(113\) −3.53488 −0.332533 −0.166267 0.986081i \(-0.553171\pi\)
−0.166267 + 0.986081i \(0.553171\pi\)
\(114\) −1.35503 4.09976i −0.126910 0.383977i
\(115\) −3.59587 + 3.59587i −0.335316 + 0.335316i
\(116\) 0.869748 5.87498i 0.0807541 0.545478i
\(117\) 4.21215 + 4.21215i 0.389413 + 0.389413i
\(118\) −7.14631 3.59587i −0.657871 0.331026i
\(119\) 0.485281i 0.0444857i
\(120\) −2.92638 + 4.15894i −0.267141 + 0.379658i
\(121\) 17.8486i 1.62260i
\(122\) −3.29874 + 6.55582i −0.298654 + 0.593536i
\(123\) −1.84106 1.84106i −0.166003 0.166003i
\(124\) 6.67956 4.95687i 0.599843 0.445140i
\(125\) 8.60365 8.60365i 0.769534 0.769534i
\(126\) 0.213422 0.0705392i 0.0190132 0.00628413i
\(127\) −1.49791 −0.132918 −0.0664591 0.997789i \(-0.521170\pi\)
−0.0664591 + 0.997789i \(0.521170\pi\)
\(128\) 6.96951 + 8.91213i 0.616023 + 0.787728i
\(129\) 8.13853 0.716557
\(130\) 14.3812 4.75318i 1.26131 0.416882i
\(131\) 10.4243 10.4243i 0.910775 0.910775i −0.0855585 0.996333i \(-0.527267\pi\)
0.996333 + 0.0855585i \(0.0272675\pi\)
\(132\) −8.62636 + 6.40158i −0.750828 + 0.557186i
\(133\) 0.343146 + 0.343146i 0.0297545 + 0.0297545i
\(134\) −0.689901 + 1.37109i −0.0595984 + 0.118444i
\(135\) 1.79793i 0.154741i
\(136\) −4.96951 + 7.06261i −0.426132 + 0.605614i
\(137\) 13.7954i 1.17862i −0.807907 0.589309i \(-0.799400\pi\)
0.807907 0.589309i \(-0.200600\pi\)
\(138\) −3.57316 1.79793i −0.304167 0.153050i
\(139\) −2.42429 2.42429i −0.205626 0.205626i 0.596779 0.802405i \(-0.296447\pi\)
−0.802405 + 0.596779i \(0.796447\pi\)
\(140\) 0.0836990 0.565371i 0.00707386 0.0477826i
\(141\) −2.00000 + 2.00000i −0.168430 + 0.168430i
\(142\) −0.141078 0.426845i −0.0118390 0.0358200i
\(143\) 31.9949 2.67555
\(144\) −3.82843 1.15894i −0.319036 0.0965785i
\(145\) 5.33897 0.443377
\(146\) 0.594243 + 1.79793i 0.0491799 + 0.148798i
\(147\) 4.93188 4.93188i 0.406775 0.406775i
\(148\) −16.7523 2.48005i −1.37703 0.203859i
\(149\) 2.92818 + 2.92818i 0.239886 + 0.239886i 0.816803 0.576917i \(-0.195744\pi\)
−0.576917 + 0.816803i \(0.695744\pi\)
\(150\) 2.23281 + 1.12350i 0.182308 + 0.0917333i
\(151\) 22.6644i 1.84440i 0.386712 + 0.922201i \(0.373611\pi\)
−0.386712 + 0.922201i \(0.626389\pi\)
\(152\) −1.48005 8.50799i −0.120048 0.690089i
\(153\) 3.05320i 0.246837i
\(154\) 0.542661 1.07847i 0.0437288 0.0869053i
\(155\) 5.28739 + 5.28739i 0.424693 + 0.424693i
\(156\) 7.09976 + 9.56718i 0.568436 + 0.765987i
\(157\) −2.78007 + 2.78007i −0.221874 + 0.221874i −0.809287 0.587413i \(-0.800146\pi\)
0.587413 + 0.809287i \(0.300146\pi\)
\(158\) 13.0166 4.30217i 1.03554 0.342262i
\(159\) 5.03049 0.398944
\(160\) −7.00778 + 7.37109i −0.554014 + 0.582736i
\(161\) 0.449555 0.0354299
\(162\) 1.34277 0.443806i 0.105498 0.0348687i
\(163\) −5.43692 + 5.43692i −0.425853 + 0.425853i −0.887213 0.461360i \(-0.847362\pi\)
0.461360 + 0.887213i \(0.347362\pi\)
\(164\) −3.10318 4.18165i −0.242318 0.326532i
\(165\) −6.82843 6.82843i −0.531592 0.531592i
\(166\) −0.104115 + 0.206914i −0.00808086 + 0.0160597i
\(167\) 3.95458i 0.306015i −0.988225 0.153007i \(-0.951104\pi\)
0.988225 0.153007i \(-0.0488958\pi\)
\(168\) 0.442903 0.0770474i 0.0341707 0.00594434i
\(169\) 22.4844i 1.72957i
\(170\) −6.93484 3.48946i −0.531878 0.267629i
\(171\) 2.15894 + 2.15894i 0.165098 + 0.165098i
\(172\) 16.1016 + 2.38372i 1.22773 + 0.181757i
\(173\) −15.9814 + 15.9814i −1.21504 + 1.21504i −0.245695 + 0.969347i \(0.579016\pi\)
−0.969347 + 0.245695i \(0.920984\pi\)
\(174\) 1.31788 + 3.98737i 0.0999085 + 0.302282i
\(175\) −0.280920 −0.0212355
\(176\) −18.9417 + 10.1385i −1.42778 + 0.764220i
\(177\) 5.65685 0.425195
\(178\) −6.39037 19.3346i −0.478979 1.44919i
\(179\) −12.2316 + 12.2316i −0.914235 + 0.914235i −0.996602 0.0823670i \(-0.973752\pi\)
0.0823670 + 0.996602i \(0.473752\pi\)
\(180\) 0.526602 3.55710i 0.0392506 0.265130i
\(181\) 5.76259 + 5.76259i 0.428330 + 0.428330i 0.888059 0.459729i \(-0.152054\pi\)
−0.459729 + 0.888059i \(0.652054\pi\)
\(182\) −1.19609 0.601845i −0.0886599 0.0446117i
\(183\) 5.18944i 0.383614i
\(184\) −6.54266 4.60365i −0.482331 0.339386i
\(185\) 15.2238i 1.11928i
\(186\) −2.64369 + 5.25400i −0.193845 + 0.385242i
\(187\) −11.5959 11.5959i −0.847974 0.847974i
\(188\) −4.54266 + 3.37109i −0.331308 + 0.245862i
\(189\) −0.112389 + 0.112389i −0.00817508 + 0.00817508i
\(190\) 7.37109 2.43625i 0.534755 0.176744i
\(191\) −16.1674 −1.16983 −0.584916 0.811094i \(-0.698873\pi\)
−0.584916 + 0.811094i \(0.698873\pi\)
\(192\) −7.23486 3.41421i −0.522131 0.246400i
