Properties

Label 48.2.j.a.13.3
Level $48$
Weight $2$
Character 48.13
Analytic conductor $0.383$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 48.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.383281929702\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.18939904.2
Defining polynomial: \(x^{8} - 4 x^{7} + 14 x^{6} - 28 x^{5} + 43 x^{4} - 44 x^{3} + 30 x^{2} - 12 x + 2\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 13.3
Root \(0.500000 - 0.691860i\) of defining polynomial
Character \(\chi\) \(=\) 48.13
Dual form 48.2.j.a.37.3

$q$-expansion

\(f(q)\) \(=\) \(q+(0.635665 - 1.26330i) q^{2} +(0.707107 + 0.707107i) q^{3} +(-1.19186 - 1.60607i) q^{4} +(-2.68554 + 2.68554i) q^{5} +(1.34277 - 0.443806i) q^{6} -2.15894i q^{7} +(-2.78658 + 0.484753i) q^{8} +1.00000i q^{9} +O(q^{10})\) \(q+(0.635665 - 1.26330i) q^{2} +(0.707107 + 0.707107i) q^{3} +(-1.19186 - 1.60607i) q^{4} +(-2.68554 + 2.68554i) q^{5} +(1.34277 - 0.443806i) q^{6} -2.15894i q^{7} +(-2.78658 + 0.484753i) q^{8} +1.00000i q^{9} +(1.68554 + 5.09976i) q^{10} +(1.79793 - 1.79793i) q^{11} +(0.292893 - 1.97844i) q^{12} +(1.38372 + 1.38372i) q^{13} +(-2.72739 - 1.37236i) q^{14} -3.79793 q^{15} +(-1.15894 + 3.82843i) q^{16} -0.224777 q^{17} +(1.26330 + 0.635665i) q^{18} +(0.158942 + 0.158942i) q^{19} +(7.51397 + 1.11239i) q^{20} +(1.52660 - 1.52660i) q^{21} +(-1.12845 - 3.41421i) q^{22} -2.82843i q^{23} +(-2.31318 - 1.62764i) q^{24} -9.42429i q^{25} +(2.62764 - 0.868472i) q^{26} +(-0.707107 + 0.707107i) q^{27} +(-3.46742 + 2.57316i) q^{28} +(-1.85712 - 1.85712i) q^{29} +(-2.41421 + 4.79793i) q^{30} +1.84106 q^{31} +(4.09976 + 3.89769i) q^{32} +2.54266 q^{33} +(-0.142883 + 0.283962i) q^{34} +(5.79793 + 5.79793i) q^{35} +(1.60607 - 1.19186i) q^{36} +(-3.66949 + 3.66949i) q^{37} +(0.301825 - 0.0997575i) q^{38} +1.95687i q^{39} +(6.18165 - 8.78530i) q^{40} +5.88163i q^{41} +(-0.958150 - 2.89897i) q^{42} +(-7.75481 + 7.75481i) q^{43} +(-5.03049 - 0.744728i) q^{44} +(-2.68554 - 2.68554i) q^{45} +(-3.57316 - 1.79793i) q^{46} -2.82843 q^{47} +(-3.52660 + 1.88761i) q^{48} +2.33897 q^{49} +(-11.9057 - 5.99069i) q^{50} +(-0.158942 - 0.158942i) q^{51} +(0.573155 - 3.87155i) q^{52} +(7.51397 - 7.51397i) q^{53} +(0.443806 + 1.34277i) q^{54} +9.65685i q^{55} +(1.04655 + 6.01606i) q^{56} +0.224777i q^{57} +(-3.52660 + 1.16559i) q^{58} +(4.00000 - 4.00000i) q^{59} +(4.52660 + 6.09976i) q^{60} +(5.98737 + 5.98737i) q^{61} +(1.17030 - 2.32581i) q^{62} +2.15894 q^{63} +(7.53003 - 2.70160i) q^{64} -7.43208 q^{65} +(1.61628 - 3.21215i) q^{66} +(-10.4243 - 10.4243i) q^{67} +(0.267903 + 0.361009i) q^{68} +(2.00000 - 2.00000i) q^{69} +(11.0101 - 3.63899i) q^{70} +4.31788i q^{71} +(-0.484753 - 2.78658i) q^{72} +5.97474i q^{73} +(2.30310 + 6.96823i) q^{74} +(6.66398 - 6.66398i) q^{75} +(0.0658358 - 0.444708i) q^{76} +(-3.88163 - 3.88163i) q^{77} +(2.47212 + 1.24392i) q^{78} +15.0075 q^{79} +(-7.16902 - 13.3938i) q^{80} -1.00000 q^{81} +(7.43027 + 3.73875i) q^{82} +(-10.1158 - 10.1158i) q^{83} +(-4.27133 - 0.632339i) q^{84} +(0.603650 - 0.603650i) q^{85} +(4.86720 + 14.7261i) q^{86} -2.62636i q^{87} +(-4.13853 + 5.88163i) q^{88} +1.42847i q^{89} +(-5.09976 + 1.68554i) q^{90} +(2.98737 - 2.98737i) q^{91} +(-4.54266 + 3.37109i) q^{92} +(1.30182 + 1.30182i) q^{93} +(-1.79793 + 3.57316i) q^{94} -0.853690 q^{95} +(0.142883 + 5.65505i) q^{96} -16.3990 q^{97} +(1.48680 - 2.95482i) q^{98} +(1.79793 + 1.79793i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 4q^{4} - 12q^{8} + O(q^{10}) \) \( 8q - 4q^{4} - 12q^{8} - 8q^{10} - 8q^{11} + 8q^{12} + 12q^{14} - 8q^{15} + 4q^{18} - 8q^{19} + 16q^{20} + 4q^{24} + 20q^{26} + 8q^{28} - 16q^{29} - 8q^{30} + 24q^{31} + 24q^{35} - 4q^{36} - 16q^{37} - 8q^{38} + 16q^{40} - 20q^{42} - 8q^{43} - 40q^{44} - 8q^{46} - 16q^{48} - 8q^{49} - 36q^{50} + 8q^{51} - 16q^{52} + 16q^{53} + 4q^{54} - 16q^{58} + 32q^{59} + 24q^{60} + 16q^{61} - 12q^{62} + 8q^{63} + 8q^{64} - 16q^{65} + 24q^{66} - 16q^{67} + 32q^{68} + 16q^{69} + 32q^{70} - 4q^{72} + 52q^{74} + 16q^{75} + 8q^{76} + 16q^{77} - 12q^{78} - 24q^{79} + 8q^{80} - 8q^{81} + 40q^{82} - 40q^{83} - 24q^{84} - 16q^{85} - 16q^{86} + 32q^{88} - 8q^{90} - 8q^{91} - 16q^{92} + 8q^{94} - 48q^{95} - 40q^{98} - 8q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/48\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(31\) \(37\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.635665 1.26330i 0.449483 0.893289i
\(3\) 0.707107 + 0.707107i 0.408248 + 0.408248i
\(4\) −1.19186 1.60607i −0.595930 0.803037i
\(5\) −2.68554 + 2.68554i −1.20101 + 1.20101i −0.227153 + 0.973859i \(0.572942\pi\)
−0.973859 + 0.227153i \(0.927058\pi\)
\(6\) 1.34277 0.443806i 0.548184 0.181183i
\(7\) 2.15894i 0.816003i −0.912981 0.408002i \(-0.866226\pi\)
0.912981 0.408002i \(-0.133774\pi\)
\(8\) −2.78658 + 0.484753i −0.985204 + 0.171386i
\(9\) 1.00000i 0.333333i
\(10\) 1.68554 + 5.09976i 0.533016 + 1.61268i
\(11\) 1.79793 1.79793i 0.542097 0.542097i −0.382046 0.924143i \(-0.624780\pi\)
0.924143 + 0.382046i \(0.124780\pi\)
\(12\) 0.292893 1.97844i 0.0845510 0.571126i