\(193\) −22.1454 −1.59406 −0.797030 0.603940i \(-0.793597\pi\)
−0.797030 + 0.603940i \(0.793597\pi\)
\(194\) 0.767438 0.253649i 0.0550989 0.0182110i
\(195\) −7.57316 + 7.57316i −0.542325 + 0.542325i
\(196\) 11.2019 8.31291i 0.800138 0.593779i
\(197\) −14.2993 14.2993i −1.01878 1.01878i −0.999820 0.0189608i \(-0.993964\pi\)
−0.0189608 0.999820i \(-0.506036\pi\)
\(198\) 3.41421 6.78530i 0.242638 0.482210i
\(199\) 25.0075i 1.77274i 0.462981 + 0.886368i \(0.346780\pi\)
−0.462981 + 0.886368i \(0.653220\pi\)
\(200\) 4.08840 + 2.87675i 0.289094 + 0.203417i
\(201\) 1.08532i 0.0765527i
\(202\) 12.7793 + 6.43027i 0.899150 + 0.452432i
\(203\) −0.333739 0.333739i −0.0234239 0.0234239i
\(204\) 0.894263 6.04057i 0.0626109 0.422925i
\(205\) 3.31010 3.31010i 0.231187 0.231187i
\(206\) 5.03749 + 15.2414i 0.350979 + 1.06192i
\(207\) 2.82843 0.196589
\(208\) 11.2443 + 21.0075i 0.779649 + 1.45661i
\(209\) 16.3990 1.13434
\(210\) 0.126825 + 0.383719i 0.00875174 + 0.0264791i
\(211\) 18.4243 18.4243i 1.26838 1.26838i 0.321456 0.946924i \(-0.395828\pi\)
0.946924 0.321456i \(-0.104172\pi\)
\(212\) 9.95252 + 1.47340i 0.683542 + 0.101193i
\(213\) 0.224777 + 0.224777i 0.0154015 + 0.0154015i
\(214\) 1.28994 + 0.649070i 0.0881786 + 0.0443695i
\(215\) 14.6325i 0.997930i
\(216\) 2.78658 0.484753i 0.189603 0.0329832i
\(217\) 0.661029i 0.0448736i
\(218\) 1.29874 2.58108i 0.0879620 0.174813i
\(219\) −0.946795 0.946795i −0.0639785 0.0639785i
\(220\) −11.5096 15.5096i −0.775978 1.04566i
\(221\) −12.8605 + 12.8605i −0.865094 + 0.865094i
\(222\) 11.3698 3.75789i 0.763092 0.252213i
\(223\) 18.3465 1.22857 0.614286 0.789083i \(-0.289444\pi\)
0.614286 + 0.789083i \(0.289444\pi\)
\(224\) 0.898823 0.0227101i 0.0600551 0.00151738i
\(225\) −1.76744 −0.117829
\(226\) 4.74653 1.56880i 0.315735 0.104355i
\(227\) −0.115816 + 0.115816i −0.00768697 + 0.00768697i −0.710940 0.703253i \(-0.751730\pi\)
0.703253 + 0.710940i \(0.251730\pi\)
\(228\) 3.63899 + 4.90367i 0.240998 + 0.324753i
\(229\) 2.84791 + 2.84791i 0.188195 + 0.188195i 0.794916 0.606720i \(-0.207515\pi\)
−0.606720 + 0.794916i \(0.707515\pi\)
\(230\) 3.23256 6.42429i 0.213149 0.423605i
\(231\) 0.853690i 0.0561687i
\(232\) 1.43948 + 8.27476i 0.0945062 + 0.543264i
\(233\) 11.7211i 0.767874i 0.923359 + 0.383937i \(0.125432\pi\)
−0.923359 + 0.383937i \(0.874568\pi\)
\(234\) −7.52533 3.78658i −0.491946 0.247536i
\(235\) −3.59587 3.59587i −0.234568 0.234568i
\(236\) 11.1917 + 1.65685i 0.728520 + 0.107852i
\(237\) −6.85456 + 6.85456i −0.445252 + 0.445252i
\(238\) 0.215371 + 0.651622i 0.0139604 + 0.0422384i
\(239\) −13.6517 −0.883058 −0.441529 0.897247i \(-0.645564\pi\)
−0.441529 + 0.897247i \(0.645564\pi\)
\(240\) 2.08370 6.88325i 0.134502 0.444312i
\(241\) 2.13167 0.137313 0.0686565 0.997640i \(-0.478129\pi\)
0.0686565 + 0.997640i \(0.478129\pi\)
\(242\) −7.92130 23.9666i −0.509201 1.54063i
\(243\) −0.707107 + 0.707107i −0.0453609 + 0.0453609i
\(244\) 1.51995 10.2670i 0.0973049 0.657276i
\(245\) 8.86720 + 8.86720i 0.566504 + 0.566504i
\(246\) 3.28919 + 1.65505i 0.209711 + 0.105522i
\(247\) 18.1876i 1.15725i
\(248\) −6.76924 + 9.62038i −0.429847 + 0.610895i
\(249\) 0.163788i 0.0103797i
\(250\) −7.73439 + 15.3711i −0.489166 + 0.972153i
\(251\) −4.43370 4.43370i −0.279853 0.279853i 0.553198 0.833050i \(-0.313407\pi\)
−0.833050 + 0.553198i \(0.813407\pi\)
\(252\) −0.255272 + 0.189436i −0.0160806 + 0.0119334i
\(253\) 10.7422 10.7422i 0.675355 0.675355i
\(254\) 2.01136 0.664782i 0.126204 0.0417121i
\(255\) 5.48946 0.343763
\(256\) −13.3137 8.87385i −0.832107 0.554615i
\(257\) 15.0853 0.940997 0.470498 0.882401i \(-0.344074\pi\)
0.470498 + 0.882401i \(0.344074\pi\)
\(258\) −10.9282 + 3.61192i −0.680359 + 0.224869i
\(259\) −0.951642 + 0.951642i −0.0591322 + 0.0591322i
\(260\) −17.2011 + 12.7649i −1.06677 + 0.791645i
\(261\) −2.09976 2.09976i −0.129972 0.129972i
\(262\) −9.37109 + 18.6238i −0.578948 + 1.15058i
\(263\) 26.1706i 1.61375i −0.590722 0.806875i \(-0.701157\pi\)
0.590722 0.806875i \(-0.298843\pi\)
\(264\) 8.74218 12.4243i 0.538044 0.764662i
\(265\) 9.04449i 0.555599i
\(266\) −0.613057 0.308476i −0.0375889 0.0189139i
\(267\) 10.1817 + 10.1817i 0.623107 + 0.623107i
\(268\) 0.317883 2.14724i 0.0194178 0.131164i
\(269\) 8.59700 8.59700i 0.524168 0.524168i −0.394659 0.918828i \(-0.629137\pi\)
0.918828 + 0.394659i \(0.129137\pi\)
\(270\) 0.797933 + 2.41421i 0.0485606 + 0.146924i
\(271\) 10.6644 0.647815 0.323907 0.946089i \(-0.395003\pi\)
0.323907 + 0.946089i \(0.395003\pi\)
\(272\) 3.53849 11.6890i 0.214552 0.708748i