\(13\) 1.38372 + 1.38372i 0.383775 + 0.383775i 0.872460 0.488685i \(-0.162523\pi\)
−0.488685 + 0.872460i \(0.662523\pi\)
\(14\) −2.72739 1.37236i −0.728927 0.366780i
\(15\) −3.79793 −0.980622
\(16\) −1.15894 + 3.82843i −0.289735 + 0.957107i
\(17\) −0.224777 −0.0545165 −0.0272583 0.999628i \(-0.508678\pi\)
−0.0272583 + 0.999628i \(0.508678\pi\)
\(18\) 1.26330 + 0.635665i 0.297763 + 0.149828i
\(19\) 0.158942 + 0.158942i 0.0364637 + 0.0364637i 0.725104 0.688640i \(-0.241792\pi\)
−0.688640 + 0.725104i \(0.741792\pi\)
\(20\) 7.51397 + 1.11239i 1.68018 + 0.248738i
\(21\) 1.52660 1.52660i 0.333132 0.333132i
\(22\) −1.12845 3.41421i −0.240586 0.727913i
\(23\) 2.82843i 0.589768i −0.955533 0.294884i \(-0.904719\pi\)
0.955533 0.294884i \(-0.0952810\pi\)
\(24\) −2.31318 1.62764i −0.472176 0.332240i
\(25\) 9.42429i 1.88486i
\(26\) 2.62764 0.868472i 0.515322 0.170321i
\(27\) −0.707107 + 0.707107i −0.136083 + 0.136083i
\(28\) −3.46742 + 2.57316i −0.655280 + 0.486281i
\(29\) −1.85712 1.85712i −0.344858 0.344858i 0.513332 0.858190i \(-0.328411\pi\)
−0.858190 + 0.513332i \(0.828411\pi\)
\(30\) −2.41421 + 4.79793i −0.440773 + 0.875979i
\(31\) 1.84106 0.330664 0.165332 0.986238i \(-0.447130\pi\)
0.165332 + 0.986238i \(0.447130\pi\)
\(32\) 4.09976 + 3.89769i 0.724742 + 0.689021i
\(33\) 2.54266 0.442620
\(34\) −0.142883 + 0.283962i −0.0245043 + 0.0486990i
\(35\) 5.79793 + 5.79793i 0.980029 + 0.980029i
\(36\) 1.60607 1.19186i 0.267679 0.198643i
\(37\) −3.66949 + 3.66949i −0.603260 + 0.603260i −0.941176 0.337916i \(-0.890278\pi\)
0.337916 + 0.941176i \(0.390278\pi\)
\(38\) 0.301825 0.0997575i 0.0489625 0.0161828i
\(39\) 1.95687i 0.313351i
\(40\) 6.18165 8.78530i 0.977405 1.38908i
\(41\) 5.88163i 0.918557i 0.888292 + 0.459278i \(0.151892\pi\)
−0.888292 + 0.459278i \(0.848108\pi\)
\(42\) −0.958150 2.89897i −0.147846 0.447320i
\(43\) −7.75481 + 7.75481i −1.18260 + 1.18260i −0.203528 + 0.979069i \(0.565241\pi\)
−0.979069 + 0.203528i \(0.934759\pi\)
\(44\) −5.03049 0.744728i −0.758376 0.112272i
\(45\) −2.68554 2.68554i −0.400337 0.400337i
\(46\) −3.57316 1.79793i −0.526833 0.265091i
\(47\) −2.82843 −0.412568 −0.206284 0.978492i \(-0.566137\pi\)
−0.206284 + 0.978492i \(0.566137\pi\)
\(48\) −3.52660 + 1.88761i −0.509021 + 0.272453i
\(49\) 2.33897 0.334139
\(50\) −11.9057 5.99069i −1.68372 0.847212i
\(51\) −0.158942 0.158942i −0.0222563 0.0222563i
\(52\) 0.573155 3.87155i 0.0794823 0.536888i
\(53\) 7.51397 7.51397i 1.03212 1.03212i 0.0326567 0.999467i \(-0.489603\pi\)
0.999467 0.0326567i \(-0.0103968\pi\)
\(54\) 0.443806 + 1.34277i 0.0603943 + 0.182728i
\(55\) 9.65685i 1.30213i
\(56\) 1.04655 + 6.01606i 0.139852 + 0.803930i
\(57\) 0.224777i 0.0297725i
\(58\) −3.52660 + 1.16559i −0.463066 + 0.153050i
\(59\) 4.00000 4.00000i 0.520756 0.520756i −0.397044 0.917800i \(-0.629964\pi\)
0.917800 + 0.397044i \(0.129964\pi\)
\(60\) 4.52660 + 6.09976i 0.584382 + 0.787475i
\(61\) 5.98737 + 5.98737i 0.766604 + 0.766604i 0.977507 0.210903i \(-0.0676404\pi\)
−0.210903 + 0.977507i \(0.567640\pi\)
\(62\) 1.17030 2.32581i 0.148628 0.295378i
\(63\) 2.15894 0.272001
\(64\) 7.53003 2.70160i 0.941254 0.337700i
\(65\) −7.43208 −0.921836
\(66\) 1.61628 3.21215i 0.198950 0.395388i
\(67\) −10.4243 10.4243i −1.27353 1.27353i −0.944223 0.329307i \(-0.893185\pi\)
−0.329307 0.944223i \(-0.606815\pi\)
\(68\) 0.267903 + 0.361009i 0.0324880 + 0.0437788i
\(69\) 2.00000 2.00000i 0.240772 0.240772i
\(70\) 11.0101 3.63899i 1.31596 0.434943i
\(71\) 4.31788i 0.512438i 0.966619 + 0.256219i \(0.0824769\pi\)
−0.966619 + 0.256219i \(0.917523\pi\)
\(72\) −0.484753 2.78658i −0.0571287 0.328401i
\(73\) 5.97474i 0.699290i 0.936882 + 0.349645i \(0.113698\pi\)
−0.936882 + 0.349645i \(0.886302\pi\)
\(74\) 2.30310 + 6.96823i 0.267730 + 0.810040i
\(75\) 6.66398 6.66398i 0.769490 0.769490i
\(76\) 0.0658358 0.444708i 0.00755188 0.0510115i
\(77\) −3.88163 3.88163i −0.442353 0.442353i
\(78\) 2.47212 + 1.24392i 0.279913 + 0.140846i
\(79\) 15.0075 1.68848 0.844239 0.535966i \(-0.180053\pi\)
0.844239 + 0.535966i \(0.180053\pi\)
\(80\) −7.16902 13.3938i −0.801521 1.49747i
\(81\) −1.00000 −0.111111
\(82\) 7.43027 + 3.73875i 0.820536 + 0.412876i
\(83\) −10.1158 10.1158i −1.11036 1.11036i −0.993102 0.117253i \(-0.962591\pi\)
−0.117253 0.993102i \(-0.537409\pi\)
\(84\) −4.27133 0.632339i −0.466040 0.0689939i
\(85\) 0.603650 0.603650i 0.0654750 0.0654750i
\(86\) 4.86720 + 14.7261i 0.524843 + 1.58796i
\(87\) 2.62636i 0.281575i
\(88\) −4.13853 + 5.88163i −0.441168 + 0.626984i
\(89\) 1.42847i 0.151417i 0.997130 + 0.0757086i \(0.0241219\pi\)
−0.997130 + 0.0757086i \(0.975878\pi\)
\(90\) −5.09976 + 1.68554i −0.537562 + 0.177672i
\(91\) 2.98737 2.98737i 0.313161 0.313161i
\(92\) −4.54266 + 3.37109i −0.473605 + 0.351460i
\(93\) 1.30182 + 1.30182i 0.134993 + 0.134993i
\(94\) −1.79793 + 3.57316i −0.185443 + 0.368543i
\(95\) −0.853690 −0.0875867
\(96\) 0.142883 + 5.65505i 0.0145830 + 0.577166i
\(97\) −16.3990 −1.66507 −0.832535 0.553973i \(-0.813111\pi\)
−0.832535 + 0.553973i \(0.813111\pi\)
\(98\) 1.48680 2.95482i 0.150190 0.298482i
\(99\) 1.79793 + 1.79793i 0.180699 + 0.180699i
\(100\) −15.1361 + 11.2324i −1.51361 + 1.12324i