\(273\) 0.946795 0.0573027
\(274\) 6.12247 + 18.5240i 0.369872 + 1.11908i
\(275\) −6.71261 + 6.71261i −0.404786 + 0.404786i
\(276\) 5.59587 + 0.828427i 0.336832 + 0.0498655i
\(277\) −2.66170 2.66170i −0.159926 0.159926i 0.622608 0.782534i \(-0.286073\pi\)
−0.782534 + 0.622608i \(0.786073\pi\)
\(278\) 4.33119 + 2.17936i 0.259767 + 0.130709i
\(279\) 4.15894i 0.248989i
\(280\) 0.138526 + 0.796310i 0.00827851 + 0.0475886i
\(281\) 10.4496i 0.623368i 0.950186 + 0.311684i \(0.100893\pi\)
−0.950186 + 0.311684i \(0.899107\pi\)
\(282\) 1.79793 3.57316i 0.107065 0.212778i
\(283\) −12.4853 12.4853i −0.742173 0.742173i 0.230823 0.972996i \(-0.425858\pi\)
−0.972996 + 0.230823i \(0.925858\pi\)
\(284\) 0.378872 + 0.510544i 0.0224819 + 0.0302952i
\(285\) −3.88163 + 3.88163i −0.229928 + 0.229928i
\(286\) −42.9618 + 14.1995i −2.54039 + 0.839635i
\(287\) −0.413828 −0.0244275
\(288\) 5.65505 0.142883i 0.333227 0.00841947i
\(289\) −7.67794 −0.451644
\(290\) −7.16902 + 2.36947i −0.420979 + 0.139140i
\(291\) −0.404135 + 0.404135i −0.0236908 + 0.0236908i
\(292\) −1.59587 2.15049i −0.0933910 0.125848i
\(293\) 21.7410 + 21.7410i 1.27013 + 1.27013i 0.946022 + 0.324104i \(0.105063\pi\)
0.324104 + 0.946022i \(0.394937\pi\)
\(294\) −4.43360 + 8.81119i −0.258573 + 0.513879i
\(295\) 10.1706i 0.592158i
\(296\) 23.5951 4.10460i 1.37144 0.238575i
\(297\) 5.37109i 0.311662i
\(298\) −5.23143 2.63234i −0.303049 0.152487i
\(299\) −11.9137 11.9137i −0.688990 0.688990i
\(300\) −3.49677 0.517671i −0.201886 0.0298877i
\(301\) 0.914679 0.914679i 0.0527212 0.0527212i
\(302\) −10.0586 30.4331i −0.578806 1.75123i
\(303\) −10.1158 −0.581138
\(304\) 5.76326 + 10.7674i 0.330546 + 0.617555i
\(305\) 9.33026 0.534249
\(306\) 1.35503 + 4.09976i 0.0774619 + 0.234368i
\(307\) 15.0601 15.0601i 0.859523 0.859523i −0.131759 0.991282i \(-0.542062\pi\)
0.991282 + 0.131759i \(0.0420624\pi\)
\(308\) −0.250040 + 1.68897i −0.0142473 + 0.0962381i
\(309\) −8.02614 8.02614i −0.456591 0.456591i
\(310\) −9.44633 4.75318i −0.536516 0.269963i
\(311\) 1.77883i 0.100868i −0.998727 0.0504342i \(-0.983939\pi\)
0.998727 0.0504342i \(-0.0160605\pi\)
\(312\) −13.7793 9.69562i −0.780100 0.548907i
\(313\) 2.70320i 0.152794i −0.997077 0.0763971i \(-0.975658\pi\)
0.997077 0.0763971i \(-0.0243417\pi\)
\(314\) 2.49919 4.96681i 0.141037 0.280293i
\(315\) −0.202067 0.202067i −0.0113852 0.0113852i
\(316\) −15.5690 + 11.5537i −0.875824 + 0.649945i
\(317\) 15.6025 15.6025i 0.876325 0.876325i −0.116828 0.993152i \(-0.537272\pi\)
0.993152 + 0.116828i \(0.0372725\pi\)
\(318\) −6.75481 + 2.23256i −0.378791 + 0.125196i
\(319\) −15.9495 −0.892999
\(320\) 6.13853 13.0078i 0.343154 0.727157i
\(321\) −1.02109 −0.0569916
\(322\) −0.603650 + 0.199515i −0.0336401 + 0.0111185i
\(323\) −6.59169 + 6.59169i −0.366771 + 0.366771i
\(324\) −1.60607 + 1.19186i −0.0892263 + 0.0662144i
\(325\) 7.44471 + 7.44471i 0.412958 + 0.412958i
\(326\) 4.88761 9.71349i 0.270700 0.537980i
\(327\) 2.04313i 0.112985i
\(328\) 6.02271 + 4.23779i 0.332549 + 0.233993i
\(329\) 0.449555i 0.0247848i
\(330\) 12.1995 + 6.13853i 0.671561 + 0.337915i
\(331\) 15.4454 + 15.4454i 0.848955 + 0.848955i 0.990003 0.141048i \(-0.0450472\pi\)
−0.141048 + 0.990003i \(0.545047\pi\)
\(332\) 0.0479725 0.324045i 0.00263284 0.0177843i
\(333\) −5.98737 + 5.98737i −0.328106 + 0.328106i
\(334\) 1.75506 + 5.31010i 0.0960329 + 0.290556i
\(335\) 1.95133 0.106613
\(336\) −0.560524 + 0.300020i −0.0305791 + 0.0163674i
\(337\) −18.8738 −1.02812 −0.514062 0.857753i \(-0.671860\pi\)
−0.514062 + 0.857753i \(0.671860\pi\)
\(338\) 9.97868 + 30.1914i 0.542769 + 1.64219i
\(339\) −2.49954 + 2.49954i −0.135756 + 0.135756i
\(340\) 10.8605 + 1.60782i 0.588996 + 0.0871965i
\(341\) −15.7954 15.7954i −0.855368 0.855368i
\(342\) −3.85712 1.94082i −0.208569 0.104947i
\(343\) 2.22117i 0.119932i
\(344\) −22.6786 + 3.94517i −1.22275 + 0.212709i
\(345\) 5.08532i 0.273785i
\(346\) 14.3667 28.5520i 0.772360 1.53496i
\(347\) 19.8337 + 19.8337i 1.06473 + 1.06473i 0.997755 + 0.0669717i \(0.0213337\pi\)
0.0669717 + 0.997755i \(0.478666\pi\)
\(348\) −3.53923 4.76924i −0.189723 0.255658i
\(349\) 11.9718 11.9718i 0.640836 0.640836i −0.309925 0.950761i \(-0.600304\pi\)
0.950761 + 0.309925i \(0.100304\pi\)
\(350\) 0.377211 0.124674i 0.0201628 0.00666409i
\(351\) 5.95687 0.317954
\(352\) 20.9348 22.0202i 1.11583 1.17368i
\(353\) −12.6202 −0.671705 −0.335853 0.941915i \(-0.609024\pi\)
−0.335853 + 0.941915i \(0.609024\pi\)
\(354\) −7.59587 + 2.51054i −0.403716 + 0.133434i