\(101\) 0.0818942 0.0818942i 0.00814878 0.00814878i −0.703021 0.711169i \(-0.748166\pi\)
0.711169 + 0.703021i \(0.248166\pi\)
\(102\) −0.301825 + 0.0997575i −0.0298851 + 0.00987746i
\(103\) 13.3507i 1.31548i −0.753245 0.657740i \(-0.771512\pi\)
0.753245 0.657740i \(-0.228488\pi\)
\(104\) −4.52660 3.18508i −0.443870 0.312323i
\(105\) 8.19951i 0.800191i
\(106\) −4.71604 14.2688i −0.458062 1.38591i
\(107\) −7.27798 + 7.27798i −0.703589 + 0.703589i −0.965179 0.261590i \(-0.915753\pi\)
0.261590 + 0.965179i \(0.415753\pi\)
\(108\) 1.97844 + 0.292893i 0.190375 + 0.0281837i
\(109\) −7.04057 7.04057i −0.674365 0.674365i 0.284355 0.958719i \(-0.408221\pi\)
−0.958719 + 0.284355i \(0.908221\pi\)
\(110\) 12.1995 + 6.13853i 1.16318 + 0.585285i
\(111\) −5.18944 −0.492559
\(112\) 8.26535 + 2.50209i 0.781002 + 0.236425i
\(113\) 18.8486 1.77313 0.886563 0.462608i \(-0.153086\pi\)
0.886563 + 0.462608i \(0.153086\pi\)
\(114\) 0.283962 + 0.142883i 0.0265954 + 0.0133822i
\(115\) 7.59587 + 7.59587i 0.708318 + 0.708318i
\(116\) −0.769243 + 5.19609i −0.0714224 + 0.482445i
\(117\) −1.38372 + 1.38372i −0.127925 + 0.127925i
\(118\) −2.51054 7.59587i −0.231114 0.699256i
\(119\) 0.485281i 0.0444857i
\(120\) 10.5832 1.84106i 0.966113 0.168065i
\(121\) 4.53488i 0.412261i
\(122\) 11.3698 3.75789i 1.02937 0.340223i
\(123\) −4.15894 + 4.15894i −0.374999 + 0.374999i
\(124\) −2.19428 2.95687i −0.197052 0.265535i
\(125\) 11.8816 + 11.8816i 1.06273 + 1.06273i
\(126\) 1.37236 2.72739i 0.122260 0.242976i
\(127\) −3.81580 −0.338597 −0.169299 0.985565i \(-0.554150\pi\)
−0.169299 + 0.985565i \(0.554150\pi\)
\(128\) 1.37364 11.2300i 0.121414 0.992602i
\(129\) −10.9670 −0.965586
\(130\) −4.72431 + 9.38895i −0.414350 + 0.823465i
\(131\) −0.767438 0.767438i −0.0670514 0.0670514i 0.672786 0.739837i \(-0.265098\pi\)
−0.739837 + 0.672786i \(0.765098\pi\)
\(132\) −3.03049 4.08370i −0.263771 0.355440i
\(133\) 0.343146 0.343146i 0.0297545 0.0297545i
\(134\) −19.7954 + 6.54266i −1.71006 + 0.565200i
\(135\) 3.79793i 0.326874i
\(136\) 0.626360 0.108961i 0.0537099 0.00934337i
\(137\) 5.31010i 0.453672i −0.973933 0.226836i \(-0.927162\pi\)
0.973933 0.226836i \(-0.0728382\pi\)
\(138\) −1.25527 3.79793i −0.106856 0.323301i
\(139\) 8.76744 8.76744i 0.743644 0.743644i −0.229633 0.973277i \(-0.573753\pi\)
0.973277 + 0.229633i \(0.0737526\pi\)
\(140\) 2.40158 16.2222i 0.202971 1.37103i
\(141\) −2.00000 2.00000i −0.168430 0.168430i
\(142\) 5.45479 + 2.74473i 0.457756 + 0.230332i
\(143\) 4.97567 0.416086
\(144\) −3.82843 1.15894i −0.319036 0.0965785i
\(145\) 9.97474 0.828357
\(146\) 7.54789 + 3.79793i 0.624668 + 0.314319i
\(147\) 1.65390 + 1.65390i 0.136412 + 0.136412i
\(148\) 10.2670 + 1.51995i 0.843940 + 0.124939i
\(149\) −1.02869 + 1.02869i −0.0842735 + 0.0842735i −0.747987 0.663713i \(-0.768979\pi\)
0.663713 + 0.747987i \(0.268979\pi\)
\(150\) −4.18255 12.6547i −0.341504 1.03325i
\(151\) 2.03696i 0.165766i 0.996559 + 0.0828829i \(0.0264127\pi\)
−0.996559 + 0.0828829i \(0.973587\pi\)
\(152\) −0.519951 0.365856i −0.0421736 0.0296748i
\(153\) 0.224777i 0.0181722i
\(154\) −7.37109 + 2.43625i −0.593979 + 0.196319i
\(155\) −4.94424 + 4.94424i −0.397131 + 0.397131i
\(156\) 3.14288 2.33232i 0.251632 0.186735i
\(157\) 6.09378 + 6.09378i 0.486336 + 0.486336i 0.907148 0.420812i \(-0.138255\pi\)
−0.420812 + 0.907148i \(0.638255\pi\)
\(158\) 9.53976 18.9590i 0.758943 1.50830i
\(159\) 10.6264 0.842725
\(160\) −21.4775 + 0.542661i −1.69795 + 0.0429011i
\(161\) −6.10641 −0.481252
\(162\) −0.635665 + 1.26330i −0.0499426 + 0.0992543i
\(163\) 3.43692 + 3.43692i 0.269201 + 0.269201i 0.828778 0.559577i \(-0.189037\pi\)
−0.559577 + 0.828778i \(0.689037\pi\)
\(164\) 9.44633 7.01008i 0.737634 0.547395i
\(165\) −6.82843 + 6.82843i −0.531592 + 0.531592i
\(166\) −19.2096 + 6.34905i −1.49095 + 0.492782i
\(167\) 21.7023i 1.67937i 0.543072 + 0.839686i \(0.317261\pi\)
−0.543072 + 0.839686i \(0.682739\pi\)
\(168\) −3.51397 + 4.99402i −0.271109 + 0.385297i
\(169\) 9.17064i 0.705434i
\(170\) −0.378872 1.14631i −0.0290582 0.0879180i
\(171\) −0.158942 + 0.158942i −0.0121546 + 0.0121546i
\(172\) 21.6974 + 3.21215i 1.65441 + 0.244924i
\(173\) −8.74653 8.74653i −0.664987 0.664987i 0.291565 0.956551i \(-0.405824\pi\)
−0.956551 + 0.291565i \(0.905824\pi\)
\(174\) −3.31788 1.66949i −0.251528 0.126563i
\(175\) −20.3465 −1.53805
\(176\) 4.79956 + 8.96695i 0.361780 + 0.675910i
\(177\) 5.65685 0.425195
\(178\) 1.80458 + 0.908027i 0.135259 + 0.0680595i
\(179\) 8.23163 + 8.23163i 0.615261 + 0.615261i 0.944312 0.329051i \(-0.106729\pi\)
−0.329051 + 0.944312i \(0.606729\pi\)
\(180\) −1.11239 + 7.51397i −0.0829126 + 0.560058i
\(181\) 6.72269 6.72269i 0.499694 0.499694i −0.411649 0.911343i \(-0.635047\pi\)
0.911343 + 0.411649i \(0.135047\pi\)
\(182\) −1.87498 5.67291i −0.138983 0.420504i
\(183\) 8.46742i 0.625930i
\(184\) 1.37109 + 7.88163i 0.101078 + 0.581042i
\(185\) 19.7091i 1.44904i
\(186\) 2.47212 0.817072i 0.181265 0.0599106i
\(187\) −0.404135 + 0.404135i −0.0295533 + 0.0295533i
\(188\) 3.37109 + 4.54266i 0.245862 + 0.331308i
\(189\) 1.52660 + 1.52660i 0.111044 + 0.111044i
\(190\) −0.542661 + 1.07847i −0.0393687 + 0.0782402i
\(191\) −20.8032 −1.50526 −0.752632 0.658441i \(-0.771216\pi\)
−0.752632 + 0.658441i \(0.771216\pi\)
\(192\) 7.23486 + 3.41421i 0.522131 + 0.246400i
\(193\) 14.1454 1.01821 0.509103 0.860705i \(-0.329977\pi\)
0.509103 + 0.860705i \(0.329977\pi\)
\(194\) −10.4243 + 20.7169i −0.748421 + 1.48739i
\(195\) −5.25527 5.25527i −0.376338 0.376338i
\(196\) −2.78772 3.75656i −0.199123 0.268326i
\(197\) −2.42865 + 2.42865i −0.173034 + 0.173034i −0.788311 0.615277i \(-0.789044\pi\)
0.615277 + 0.788311i \(0.289044\pi\)
\(198\) 3.41421 1.12845i 0.242638 0.0801952i
\(199\) 0.306182i 0.0217047i −0.999941 0.0108523i \(-0.996546\pi\)
0.999941 0.0108523i \(-0.00345447\pi\)
\(200\) 4.56845 + 26.2615i 0.323038 + 1.85697i
\(201\) 14.7422i 1.03983i
\(202\) −0.0513998 0.155514i −0.00361648 0.0109420i
\(203\) −4.00941 + 4.00941i −0.281405 + 0.281405i
\(204\) −0.0658358 + 0.444708i −0.00460943 + 0.0311358i
\(205\) −15.7954 15.7954i −1.10320 1.10320i
\(206\) −16.8659 8.48656i −1.17510 0.591286i
\(207\) 2.82843 0.196589
\(208\) −6.90112 + 3.69382i −0.478506 + 0.256120i
\(209\) 0.571533 0.0395337
\(210\) 10.3585 + 5.21215i 0.714801 + 0.359672i
\(211\) 7.23256 + 7.23256i 0.497910 + 0.497910i 0.910787 0.412877i \(-0.135476\pi\)
−0.412877 + 0.910787i \(0.635476\pi\)
\(212\) −21.0236 3.11239i −1.44391 0.213760i
\(213\) −3.05320 + 3.05320i −0.209202 + 0.209202i
\(214\) 4.56792 + 13.8206i 0.312257 + 0.944760i
\(215\) 41.6517i 2.84063i
\(216\) 1.62764 2.31318i 0.110747 0.157392i
\(217\) 3.97474i 0.269823i
\(218\) −13.3698 + 4.41892i −0.905518 + 0.299287i
\(219\) −4.22478 + 4.22478i −0.285484 + 0.285484i
\(220\) 15.5096 11.5096i 1.04566 0.775978i
\(221\) −0.311029 0.311029i −0.0209221 0.0209221i
\(222\) −3.29874 + 6.55582i −0.221397 + 0.439998i
\(223\) −1.71908 −0.115118 −0.0575591 0.998342i \(-0.518332\pi\)
−0.0575591 + 0.998342i \(0.518332\pi\)
\(224\) 8.41489 8.85114i 0.562243 0.591391i
\(225\) 9.42429 0.628286
\(226\) 11.9814 23.8114i 0.796990 1.58391i
\(227\) 10.1158 + 10.1158i 0.671410 + 0.671410i 0.958041 0.286631i \(-0.0925353\pi\)
−0.286631 + 0.958041i \(0.592535\pi\)
\(228\) 0.361009 0.267903i 0.0239084 0.0177423i
\(229\) −12.0195 + 12.0195i −0.794270 + 0.794270i −0.982185 0.187915i \(-0.939827\pi\)
0.187915 + 0.982185i \(0.439827\pi\)
\(230\) 14.4243 4.76744i 0.951110 0.314356i
\(231\) 5.48946i 0.361180i
\(232\) 6.07524 + 4.27476i 0.398859 + 0.280652i
\(233\) 13.3779i 0.876418i 0.898873 + 0.438209i \(0.144387\pi\)
−0.898873 + 0.438209i \(0.855613\pi\)
\(234\) 0.868472 + 2.62764i 0.0567738 + 0.171774i
\(235\) 7.59587 7.59587i 0.495500 0.495500i
\(236\) −11.1917 1.65685i −0.728520 0.107852i
\(237\) 10.6119 + 10.6119i 0.689319 + 0.689319i
\(238\) 0.613057 + 0.308476i 0.0397386 + 0.0199956i
\(239\) 13.3675 0.864670 0.432335 0.901713i \(-0.357690\pi\)
0.432335 + 0.901713i \(0.357690\pi\)
\(240\) 4.40158 14.5401i 0.284121 0.938560i
\(241\) 0.211474 0.0136222 0.00681112 0.999977i \(-0.497832\pi\)
0.00681112 + 0.999977i \(0.497832\pi\)
\(242\) 5.72891 + 2.88266i 0.368269 + 0.185305i
\(243\) −0.707107 0.707107i −0.0453609 0.0453609i
\(244\) 2.48005 16.7523i 0.158769 1.07245i
\(245\) −6.28141 + 6.28141i −0.401305 + 0.401305i
\(246\) 2.61030 + 7.89769i 0.166427 + 0.503538i
\(247\) 0.439861i 0.0279877i
\(248\) −5.13025 + 0.892458i −0.325771 + 0.0566711i
\(249\) 14.3059i 0.906601i
\(250\) 22.5628 7.45734i 1.42700 0.471644i
\(251\) 10.4337 10.4337i 0.658569 0.658569i −0.296472 0.955041i \(-0.595810\pi\)
0.955041 + 0.296472i \(0.0958102\pi\)
\(252\) −2.57316 3.46742i −0.162094 0.218427i
\(253\) −5.08532 5.08532i −0.319711 0.319711i
\(254\) −2.42557 + 4.82050i −0.152194 + 0.302465i
\(255\) 0.853690 0.0534601
\(256\) −13.3137 8.87385i −0.832107 0.554615i
\(257\) −0.742176 −0.0462957 −0.0231478 0.999732i \(-0.507369\pi\)
−0.0231478 + 0.999732i \(0.507369\pi\)
\(258\) −6.97131 + 13.8546i −0.434015 + 0.862548i
\(259\) 7.92221 + 7.92221i 0.492262 + 0.492262i
\(260\) 8.85799 + 11.9365i 0.549349 + 0.740268i
\(261\) 1.85712 1.85712i 0.114953 0.114953i
\(262\) −1.45734 + 0.481672i −0.0900347 + 0.0297578i
\(263\) 5.48435i 0.338180i −0.985601 0.169090i \(-0.945917\pi\)
0.985601 0.169090i \(-0.0540828\pi\)
\(264\) −7.08532 + 1.23256i −0.436071 + 0.0758589i
\(265\) 40.3582i 2.47918i
\(266\) −0.215371 0.651622i −0.0132052 0.0399535i
\(267\) −1.01008 + 1.01008i −0.0618158 + 0.0618158i
\(268\) −4.31788 + 29.1665i −0.263757 + 1.78163i
\(269\) 14.4741 + 14.4741i 0.882500 + 0.882500i 0.993788 0.111289i \(-0.0354978\pi\)
−0.111289 + 0.993788i \(0.535498\pi\)
\(270\) −4.79793 2.41421i −0.291993 0.146924i
\(271\) −14.0370 −0.852685 −0.426342 0.904562i \(-0.640198\pi\)
−0.426342 + 0.904562i \(0.640198\pi\)
\(272\) 0.260504 0.860544i 0.0157954 0.0521781i
\(273\) 4.22478 0.255695
\(274\) −6.70825 3.37545i −0.405260 0.203918i
\(275\) −16.9442 16.9442i −1.02178 1.02178i
\(276\) −5.59587 0.828427i −0.336832 0.0498655i
\(277\) 9.49013 9.49013i 0.570207 0.570207i −0.361980 0.932186i \(-0.617899\pi\)
0.932186 + 0.361980i \(0.117899\pi\)
\(278\) −5.50276 16.6491i −0.330034 0.998545i
\(279\) 1.84106i 0.110221i
\(280\) −18.9670 13.3458i −1.13349 0.797566i