\(355\) −0.404135 + 0.404135i −0.0214492 + 0.0214492i
\(356\) 17.1616 + 23.1259i 0.909564 + 1.22567i
\(357\) −0.343146 0.343146i −0.0181612 0.0181612i
\(358\) 10.9958 21.8528i 0.581147 1.15495i
\(359\) 27.0867i 1.42958i −0.699339 0.714790i \(-0.746522\pi\)
0.699339 0.714790i \(-0.253478\pi\)
\(360\) 0.871553 + 5.01008i 0.0459349 + 0.264054i
\(361\) 9.67794i 0.509365i
\(362\) −10.2953 5.18038i −0.541110 0.272274i
\(363\) 12.6209 + 12.6209i 0.662423 + 0.662423i
\(364\) 1.87318 + 0.277310i 0.0981811 + 0.0145350i
\(365\) 1.70227 1.70227i 0.0891011 0.0891011i
\(366\) 2.30310 + 6.96823i 0.120385 + 0.364235i
\(367\) −20.4937 −1.06976 −0.534882 0.844927i \(-0.679644\pi\)
−0.534882 + 0.844927i \(0.679644\pi\)
\(368\) 10.8284 + 3.27798i 0.564471 + 0.170877i
\(369\) −2.60365 −0.135541
\(370\) 6.75643 + 20.4422i 0.351250 + 1.06274i
\(371\) 0.565371 0.565371i 0.0293526 0.0293526i
\(372\) 1.21813 8.22820i 0.0631569 0.426613i
\(373\) 1.03372 + 1.03372i 0.0535239 + 0.0535239i 0.733362 0.679838i \(-0.237950\pi\)
−0.679838 + 0.733362i \(0.737950\pi\)
\(374\) 20.7169 + 10.4243i 1.07125 + 0.539027i
\(375\) 12.1674i 0.628322i
\(376\) 4.60365 6.54266i 0.237415 0.337412i
\(377\) 17.6890i 0.911028i
\(378\) 0.101034 0.200791i 0.00519661 0.0103276i
\(379\) 17.6686 + 17.6686i 0.907573 + 0.907573i 0.996076 0.0885032i \(-0.0282083\pi\)
−0.0885032 + 0.996076i \(0.528208\pi\)
\(380\) −8.81647 + 6.54266i −0.452275 + 0.335631i
\(381\) −1.05918 + 1.05918i −0.0542636 + 0.0542636i
\(382\) 21.7091 7.17518i 1.11074 0.367114i
\(383\) −31.0958 −1.58892 −0.794460 0.607316i \(-0.792246\pi\)
−0.794460 + 0.607316i \(0.792246\pi\)
\(384\) 11.2300 + 1.37364i 0.573079 + 0.0700983i
\(385\) −1.53488 −0.0782245
\(386\) 29.7362 9.82824i 1.51353 0.500244i
\(387\) 5.75481 5.75481i 0.292533 0.292533i
\(388\) −0.917923 + 0.681187i −0.0466005 + 0.0345820i
\(389\) −2.56127 2.56127i −0.129862 0.129862i 0.639188 0.769050i \(-0.279270\pi\)
−0.769050 + 0.639188i \(0.779270\pi\)
\(390\) 6.80801 13.5300i 0.344737 0.685120i
\(391\) 8.63577i 0.436729i
\(392\) −11.3523 + 16.1338i −0.573379 + 0.814881i
\(393\) 14.7422i 0.743644i
\(394\) 25.5468 + 12.8546i 1.28703 + 0.647604i
\(395\) −12.3240 12.3240i −0.620090 0.620090i
\(396\) −1.57316 + 10.6264i −0.0790540 + 0.533995i
\(397\) −5.09795 + 5.09795i −0.255859 + 0.255859i −0.823367 0.567509i \(-0.807907\pi\)
0.567509 + 0.823367i \(0.307907\pi\)
\(398\) −11.0985 33.5794i −0.556317 1.68318i
\(399\) 0.485281 0.0242945
\(400\) −6.76651 2.04836i −0.338325 0.102418i
\(401\) −15.2660 −0.762349 −0.381174 0.924503i \(-0.624480\pi\)
−0.381174 + 0.924503i \(0.624480\pi\)
\(402\) 0.481672 + 1.45734i 0.0240236 + 0.0726855i
\(403\) −17.5181 + 17.5181i −0.872637 + 0.872637i
\(404\) −20.0135 2.96285i −0.995709 0.147407i
\(405\) −1.27133 1.27133i −0.0631729 0.0631729i
\(406\) 0.596250 + 0.300020i 0.0295914 + 0.0148897i
\(407\) 45.4792i 2.25432i
\(408\) 1.48005 + 8.50799i 0.0732734 + 0.421208i
\(409\) 11.3779i 0.562603i −0.959619 0.281302i \(-0.909234\pi\)
0.959619 0.281302i \(-0.0907661\pi\)
\(410\) −2.97567 + 5.91375i −0.146958 + 0.292059i
\(411\) −9.75481 9.75481i −0.481169 0.481169i
\(412\) −13.5284 18.2300i −0.666497 0.898128i
\(413\) 0.635767 0.635767i 0.0312840 0.0312840i
\(414\) −3.79793 + 1.25527i −0.186658 + 0.0616932i
\(415\) 0.294481 0.0144555
\(416\) −24.4217 23.2181i −1.19737 1.13836i
\(417\) −3.42847 −0.167893
\(418\) −22.0202 + 7.27798i −1.07704 + 0.355978i
\(419\) 23.3075 23.3075i 1.13865 1.13865i 0.149955 0.988693i \(-0.452087\pi\)
0.988693 0.149955i \(-0.0479130\pi\)
\(420\) −0.340593 0.458962i −0.0166193 0.0223950i
\(421\) −17.6154 17.6154i −0.858520 0.858520i 0.132644 0.991164i \(-0.457653\pi\)
−0.991164 + 0.132644i \(0.957653\pi\)
\(422\) −16.5628 + 32.9164i −0.806265 + 1.60235i
\(423\) 2.82843i 0.137523i
\(424\) −14.0179 + 2.43855i −0.680768 + 0.118426i
\(425\) 5.39635i 0.261761i
\(426\) −0.401582 0.202067i −0.0194567 0.00979020i
\(427\) −0.583234 0.583234i −0.0282247 0.0282247i
\(428\) −2.02016 0.299070i −0.0976480 0.0144561i
\(429\) 22.6238 22.6238i 1.09229 1.09229i
\(430\) −6.49400 19.6481i −0.313168 0.947517i
\(431\) 10.3211 0.497151 0.248576 0.968612i \(-0.420038\pi\)
0.248576 + 0.968612i \(0.420038\pi\)
\(432\) −3.52660 + 1.88761i −0.169674 + 0.0908177i
\(433\) −15.3137 −0.735930 −0.367965 0.929840i \(-0.619945\pi\)
−0.367965 + 0.929840i \(0.619945\pi\)
\(434\) 0.293368 + 0.887611i 0.0140821 + 0.0426067i
\(435\) 3.77522 3.77522i 0.181008 0.181008i
\(436\) −0.598418 + 4.04220i −0.0286590 + 0.193586i
\(437\) −6.10641 6.10641i −0.292109 0.292109i
\(438\) 1.69152 + 0.851137i 0.0808241 + 0.0406689i
\(439\) 22.5735i 1.07738i −0.842505 0.538688i \(-0.818920\pi\)
0.842505 0.538688i \(-0.181080\pi\)
\(440\) 22.3380 + 15.7178i 1.06492 + 0.749319i
\(441\) 6.97474i 0.332130i
\(442\) 11.5612 22.9764i 0.549910 1.09287i
\(443\) 23.7117 + 23.7117i 1.12658 + 1.12658i 0.990730 + 0.135846i \(0.0433752\pi\)
0.135846 + 0.990730i \(0.456625\pi\)
\(444\) −13.5993 + 10.0920i −0.645394 + 0.478944i
\(445\) −18.3059 + 18.3059i −0.867784 + 0.867784i
\(446\) −24.6352 + 8.14228i −1.16651 + 0.385548i
\(447\) 4.14108 0.195866
\(448\) −1.19684 + 0.429397i −0.0565452 + 0.0202871i
\(449\) −1.75506 −0.0828266 −0.0414133 0.999142i \(-0.513186\pi\)
−0.0414133 + 0.999142i \(0.513186\pi\)
\(450\) 2.37327 0.784399i 0.111877 0.0369769i
\(451\) −9.88849 + 9.88849i −0.465631 + 0.465631i
\(452\) −5.67727 + 4.21308i −0.267036 + 0.198166i
\(453\) 16.0261 + 16.0261i 0.752974 + 0.752974i
\(454\) 0.104115 0.206914i 0.00488634 0.00971096i
\(455\) 1.70227i 0.0798039i
\(456\) −7.06261 4.96951i −0.330737 0.232718i
\(457\) 26.7422i 1.25095i 0.780246 + 0.625473i \(0.215094\pi\)
−0.780246 + 0.625473i \(0.784906\pi\)
\(458\) −5.08802 2.56018i −0.237747 0.119629i
\(459\) −2.15894 2.15894i −0.100771 0.100771i
\(460\) −1.48946 + 10.0610i −0.0694463 + 0.469096i
\(461\) 9.23921 9.23921i 0.430313 0.430313i −0.458422 0.888735i \(-0.651585\pi\)
0.888735 + 0.458422i \(0.151585\pi\)
\(462\) −0.378872 1.14631i −0.0176267 0.0533312i
\(463\) 29.4474 1.36854 0.684268 0.729231i \(-0.260122\pi\)
0.684268 + 0.729231i \(0.260122\pi\)
\(464\) −5.60527 10.4723i −0.260218 0.486163i
\(465\) 7.47750 0.346761
\(466\) −5.20189 15.7387i −0.240973 0.729083i
\(467\) −19.5897 + 19.5897i −0.906503 + 0.906503i −0.995988 0.0894848i \(-0.971478\pi\)
0.0894848 + 0.995988i \(0.471478\pi\)
\(468\) 11.7853 + 1.74473i 0.544776 + 0.0806501i
\(469\) −0.121978 0.121978i −0.00563242 0.00563242i
\(470\) 6.42429 + 3.23256i 0.296331 + 0.149107i
\(471\) 3.93161i 0.181159i
\(472\) −15.7633 + 2.74218i −0.725563 + 0.126219i
\(473\) 43.7127i 2.00991i
\(474\) 6.16202 12.2462i 0.283031 0.562487i
\(475\) 3.81580 + 3.81580i 0.175081 + 0.175081i
\(476\) −0.578387 0.779397i −0.0265103 0.0357236i
\(477\) 3.55710 3.55710i 0.162868 0.162868i
\(478\) 18.3312 6.05872i 0.838449 0.277120i
\(479\) 35.5499 1.62432 0.812159 0.583436i \(-0.198292\pi\)
0.812159 + 0.583436i \(0.198292\pi\)
\(480\) 0.256894 + 10.1674i 0.0117256 + 0.464076i
\(481\) 50.4393 2.29984
\(482\) −2.86235 + 0.946048i −0.130376 + 0.0430913i
\(483\) 0.317883 0.317883i 0.0144642 0.0144642i
\(484\) 21.2730 + 28.6661i 0.966955 + 1.30301i
\(485\) −0.726607 0.726607i −0.0329935 0.0329935i
\(486\) 0.635665 1.26330i 0.0288344 0.0573045i
\(487\) 9.86632i 0.447086i 0.974694 + 0.223543i \(0.0717623\pi\)
−0.974694 + 0.223543i \(0.928238\pi\)
\(488\) 2.51559 + 14.4608i 0.113876 + 0.654608i
\(489\) 7.68897i 0.347707i
\(490\) −15.8419 7.97131i −0.715666 0.360107i
\(491\) −0.449555 0.449555i −0.0202881 0.0202881i 0.696890 0.717178i \(-0.254567\pi\)
−0.717178 + 0.696890i \(0.754567\pi\)
\(492\) −5.15116 0.762591i −0.232232 0.0343803i
\(493\) 6.41099 6.41099i 0.288736 0.288736i
\(494\) 8.07174 + 24.4217i 0.363165 + 1.09879i
\(495\) −9.65685 −0.434043
\(496\) 4.81997 15.9222i 0.216423 0.714928i
\(497\) 0.0505249 0.00226635
\(498\) 0.0726903 + 0.219931i 0.00325733 + 0.00985533i
\(499\) 2.70645 2.70645i 0.121157 0.121157i −0.643928 0.765086i \(-0.722697\pi\)
0.765086 + 0.643928i \(0.222697\pi\)
\(500\) 3.56375 24.0724i 0.159376 1.07655i
\(501\) −2.79631 2.79631i −0.124930 0.124930i
\(502\) 7.92115 + 3.98575i 0.353538 + 0.177893i
\(503\) 23.6719i 1.05548i −0.849407 0.527739i \(-0.823040\pi\)
0.849407 0.527739i \(-0.176960\pi\)
\(504\) 0.258699 0.367661i 0.0115234 0.0163769i
\(505\) 18.1876i 0.809336i
\(506\) −9.65685 + 19.1917i −0.429300 + 0.853176i
\(507\) −15.8988 15.8988i −0.706092 0.706092i
\(508\) −2.40576 + 1.78530i −0.106738 + 0.0792099i
\(509\) −24.6052 + 24.6052i −1.09061 + 1.09061i −0.0951425 + 0.995464i \(0.530331\pi\)
−0.995464 + 0.0951425i \(0.969669\pi\)
\(510\) −7.37109 + 2.43625i −0.326397 + 0.107879i
\(511\) −0.212818 −0.00941453
\(512\) 21.8155 + 6.00685i 0.964120 + 0.265468i
\(513\) 3.05320 0.134802
\(514\) −20.2561 + 6.69495i −0.893460 + 0.295302i
\(515\) 14.4305 14.4305i 0.635882 0.635882i
\(516\) 13.0711 9.69998i 0.575422 0.427018i
\(517\) 10.7422 + 10.7422i 0.472440 + 0.472440i
\(518\) 0.855494 1.70018i 0.0375883 0.0747017i
\(519\) 22.6011i 0.992078i