\(281\) 3.89359i 0.232272i −0.993233 0.116136i \(-0.962949\pi\)
0.993233 0.116136i \(-0.0370509\pi\)
\(282\) −3.79793 + 1.25527i −0.226164 + 0.0747504i
\(283\) −12.4853 + 12.4853i −0.742173 + 0.742173i −0.972996 0.230823i \(-0.925858\pi\)
0.230823 + 0.972996i \(0.425858\pi\)
\(284\) 6.93484 5.14631i 0.411507 0.305377i
\(285\) −0.603650 0.603650i −0.0357571 0.0357571i
\(286\) 3.16286 6.28577i 0.187024 0.371685i
\(287\) 12.6981 0.749545
\(288\) −3.89769 + 4.09976i −0.229674 + 0.241581i
\(289\) −16.9495 −0.997028
\(290\) 6.34059 12.6011i 0.372332 0.739962i
\(291\) −11.5959 11.5959i −0.679762 0.679762i
\(292\) 9.59587 7.12105i 0.561556 0.416728i
\(293\) −11.1553 + 11.1553i −0.651697 + 0.651697i −0.953402 0.301704i \(-0.902444\pi\)
0.301704 + 0.953402i \(0.402444\pi\)
\(294\) 3.14070 1.03805i 0.183170 0.0605402i
\(295\) 21.4844i 1.25087i
\(296\) 8.44651 12.0041i 0.490944 0.697724i
\(297\) 2.54266i 0.147540i
\(298\) 0.645643 + 1.95345i 0.0374011 + 0.113160i
\(299\) 3.91375 3.91375i 0.226338 0.226338i
\(300\) −18.6454 2.76031i −1.07649 0.159367i
\(301\) 16.7422 + 16.7422i 0.965003 + 0.965003i
\(302\) 2.57330 + 1.29483i 0.148077 + 0.0745089i
\(303\) 0.115816 0.00665345
\(304\) −0.792701 + 0.424292i −0.0454645 + 0.0243348i
\(305\) −32.1587 −1.84140
\(306\) −0.283962 0.142883i −0.0162330 0.00816809i
\(307\) −5.40320 5.40320i −0.308377 0.308377i 0.535903 0.844280i \(-0.319971\pi\)
−0.844280 + 0.535903i \(0.819971\pi\)
\(308\) −1.60782 + 10.8605i −0.0916143 + 0.618837i
\(309\) 9.44035 9.44035i 0.537043 0.537043i
\(310\) 3.10318 + 9.38895i 0.176249 + 0.533257i
\(311\) 24.1623i 1.37012i 0.728488 + 0.685059i \(0.240224\pi\)
−0.728488 + 0.685059i \(0.759776\pi\)
\(312\) −0.948600 5.45298i −0.0537039 0.308714i
\(313\) 16.6105i 0.938881i 0.882964 + 0.469441i \(0.155544\pi\)
−0.882964 + 0.469441i \(0.844456\pi\)
\(314\) 11.5719 3.82467i 0.653039 0.215839i
\(315\) −5.79793 + 5.79793i −0.326676 + 0.326676i
\(316\) −17.8869 24.1032i −1.00621 1.35591i
\(317\) 1.81170 + 1.81170i 0.101755 + 0.101755i 0.756152 0.654397i \(-0.227077\pi\)
−0.654397 + 0.756152i \(0.727077\pi\)
\(318\) 6.75481 13.4243i 0.378791 0.752797i
\(319\) −6.67794 −0.373893
\(320\) −12.9670 + 27.4775i −0.724875 + 1.53604i
\(321\) −10.2926 −0.574478
\(322\) −3.88163 + 7.71423i −0.216315 + 0.429897i
\(323\) −0.0357265 0.0357265i −0.00198788 0.00198788i
\(324\) 1.19186 + 1.60607i 0.0662144 + 0.0892263i
\(325\) 13.0406 13.0406i 0.723361 0.723361i
\(326\) 6.52660 2.15714i 0.361475 0.119473i
\(327\) 9.95687i 0.550616i
\(328\) −2.85114 16.3896i −0.157428 0.904966i
\(329\) 6.10641i 0.336657i
\(330\) 4.28577 + 12.9670i 0.235924 + 0.713807i
\(331\) 13.5252 13.5252i 0.743411 0.743411i −0.229822 0.973233i \(-0.573814\pi\)
0.973233 + 0.229822i \(0.0738142\pi\)
\(332\) −4.19011 + 28.3034i −0.229962 + 1.55335i
\(333\) −3.66949 3.66949i −0.201087 0.201087i
\(334\) 27.4165 + 13.7954i 1.50016 + 0.754850i
\(335\) 55.9898 3.05905
\(336\) 4.07524 + 7.61373i 0.222323 + 0.415363i
\(337\) −1.12615 −0.0613454 −0.0306727 0.999529i \(-0.509765\pi\)
−0.0306727 + 0.999529i \(0.509765\pi\)
\(338\) −11.5853 5.82946i −0.630156 0.317081i
\(339\) 13.3280 + 13.3280i 0.723876 + 0.723876i
\(340\) −1.68897 0.250040i −0.0915973 0.0135603i
\(341\) 3.31010 3.31010i 0.179252 0.179252i
\(342\) 0.0997575 + 0.301825i 0.00539427 + 0.0163208i
\(343\) 20.1623i 1.08866i
\(344\) 17.8502 25.3685i 0.962419 1.36778i
\(345\) 10.7422i 0.578339i
\(346\) −16.6094 + 5.48964i −0.892925 + 0.295125i
\(347\) 20.7938 20.7938i 1.11627 1.11627i 0.123983 0.992284i \(-0.460433\pi\)
0.992284 0.123983i \(-0.0395669\pi\)
\(348\) −4.21813 + 3.13025i −0.226115 + 0.167799i
\(349\) −19.2855 19.2855i −1.03233 1.03233i −0.999460 0.0328700i \(-0.989535\pi\)
−0.0328700 0.999460i \(-0.510465\pi\)
\(350\) −12.9336 + 25.7038i −0.691328 + 1.37392i
\(351\) −1.95687 −0.104450
\(352\) 14.3789 0.363303i 0.766396 0.0193641i
\(353\) 25.5908 1.36206 0.681029 0.732256i \(-0.261533\pi\)
0.681029 + 0.732256i \(0.261533\pi\)
\(354\) 3.59587 7.14631i 0.191118 0.379822i
\(355\) −11.5959 11.5959i −0.615445 0.615445i
\(356\) 2.29422 1.70253i 0.121594 0.0902340i
\(357\) −0.343146 + 0.343146i −0.0181612 + 0.0181612i
\(358\) 15.6316 5.16647i 0.826155 0.273056i
\(359\) 3.77296i 0.199129i −0.995031 0.0995645i \(-0.968255\pi\)
0.995031 0.0995645i \(-0.0317450\pi\)
\(360\) 8.78530 + 6.18165i 0.463026 + 0.325802i
\(361\) 18.9495i 0.997341i
\(362\) −4.21940 12.7662i −0.221767 0.670975i
\(363\) −3.20664 + 3.20664i −0.168305 + 0.168305i
\(364\) −8.35846 1.23741i −0.438102 0.0648578i
\(365\) −16.0454 16.0454i −0.839856 0.839856i
\(366\) 10.6969 + 5.38244i 0.559136 + 0.281345i
\(367\) −27.4474 −1.43274 −0.716371 0.697720i \(-0.754198\pi\)
−0.716371 + 0.697720i \(0.754198\pi\)
\(368\) 10.8284 + 3.27798i 0.564471 + 0.170877i
\(369\) −5.88163 −0.306186
\(370\) −24.8986 12.5284i −1.29441 0.651321i
\(371\) −16.2222 16.2222i −0.842216 0.842216i
\(372\) 0.539234 3.64242i 0.0279580 0.188851i
\(373\) 12.6231 12.6231i 0.653601 0.653601i −0.300257 0.953858i \(-0.597072\pi\)
0.953858 + 0.300257i \(0.0970725\pi\)
\(374\) 0.253649 + 0.767438i 0.0131159 + 0.0396833i