\(520\) 17.4321 24.7743i 0.764447 1.08642i
\(521\) 14.4889i 0.634770i 0.948297 + 0.317385i \(0.102805\pi\)
−0.948297 + 0.317385i \(0.897195\pi\)
\(522\) 3.75138 + 1.88761i 0.164193 + 0.0826185i
\(523\) −19.4979 19.4979i −0.852584 0.852584i 0.137867 0.990451i \(-0.455975\pi\)
−0.990451 + 0.137867i \(0.955975\pi\)
\(524\) 4.31788 29.1665i 0.188628 1.27414i
\(525\) −0.198640 + 0.198640i −0.00866937 + 0.00866937i
\(526\) 11.6147 + 35.1412i 0.506424 + 1.53223i
\(527\) 12.6981 0.553138
\(528\) −6.22478 + 20.5628i −0.270899 + 0.894882i
\(529\) 15.0000 0.652174
\(530\) −4.01400 12.1447i −0.174357 0.527532i
\(531\) 4.00000 4.00000i 0.173585 0.173585i
\(532\) 0.960099 + 0.142136i 0.0416256 + 0.00616236i
\(533\) 10.9670 + 10.9670i 0.475031 + 0.475031i
\(534\) −18.1903 9.15296i −0.787172 0.396087i
\(535\) 1.83585i 0.0793706i
\(536\) 0.526113 + 3.02433i 0.0227246 + 0.130631i
\(537\) 17.2981i 0.746470i
\(538\) −7.72841 + 15.3592i −0.333195 + 0.662182i
\(539\) −26.4896 26.4896i −1.14099 1.14099i
\(540\) −2.14288 2.88761i −0.0922150 0.124263i
\(541\) −10.0396 + 10.0396i −0.431638 + 0.431638i −0.889185 0.457547i \(-0.848728\pi\)
0.457547 + 0.889185i \(0.348728\pi\)
\(542\) −14.3198 + 4.73291i −0.615089 + 0.203296i
\(543\) 8.14953 0.349730
\(544\) 0.436252 + 17.2660i 0.0187041 + 0.740275i
\(545\) −3.67340 −0.157351
\(546\) −1.27133 + 0.420193i −0.0544079 + 0.0179826i
\(547\) −7.19884 + 7.19884i −0.307800 + 0.307800i −0.844056 0.536255i \(-0.819838\pi\)
0.536255 + 0.844056i \(0.319838\pi\)
\(548\) −16.4422 22.1564i −0.702374 0.946474i
\(549\) −3.66949 3.66949i −0.156610 0.156610i
\(550\) 6.03441 11.9926i 0.257308 0.511366i
\(551\) 9.06651i 0.386246i
\(552\) −7.88163 + 1.37109i −0.335465 + 0.0583574i
\(553\) 1.54075i 0.0655194i
\(554\) 4.75534 + 2.39278i 0.202035 + 0.101659i
\(555\) −10.7649 10.7649i −0.456944 0.456944i
\(556\) −6.78301 1.00417i −0.287664 0.0425865i
\(557\) 1.02129 1.02129i 0.0432735 0.0432735i −0.685139 0.728412i \(-0.740259\pi\)
0.728412 + 0.685139i \(0.240259\pi\)
\(558\) 1.84576 + 5.58451i 0.0781373 + 0.236411i
\(559\) −48.4802 −2.05049
\(560\) −0.539416 1.00778i −0.0227945 0.0425867i
\(561\) −16.3990 −0.692368
\(562\) −4.63757 14.0314i −0.195624 0.591878i
\(563\) 6.70751 6.70751i 0.282688 0.282688i −0.551492 0.834180i \(-0.685941\pi\)
0.834180 + 0.551492i \(0.185941\pi\)
\(564\) −0.828427 + 5.59587i −0.0348831 + 0.235628i
\(565\) −4.49400 4.49400i −0.189064 0.189064i
\(566\) 22.3059 + 11.2238i 0.937588 + 0.471774i
\(567\) 0.158942i 0.00667492i
\(568\) −0.735321 0.517398i −0.0308534 0.0217096i
\(569\) 8.98711i 0.376759i 0.982096 + 0.188380i \(0.0603235\pi\)
−0.982096 + 0.188380i \(0.939676\pi\)
\(570\) 3.48946 6.93484i 0.146157 0.290468i
\(571\) −9.17157 9.17157i −0.383818 0.383818i 0.488657 0.872476i \(-0.337487\pi\)
−0.872476 + 0.488657i \(0.837487\pi\)
\(572\) 51.3861 38.1334i 2.14856 1.59444i
\(573\) −11.4321 + 11.4321i −0.477582 + 0.477582i
\(574\) 0.555677 0.183659i 0.0231935 0.00766579i
\(575\) 4.99907 0.208476
\(576\) −7.53003 + 2.70160i −0.313751 + 0.112567i
\(577\) 29.5013 1.22815 0.614077 0.789246i \(-0.289528\pi\)
0.614077 + 0.789246i \(0.289528\pi\)
\(578\) 10.3097 3.40751i 0.428828 0.141734i
\(579\) −15.6591 + 15.6591i −0.650772 + 0.650772i
\(580\) 8.57478 6.36330i 0.356048 0.264222i
\(581\) −0.0184080 0.0184080i −0.000763692 0.000763692i
\(582\) 0.363303 0.722018i 0.0150594 0.0299286i
\(583\) 27.0192i 1.11902i
\(584\) 3.09728 + 2.17936i 0.128166 + 0.0901824i
\(585\) 10.7101i 0.442806i
\(586\) −38.8421 19.5445i −1.60455 0.807374i
\(587\) 1.82425 + 1.82425i 0.0752950 + 0.0752950i 0.743751 0.668456i \(-0.233045\pi\)
−0.668456 + 0.743751i \(0.733045\pi\)
\(588\) 2.04285 13.7991i 0.0842459 0.569064i
\(589\) −8.97891 + 8.97891i −0.369970 + 0.369970i
\(590\) −4.51379 13.6569i −0.185830 0.562244i
\(591\) −20.2222 −0.831831
\(592\) −29.8612 + 15.9832i −1.22729 + 0.656905i
\(593\) −35.4338 −1.45509 −0.727546 0.686058i \(-0.759339\pi\)
−0.727546 + 0.686058i \(0.759339\pi\)
\(594\) −2.38372 7.21215i −0.0978052 0.295918i
\(595\) 0.616953 0.616953i 0.0252926 0.0252926i
\(596\) 8.19286 + 1.21289i 0.335593 + 0.0496821i
\(597\) 17.6830 + 17.6830i 0.723717 + 0.723717i
\(598\) 21.2848 + 10.7101i 0.870402 + 0.437967i
\(599\) 27.1632i 1.10986i 0.831897 + 0.554930i \(0.187255\pi\)
−0.831897 + 0.554930i \(0.812745\pi\)
\(600\) 4.92510 0.856771i 0.201067 0.0349775i
\(601\) 5.33897i 0.217781i −0.994054 0.108891i \(-0.965270\pi\)
0.994054 0.108891i \(-0.0347298\pi\)
\(602\) −0.822265 + 1.63414i −0.0335130 + 0.0666027i