\(375\) 16.8032i 0.867712i
\(376\) 7.88163 1.37109i 0.406464 0.0707085i
\(377\) 5.13946i 0.264695i
\(378\) 2.89897 0.958150i 0.149107 0.0492819i
\(379\) −11.6686 + 11.6686i −0.599373 + 0.599373i −0.940146 0.340772i \(-0.889311\pi\)
0.340772 + 0.940146i \(0.389311\pi\)
\(380\) 1.01748 + 1.37109i 0.0521955 + 0.0703353i
\(381\) −2.69818 2.69818i −0.138232 0.138232i
\(382\) −13.2238 + 26.2807i −0.676591 + 1.34464i
\(383\) −17.1885 −0.878291 −0.439145 0.898416i \(-0.644719\pi\)
−0.439145 + 0.898416i \(0.644719\pi\)
\(384\) 8.91213 6.96951i 0.454795 0.355661i
\(385\) 20.8486 1.06254
\(386\) 8.99173 17.8699i 0.457667 0.909553i
\(387\) −7.75481 7.75481i −0.394199 0.394199i
\(388\) 19.5453 + 26.3380i 0.992264 + 1.33711i
\(389\) −1.88238 + 1.88238i −0.0954404 + 0.0954404i −0.753215 0.657774i \(-0.771498\pi\)
0.657774 + 0.753215i \(0.271498\pi\)
\(390\) −9.97958 + 3.29840i −0.505336 + 0.167021i
\(391\) 0.635767i 0.0321521i
\(392\) −6.51772 + 1.13382i −0.329195 + 0.0572667i
\(393\) 1.08532i 0.0547472i
\(394\) 1.52431 + 4.61192i 0.0767935 + 0.232345i
\(395\) −40.3034 + 40.3034i −2.02788 + 2.02788i
\(396\) 0.744728 5.03049i 0.0374240 0.252792i
\(397\) 8.41166 + 8.41166i 0.422169 + 0.422169i 0.885950 0.463781i \(-0.153507\pi\)
−0.463781 + 0.885950i \(0.653507\pi\)
\(398\) −0.386800 0.194629i −0.0193885 0.00975588i
\(399\) 0.485281 0.0242945
\(400\) 36.0802 + 10.9222i 1.80401 + 0.546110i
\(401\) 1.12389 0.0561242 0.0280621 0.999606i \(-0.491066\pi\)
0.0280621 + 0.999606i \(0.491066\pi\)
\(402\) −18.6238 9.37109i −0.928871 0.467387i
\(403\) 2.54751 + 2.54751i 0.126900 + 0.126900i
\(404\) −0.229135 0.0339217i −0.0113999 0.00168767i
\(405\) 2.68554 2.68554i 0.133446 0.133446i
\(406\) 2.51645 + 7.61373i 0.124889 + 0.377863i
\(407\) 13.1950i 0.654051i
\(408\) 0.519951 + 0.365856i 0.0257414 + 0.0181126i
\(409\) 13.7211i 0.678464i −0.940703 0.339232i \(-0.889833\pi\)
0.940703 0.339232i \(-0.110167\pi\)
\(410\) −29.9949 + 9.91375i −1.48134 + 0.489605i
\(411\) 3.75481 3.75481i 0.185211 0.185211i
\(412\) −21.4422 + 15.9121i −1.05638 + 0.783934i
\(413\) −8.63577 8.63577i −0.424938 0.424938i
\(414\) 1.79793 3.57316i 0.0883636 0.175611i
\(415\) 54.3329 2.66710
\(416\) 0.279604 + 11.0662i 0.0137087 + 0.542566i
\(417\) 12.3990 0.607183
\(418\) 0.363303 0.722018i 0.0177698 0.0353151i
\(419\) −9.30755 9.30755i −0.454703 0.454703i 0.442209 0.896912i \(-0.354195\pi\)
−0.896912 + 0.442209i \(0.854195\pi\)
\(420\) 13.1690 9.77267i 0.642582 0.476857i
\(421\) 8.44378 8.44378i 0.411525 0.411525i −0.470745 0.882269i \(-0.656015\pi\)
0.882269 + 0.470745i \(0.156015\pi\)
\(422\) 13.7344 4.53942i 0.668580 0.220975i
\(423\) 2.82843i 0.137523i
\(424\) −17.2958 + 24.5807i −0.839960 + 1.19374i
\(425\) 2.11837i 0.102756i
\(426\) 1.91630 + 5.79793i 0.0928451 + 0.280911i
\(427\) 12.9264 12.9264i 0.625551 0.625551i
\(428\) 20.3633 + 3.01464i 0.984297 + 0.145718i
\(429\) 3.51833 + 3.51833i 0.169866 + 0.169866i
\(430\) −52.6187 26.4766i −2.53750 1.27681i
\(431\) −30.6054 −1.47421 −0.737105 0.675778i \(-0.763808\pi\)
−0.737105 + 0.675778i \(0.763808\pi\)
\(432\) −1.88761 3.52660i −0.0908177 0.169674i
\(433\) −15.3137 −0.735930 −0.367965 0.929840i \(-0.619945\pi\)
−0.367965 + 0.929840i \(0.619945\pi\)
\(434\) −5.02129 2.52660i −0.241030 0.121281i
\(435\) 7.05320 + 7.05320i 0.338175 + 0.338175i
\(436\) −2.91630 + 19.6991i −0.139665 + 0.943413i
\(437\) 0.449555 0.449555i 0.0215051 0.0215051i
\(438\) 2.65162 + 8.02271i 0.126699 + 0.383340i
\(439\) 33.3676i 1.59255i 0.604936 + 0.796274i \(0.293199\pi\)
−0.604936 + 0.796274i \(0.706801\pi\)
\(440\) −4.68119 26.9096i −0.223167 1.28286i
\(441\) 2.33897i 0.111380i
\(442\) −0.590633 + 0.195213i −0.0280936 + 0.00928533i
\(443\) 2.28832 2.28832i 0.108721 0.108721i −0.650653 0.759375i \(-0.725505\pi\)
0.759375 + 0.650653i \(0.225505\pi\)
\(444\) 6.18508 + 8.33461i 0.293531 + 0.395543i
\(445\) −3.83621 3.83621i −0.181854 0.181854i
\(446\) −1.09276 + 2.17172i −0.0517437 + 0.102834i
\(447\) −1.45479 −0.0688091
\(448\) −5.83260 16.2569i −0.275565 0.768066i
\(449\) −27.4165 −1.29387 −0.646933 0.762547i \(-0.723948\pi\)
−0.646933 + 0.762547i \(0.723948\pi\)
\(450\) 5.99069 11.9057i 0.282404 0.561241i
\(451\) 10.5748 + 10.5748i 0.497947 + 0.497947i
\(452\) −22.4649 30.2722i −1.05666 1.42388i
\(453\) −1.44035 + 1.44035i −0.0676736 + 0.0676736i
\(454\) 19.2096 6.34905i 0.901551 0.297976i
\(455\) 16.0454i 0.752221i
\(456\) −0.108961 0.626360i −0.00510259 0.0293320i
\(457\) 10.9147i 0.510567i −0.966866 0.255284i \(-0.917831\pi\)
0.966866 0.255284i \(-0.0821688\pi\)
\(458\) 7.54386 + 22.8246i 0.352501 + 1.06652i
\(459\) 0.158942 0.158942i 0.00741876 0.00741876i
\(460\) 3.14631 21.2527i 0.146697 0.990913i
\(461\) 17.8319 + 17.8319i 0.830512 + 0.830512i 0.987587 0.157075i \(-0.0502063\pi\)
−0.157075 + 0.987587i \(0.550206\pi\)
\(462\) −6.93484 3.48946i −0.322638 0.162344i
\(463\) 22.4937 1.04537 0.522686 0.852525i \(-0.324930\pi\)
0.522686 + 0.852525i \(0.324930\pi\)
\(464\) 9.26213 4.95755i 0.429983 0.230148i
\(465\) −6.99222 −0.324256
\(466\) 16.9004 + 8.50389i 0.782895 + 0.393935i
\(467\) 24.2171 + 24.2171i 1.12063 + 1.12063i 0.991646 + 0.128989i \(0.0411731\pi\)