\(603\) −0.767438 0.767438i −0.0312525 0.0312525i
\(604\) 27.0128 + 36.4007i 1.09913 + 1.48112i
\(605\) −22.6914 + 22.6914i −0.922539 + 0.922539i
\(606\) 13.5832 4.48946i 0.551781 0.182372i
\(607\) 16.1084 0.653820 0.326910 0.945055i \(-0.393993\pi\)
0.326910 + 0.945055i \(0.393993\pi\)
\(608\) −12.5174 11.9004i −0.507648 0.482627i
\(609\) −0.471978 −0.0191255
\(610\) −12.5284 + 4.14082i −0.507260 + 0.167657i
\(611\) 11.9137 11.9137i 0.481979 0.481979i
\(612\) −3.63899 4.90367i −0.147097 0.198219i
\(613\) 0.436924 + 0.436924i 0.0176472 + 0.0176472i 0.715875 0.698228i \(-0.246028\pi\)
−0.698228 + 0.715875i \(0.746028\pi\)
\(614\) −13.5385 + 26.9060i −0.546369 + 1.08584i
\(615\) 4.68119i 0.188764i
\(616\) −0.413828 2.37887i −0.0166736 0.0958475i
\(617\) 8.80641i 0.354533i −0.984163 0.177266i \(-0.943275\pi\)
0.984163 0.177266i \(-0.0567254\pi\)
\(618\) 14.3393 + 7.21523i 0.576812 + 0.290239i
\(619\) 1.92932 + 1.92932i 0.0775458 + 0.0775458i 0.744816 0.667270i \(-0.232537\pi\)
−0.667270 + 0.744816i \(0.732537\pi\)
\(620\) 14.7938 + 2.19011i 0.594132 + 0.0879569i
\(621\) 2.00000 2.00000i 0.0802572 0.0802572i
\(622\) 0.789456 + 2.38857i 0.0316543 + 0.0957728i
\(623\) 2.28861 0.0916910
\(624\) 22.8055 + 6.90367i 0.912949 + 0.276368i
\(625\) 13.0390 0.521559
\(626\) 1.19970 + 3.62979i 0.0479495 + 0.145075i
\(627\) 11.5959 11.5959i 0.463094 0.463094i
\(628\) −1.15154 + 7.77845i −0.0459515 + 0.310394i
\(629\) −18.2807 18.2807i −0.728898 0.728898i
\(630\) 0.361009 + 0.181652i 0.0143829 + 0.00723718i
\(631\) 38.7864i 1.54406i −0.635586 0.772030i \(-0.719241\pi\)
0.635586 0.772030i \(-0.280759\pi\)
\(632\) 15.7780 22.4235i 0.627615 0.891961i
\(633\) 26.0559i 1.03563i
\(634\) −14.0261 + 27.8751i −0.557049 + 1.10706i
\(635\) −1.90434 1.90434i −0.0755715 0.0755715i
\(636\) 8.07934 5.99564i 0.320367 0.237743i
\(637\) −29.3786 + 29.3786i −1.16402 + 1.16402i
\(638\) 21.4165 7.07847i 0.847888 0.280239i
\(639\) 0.317883 0.0125753
\(640\) −2.46971 + 20.1908i −0.0976240 + 0.798111i
\(641\) 33.1091 1.30773 0.653865 0.756611i \(-0.273146\pi\)
0.653865 + 0.756611i \(0.273146\pi\)
\(642\) 1.37109 0.453164i 0.0541125 0.0178850i
\(643\) −19.2897 + 19.2897i −0.760711 + 0.760711i −0.976451 0.215740i \(-0.930784\pi\)
0.215740 + 0.976451i \(0.430784\pi\)
\(644\) 0.722018 0.535806i 0.0284515 0.0211137i
\(645\) 10.3468 + 10.3468i 0.407403 + 0.407403i
\(646\) 5.92571 11.7766i 0.233144 0.463343i
\(647\) 41.8477i 1.64520i 0.568620 + 0.822601i \(0.307478\pi\)
−0.568620 + 0.822601i \(0.692522\pi\)
\(648\) 1.62764 2.31318i 0.0639396 0.0908703i
\(649\) 30.3835i 1.19266i
\(650\) −13.3005 6.69254i −0.521690 0.262503i
\(651\) −0.467418 0.467418i −0.0183196 0.0183196i
\(652\) −2.25205 + 15.2121i −0.0881970 + 0.595754i
\(653\) 14.7741 14.7741i 0.578155 0.578155i −0.356240 0.934395i \(-0.615941\pi\)
0.934395 + 0.356240i \(0.115941\pi\)
\(654\) −0.906751 2.74345i −0.0354568 0.107277i
\(655\) 26.5054 1.03565
\(656\) −9.96788 3.01748i −0.389180 0.117813i
\(657\) −1.33897 −0.0522382
\(658\) −0.199515 0.603650i −0.00777790 0.0235327i
\(659\) −2.22839 + 2.22839i −0.0868056 + 0.0868056i −0.749176 0.662371i \(-0.769550\pi\)
0.662371 + 0.749176i \(0.269550\pi\)
\(660\) −19.1055 2.82843i −0.743680 0.110096i
\(661\) −18.0685 18.0685i −0.702784 0.702784i 0.262223 0.965007i \(-0.415544\pi\)
−0.965007 + 0.262223i \(0.915544\pi\)
\(662\) −27.5944 13.8849i −1.07249 0.539651i
\(663\) 18.1876i 0.706346i
\(664\) 0.0793969 + 0.456409i 0.00308120 + 0.0177121i
\(665\) 0.872503i 0.0338342i
\(666\) 5.38244 10.6969i 0.208565 0.414496i
\(667\) 5.93901 + 5.93901i 0.229959 + 0.229959i
\(668\) −4.71330 6.35134i −0.182363 0.245741i
\(669\) 12.9729 12.9729i 0.501563 0.501563i
\(670\) −2.62020 + 0.866013i −0.101227 + 0.0334570i
\(671\) −27.8729 −1.07602
\(672\) 0.619505 0.651622i 0.0238979 0.0251369i
\(673\) 20.7981 0.801706 0.400853 0.916142i \(-0.368714\pi\)
0.400853 + 0.916142i \(0.368714\pi\)
\(674\) 25.3433 8.37632i 0.976186 0.322644i
\(675\) −1.24977 + 1.24977i −0.0481036 + 0.0481036i
\(676\) −26.7982 36.1115i −1.03070 1.38890i
\(677\) 29.0213 + 29.0213i 1.11538 + 1.11538i 0.992411 + 0.122968i \(0.0392413\pi\)
0.122968 + 0.992411i \(0.460759\pi\)
\(678\) 2.24700 4.46561i 0.0862954 0.171501i
\(679\) 0.0908404i 0.00348613i
\(680\) −15.2968 + 2.66103i −0.586605 + 0.102046i
\(681\) 0.163788i 0.00627639i
\(682\) 28.2197 + 14.1995i 1.08059 + 0.543728i
\(683\) −18.7938 18.7938i −0.719123 0.719123i 0.249303 0.968426i \(-0.419799\pi\)
−0.968426 + 0.249303i \(0.919799\pi\)
\(684\) 6.04057 + 0.894263i 0.230967 + 0.0341930i
\(685\) 17.5385 17.5385i 0.670111 0.670111i
\(686\) 0.985767 + 2.98252i 0.0376368 + 0.113873i
\(687\) 4.02756 0.153661
\(688\) 28.7013 15.3624i 1.09423 0.585685i
\(689\) −29.9660 −1.14161
\(690\) −2.25689 6.82843i −0.0859185 0.259954i
\(691\) 10.4580 10.4580i 0.397841 0.397841i −0.479630 0.877471i \(-0.659229\pi\)
0.877471 + 0.479630i \(0.159229\pi\)
\(692\) −6.61971 + 44.7149i −0.251644 + 1.69980i
\(693\) 0.603650 + 0.603650i 0.0229308 + 0.0229308i
\(694\) −35.4344 17.8298i −1.34507 0.676810i
\(695\) 6.16415i 0.233820i
\(696\) 6.86900 + 4.83327i 0.260369 + 0.183205i
\(697\) 7.94948i 0.301108i
\(698\) −10.7622 + 21.3885i −0.407357 + 0.809569i
\(699\) 8.28806 + 8.28806i 0.313483 + 0.313483i
\(700\) −0.451177 + 0.334817i −0.0170529 + 0.0126549i
\(701\) 18.3314 18.3314i 0.692367 0.692367i −0.270385 0.962752i \(-0.587151\pi\)
0.962752 + 0.270385i \(0.0871511\pi\)
\(702\) −7.99872 + 2.64369i −0.301892 + 0.0997798i
\(703\) 25.8528 0.975055
\(704\) −18.3380 + 38.8590i −0.691141 + 1.46456i
\(705\) −5.08532 −0.191524
\(706\) 16.9460 5.60091i 0.637773 0.210793i
\(707\) −1.13690 + 1.13690i −0.0427577 + 0.0427577i
\(708\) 9.08532 6.74218i 0.341447 0.253386i
\(709\) 14.5722 + 14.5722i 0.547271 + 0.547271i 0.925650 0.378380i \(-0.123519\pi\)
−0.378380 + 0.925650i \(0.623519\pi\)
\(710\) 0.363303 0.722018i 0.0136345 0.0270969i
\(711\) 9.69382i 0.363547i
\(712\) −33.3075 23.4364i −1.24825 0.878315i
\(713\) 11.7633i 0.440538i
\(714\) 0.613057 + 0.308476i 0.0229431 + 0.0115444i
\(715\) 40.6761 + 40.6761i 1.52120 + 1.52120i
\(716\) −5.06651 + 34.2233i −0.189344 + 1.27898i
\(717\) −9.65324 + 9.65324i −0.360507 + 0.360507i
\(718\) 12.0212 + 36.3712i 0.448628 + 1.35736i
\(719\) 44.0949 1.64446 0.822230 0.569155i \(-0.192730\pi\)
0.822230 + 0.569155i \(0.192730\pi\)
\(720\) −3.39380 6.34059i −0.126479 0.236300i
\(721\) −1.80409 −0.0671880
\(722\) −4.29513 12.9953i −0.159848 0.483634i
\(723\) 1.50732 1.50732i 0.0560578 0.0560578i
\(724\) 16.1233 + 2.38694i 0.599219 + 0.0887101i
\(725\) −3.71119 3.71119i −0.137830 0.137830i
\(726\) −22.5481 11.3457i −0.836840 0.421079i
\(727\) 9.23457i 0.342491i 0.985228 + 0.171246i \(0.0547792\pi\)
−0.985228 + 0.171246i \(0.945221\pi\)
\(728\) −2.63832 + 0.458962i −0.0977826 + 0.0170103i
\(729\) 1.00000i 0.0370370i
\(730\) −1.53029 + 3.04125i −0.0566385 + 0.112562i
\(731\) 17.5706 + 17.5706i 0.649872 + 0.649872i
\(732\) −6.18508 8.33461i −0.228607 0.308056i
\(733\) 18.2764 18.2764i 0.675053 0.675053i −0.283823 0.958877i \(-0.591603\pi\)
0.958877 + 0.283823i \(0.0916029\pi\)
\(734\) 27.5184 9.09524i 1.01572 0.335711i
\(735\) 12.5401 0.462549
\(736\) −15.9949 + 0.404135i −0.589580 + 0.0148966i
\(737\) −5.82936 −0.214727
\(738\) 3.49611 1.15551i 0.128694 0.0425351i
\(739\) 16.9991 16.9991i 0.625321 0.625321i −0.321566 0.946887i \(-0.604209\pi\)
0.946887 + 0.321566i \(0.104209\pi\)
\(740\) −18.1447 24.4506i −0.667012 0.898822i
\(741\) −12.8605 12.8605i −0.472444 0.472444i
\(742\) −0.508249 + 1.01008i −0.0186584 + 0.0370812i
\(743\) 17.8748i 0.655762i −0.944719 0.327881i \(-0.893665\pi\)
0.944719 0.327881i \(-0.106335\pi\)
\(744\) 2.01606 + 11.5892i 0.0739123 + 0.424881i
\(745\) 7.44538i 0.272778i
\(746\) −1.84682 0.929278i −0.0676168 0.0340233i
\(747\) −0.115816 0.115816i −0.00423748 0.00423748i
\(748\) −32.4445 4.80316i −1.18629 0.175621i
\(749\) −0.114759 + 0.114759i −0.00419319 + 0.00419319i
\(750\) 5.39996 + 16.3380i 0.197179 + 0.596581i
\(751\) −35.0731 −1.27984 −0.639918 0.768443i \(-0.721032\pi\)
−0.639918 + 0.768443i \(0.721032\pi\)
\(752\) −3.27798 + 10.8284i −0.119536 + 0.394872i
\(753\) −6.27020 −0.228499
\(754\) −7.85047 23.7523i −0.285897 0.865006i
\(755\) −28.8139 + 28.8139i −1.04865 + 1.04865i
\(756\) −0.0465529 + 0.314456i −0.00169311 + 0.0114367i
\(757\) −32.8071 32.8071i −1.19239 1.19239i −0.976393 0.216000i \(-0.930699\pi\)
−0.216000 0.976393i \(-0.569301\pi\)
\(758\) −31.5662 15.8834i −1.14654 0.576912i
\(759\) 15.1917i 0.551425i
\(760\) 8.93484 12.6981i 0.324101 0.460608i
\(761\) 10.5531i 0.382550i −0.981536 0.191275i \(-0.938738\pi\)
0.981536 0.191275i \(-0.0612623\pi\)
\(762\) 0.952171 1.89231i 0.0344935 0.0685513i
\(763\) 0.229624 + 0.229624i 0.00831296 + 0.00831296i
\(764\) −25.9660 + 19.2693i −0.939418 + 0.697138i
\(765\) 3.88163 3.88163i 0.140341 0.140341i
\(766\) 41.7545 13.8005i 1.50865 0.498632i
\(767\) −33.6972 −1.21673
\(768\) −15.6890 + 3.13946i −0.566127 + 0.113285i
\(769\) −35.2068 −1.26959