0.128989 + 0.991646i \(0.458827\pi\)
\(468\) 3.87155 + 0.573155i 0.178963 + 0.0264941i
\(469\) −22.5054 + 22.5054i −1.03920 + 1.03920i
\(470\) −4.76744 14.4243i −0.219906 0.665343i
\(471\) 8.61790i 0.397092i
\(472\) −9.20730 + 13.0853i −0.423800 + 0.602301i
\(473\) 27.8852i 1.28216i
\(474\) 20.1517 6.66042i 0.925598 0.305923i
\(475\) 1.49791 1.49791i 0.0687289 0.0687289i
\(476\) 0.779397 0.578387i 0.0357236 0.0265103i
\(477\) 7.51397 + 7.51397i 0.344041 + 0.344041i
\(478\) 8.49724 16.8872i 0.388655 0.772400i
\(479\) −36.2362 −1.65568 −0.827838 0.560968i \(-0.810429\pi\)
−0.827838 + 0.560968i \(0.810429\pi\)
\(480\) −15.5706 14.8032i −0.710698 0.675669i
\(481\) −10.1551 −0.463032
\(482\) 0.134427 0.267156i 0.00612297 0.0121686i
\(483\) −4.31788 4.31788i −0.196470 0.196470i
\(484\) 7.28334 5.40494i 0.331061 0.245679i
\(485\) 44.0403 44.0403i 1.99977 1.99977i
\(486\) −1.34277 + 0.443806i −0.0609094 + 0.0201314i
\(487\) 16.8200i 0.762186i −0.924537 0.381093i \(-0.875548\pi\)
0.924537 0.381093i \(-0.124452\pi\)
\(488\) −19.5867 13.7819i −0.886646 0.623876i
\(489\) 4.86054i 0.219801i
\(490\) 3.94244 + 11.9282i 0.178101 + 0.538860i
\(491\) 6.10641 6.10641i 0.275578 0.275578i −0.555763 0.831341i \(-0.687574\pi\)
0.831341 + 0.555763i \(0.187574\pi\)
\(492\) 11.6364 + 1.72269i 0.524611 + 0.0776649i
\(493\) 0.417438 + 0.417438i 0.0188005 + 0.0188005i
\(494\) 0.555677 + 0.279604i 0.0250011 + 0.0125800i
\(495\) −9.65685 −0.434043
\(496\) −2.13368 + 7.04836i −0.0958050 + 0.316481i
\(497\) 9.32206 0.418151
\(498\) −18.0727 9.09378i −0.809857 0.407502i
\(499\) −19.6770 19.6770i −0.880864 0.880864i 0.112758 0.993622i \(-0.464031\pi\)
−0.993622 + 0.112758i \(0.964031\pi\)
\(500\) 4.92153 33.2440i 0.220098 1.48672i
\(501\) −15.3458 + 15.3458i −0.685601 + 0.685601i
\(502\) −6.54856 19.8132i −0.292277 0.884308i
\(503\) 25.7308i 1.14728i −0.819108 0.573639i \(-0.805531\pi\)
0.819108 0.573639i \(-0.194469\pi\)
\(504\) −6.01606 + 1.04655i −0.267977 + 0.0466172i
\(505\) 0.439861i 0.0195736i
\(506\) −9.65685 + 3.19173i −0.429300 + 0.141890i
\(507\) 6.48462 6.48462i 0.287992 0.287992i
\(508\) 4.54789 + 6.12845i 0.201780 + 0.271906i
\(509\) 1.73514 + 1.73514i 0.0769087 + 0.0769087i 0.744515 0.667606i \(-0.232681\pi\)
−0.667606 + 0.744515i \(0.732681\pi\)
\(510\) 0.542661 1.07847i 0.0240294 0.0477553i
\(511\) 12.8991 0.570623
\(512\) −19.6734 + 11.1784i −0.869450 + 0.494021i
\(513\) −0.224777 −0.00992417
\(514\) −0.471775 + 0.937591i −0.0208091 + 0.0413554i
\(515\) 35.8538 + 35.8538i 1.57991 + 1.57991i
\(516\) 13.0711 + 17.6137i 0.575422 + 0.775401i
\(517\) −5.08532 + 5.08532i −0.223652 + 0.223652i
\(518\) 15.0440 4.97226i 0.660995 0.218469i
\(519\) 12.3695i 0.542959i
\(520\) 20.7101 3.60272i 0.908196 0.157990i
\(521\) 33.5944i 1.47180i −0.677092 0.735898i \(-0.736760\pi\)
0.677092 0.735898i \(-0.263240\pi\)
\(522\) −1.16559 3.52660i −0.0510166 0.154355i
\(523\) −21.8158 + 21.8158i −0.953938 + 0.953938i −0.998985 0.0450467i \(-0.985656\pi\)
0.0450467 + 0.998985i \(0.485656\pi\)
\(524\) −0.317883 + 2.14724i −0.0138868 + 0.0938026i
\(525\) −14.3871 14.3871i −0.627907 0.627907i
\(526\) −6.92839 3.48621i −0.302092 0.152006i
\(527\) −0.413828 −0.0180266
\(528\) −2.94680 + 9.73439i −0.128243 + 0.423635i
\(529\) 15.0000 0.652174
\(530\) 50.9846 + 25.6543i 2.21463 + 1.11435i
\(531\) 4.00000 + 4.00000i 0.173585 + 0.173585i
\(532\) −0.960099 0.142136i −0.0416256 0.00616236i
\(533\) −8.13853 + 8.13853i −0.352519 + 0.352519i
\(534\) 0.633962 + 1.91811i 0.0274342 + 0.0830046i
\(535\) 39.0907i 1.69004i
\(536\) 34.1013 + 23.9949i 1.47295 + 1.03642i
\(537\) 11.6413i 0.502359i
\(538\) 27.4858 9.08445i 1.18500 0.391658i
\(539\) 4.20531 4.20531i 0.181136 0.181136i
\(540\) −6.09976 + 4.52660i −0.262492 + 0.194794i
\(541\) 27.2112 + 27.2112i 1.16990 + 1.16990i 0.982232 + 0.187669i \(0.0600933\pi\)
0.187669 + 0.982232i \(0.439907\pi\)
\(542\) −8.92281 + 17.7329i −0.383267 + 0.761694i
\(543\) 9.50732 0.407998
\(544\) −0.921533 0.876113i −0.0395104 0.0375630i
\(545\) 37.8155 1.61984
\(546\) 2.68554 5.33717i 0.114931 0.228410i
\(547\) −6.80116 6.80116i −0.290796 0.290796i 0.546598 0.837395i \(-0.315922\pi\)
−0.837395 + 0.546598i \(0.815922\pi\)
\(548\) −8.52841 + 6.32889i −0.364315 + 0.270357i
\(549\) −5.98737 + 5.98737i −0.255535 + 0.255535i
\(550\) −32.1765 + 10.6348i −1.37201 + 0.453470i
\(551\) 0.590346i 0.0251496i
\(552\) −4.60365 + 6.54266i −0.195944 + 0.278474i
\(553\) 32.4004i 1.37780i
\(554\) −5.95635 18.0214i −0.253061 0.765657i
\(555\) 13.9365 13.9365i 0.591570 0.591570i
\(556\) −24.5307 3.63159i −1.04033 0.154014i
\(557\) −4.29337 4.29337i −0.181916 0.181916i 0.610274 0.792190i \(-0.291059\pi\)
−0.792190 + 0.610274i \(0.791059\pi\)
\(558\) 2.32581 + 1.17030i 0.0984594 + 0.0495426i
\(559\) −21.4609 −0.907701
\(560\) −28.9164 + 15.4775i −1.22194 + 0.654044i
\(561\) −0.571533 −0.0241301
\(562\) −4.91878 2.47502i −0.207486 0.104402i
\(563\) −10.0801 10.0801i −0.424825 0.424825i 0.462036 0.886861i \(-0.347119\pi\)
−0.886861 + 0.462036i \(0.847119\pi\)
\(564\) −0.828427 + 5.59587i −0.0348831 + 0.235628i
\(565\) −50.6187 + 50.6187i −2.12954 + 2.12954i
\(566\) 7.83621 + 23.7091i 0.329381 + 0.996569i
\(567\) 2.15894i 0.0906670i
\(568\) −2.09311 12.0321i −0.0878248 0.504856i
\(569\) 32.5018i 1.36255i 0.732029 + 0.681274i \(0.238574\pi\)
−0.732029 + 0.681274i \(0.761426\pi\)
\(570\) −1.14631 + 0.378872i −0.0480137 + 0.0158692i
\(571\) −9.17157 + 9.17157i −0.383818 + 0.383818i −0.872476 0.488657i \(-0.837487\pi\)
0.488657 + 0.872476i \(0.337487\pi\)
\(572\) −5.93030 7.99129i −0.247958 0.334132i
\(573\) −14.7101 14.7101i −0.614522 0.614522i
\(574\) 8.07174 16.0415i 0.336908 0.669560i
\(575\) −26.6559 −1.11163
\(576\) 2.70160 + 7.53003i 0.112567 + 0.313751i
\(577\) 11.7536 0.489308 0.244654 0.969611i \(-0.421326\pi\)
0.244654 + 0.969611i \(0.421326\pi\)
\(578\) −10.7742 + 21.4123i −0.448147 + 0.890634i
\(579\) 10.0023 + 10.0023i 0.415681 + 0.415681i
\(580\) −11.8885 16.0202i −0.493643 0.665201i
\(581\) −21.8395 + 21.8395i −0.906053 + 0.906053i
\(582\) −22.0202 + 7.27798i −0.912765 + 0.301682i
\(583\) 27.0192i 1.11902i
\(584\) −2.89627 16.6491i −0.119849 0.688943i
\(585\) 7.43208i 0.307279i
\(586\) 7.00144 + 21.1835i 0.289227 + 0.875081i
\(587\) 6.46002 6.46002i 0.266634 0.266634i −0.561109 0.827742i \(-0.689625\pi\)
0.827742 + 0.561109i \(0.189625\pi\)
\(588\) 0.685069 4.62751i 0.0282518 0.190835i
\(589\) 0.292621 + 0.292621i 0.0120572 + 0.0120572i
\(590\) 27.1412 + 13.6569i 1.11739 + 0.562244i
\(591\) −3.43463 −0.141282
\(592\) −9.79564 18.3011i −0.402598 0.752170i
\(593\) 5.49270 0.225558 0.112779 0.993620i \(-0.464025\pi\)
0.112779 + 0.993620i \(0.464025\pi\)
\(594\) 3.21215 + 1.61628i 0.131796 + 0.0663168i
\(595\) −1.30324 1.30324i −0.0534278 0.0534278i
\(596\) 2.87820 + 0.426097i 0.117896 + 0.0174536i
\(597\) 0.216503 0.216503i 0.00886089 0.00886089i
\(598\) −2.45641 7.43208i −0.100450 0.303920i
\(599\) 36.4348i 1.48868i −0.667799 0.744342i \(-0.732763\pi\)
0.667799 0.744342i \(-0.267237\pi\)
\(600\) −15.3393 + 21.8001i −0.626225 + 0.889985i
\(601\) 9.97474i 0.406878i 0.979088 + 0.203439i \(0.0652119\pi\)
−0.979088 + 0.203439i \(0.934788\pi\)
\(602\) 31.7928 10.5080i 1.29578 0.428274i
\(603\) 10.4243 10.4243i 0.424510 0.424510i
\(604\) 3.27151 2.42777i 0.133116 0.0987848i
\(605\) −12.1786 12.1786i −0.495131 0.495131i
\(606\) 0.0736202 0.146310i 0.00299061 0.00594345i
\(607\) 4.51900 0.183421 0.0917103 0.995786i \(-0.470767\pi\)
0.0917103 + 0.995786i \(0.470767\pi\)
\(608\) 0.0321169 + 1.27113i 0.00130251 + 0.0515510i
\(609\) −5.67016 −0.229766
\(610\) −20.4422 + 40.6261i −0.827679 + 1.64490i
\(611\) −3.91375 3.91375i −0.158333 0.158333i
\(612\) −0.361009 + 0.267903i −0.0145929 + 0.0108293i
\(613\) −8.43692 + 8.43692i −0.340764 + 0.340764i −0.856655 0.515890i \(-0.827461\pi\)
0.515890 + 0.856655i \(0.327461\pi\)
\(614\) −10.2605 + 3.39125i −0.414080 + 0.136860i
\(615\) 22.3380i 0.900757i
\(616\) 12.6981 + 8.93484i 0.511621 + 0.359995i
\(617\) 32.1201i 1.29311i −0.762869 0.646554i \(-0.776210\pi\)
0.762869 0.646554i \(-0.223790\pi\)
\(618\) −5.92510 17.9269i −0.238343 0.721126i
\(619\) 15.0412 15.0412i 0.604559 0.604559i −0.336960 0.941519i \(-0.609399\pi\)
0.941519 + 0.336960i \(0.109399\pi\)
\(620\) 13.8337 + 2.04797i 0.555573 + 0.0822486i
\(621\) 2.00000 + 2.00000i 0.0802572 + 0.0802572i
\(622\) 30.5243 + 15.3591i 1.22391 + 0.615845i
\(623\) 3.08398 0.123557
\(624\) −7.49175 2.26790i −0.299910 0.0907888i
\(625\) −16.6958 −0.667833
\(626\) 20.9841 + 10.5587i 0.838692 + 0.422011i
\(627\) 0.404135 + 0.404135i 0.0161396 + 0.0161396i
\(628\) 2.52413 17.0500i 0.100724 0.680368i
\(629\) 0.824818 0.824818i 0.0328876 0.0328876i
\(630\) 3.63899 + 11.0101i 0.144981 + 0.438652i
\(631\) 36.4685i 1.45179i 0.687807 + 0.725894i \(0.258574\pi\)
−0.687807 + 0.725894i \(0.741426\pi\)
\(632\) −41.8196 + 7.27494i −1.66350 + 0.289382i
\(633\) 10.2284i 0.406542i
\(634\) 3.44035 1.13709i 0.136634 0.0451595i
\(635\) 10.2475 10.2475i 0.406659 0.406659i
\(636\) −12.6651 17.0667i −0.502205 0.676739i
\(637\) 3.23648 + 3.23648i 0.128234 + 0.128234i
\(638\) −4.24494 + 8.43625i −0.168059 + 0.333994i
\(639\) −4.31788 −0.170813
\(640\) 26.4697 + 33.8477i 1.04631 + 1.33795i
\(641\) 14.0036 0.553109 0.276555 0.960998i \(-0.410807\pi\)
0.276555 + 0.960998i \(0.410807\pi\)
\(642\) −6.54266 + 13.0027i −0.258218 + 0.513175i
\(643\) 16.6034 + 16.6034i 0.654774 + 0.654774i 0.954139 0.299365i \(-0.0967748\pi\)
−0.299365 + 0.954139i \(0.596775\pi\)
\(644\) 7.27798 + 9.80734i 0.286793 + 0.386463i
\(645\) 29.4522 29.4522i 1.15968 1.15968i
\(646\) −0.0678434 + 0.0224232i −0.00266926 + 0.000882230i
\(647\) 12.1908i 0.479270i 0.970863 + 0.239635i \(0.0770277\pi\)
−0.970863 + 0.239635i \(0.922972\pi\)
\(648\) 2.78658 0.484753i 0.109467 0.0190429i
\(649\) 14.3835i 0.564600i
\(650\) −8.18473 24.7636i −0.321032 0.971309i
\(651\) 2.81056 2.81056i 0.110155 0.110155i
\(652\) 1.42362 9.61628i 0.0557533 0.376603i
\(653\) 0.983270 + 0.983270i 0.0384783 + 0.0384783i 0.726084 0.687606i \(-0.241338\pi\)
−0.687606 + 0.726084i \(0.741338\pi\)
\(654\) −12.5785 6.32924i −0.491859 0.247493i
\(655\) 4.12198 0.161059
\(656\) −22.5174 6.81647i −0.879157 0.266138i
\(657\) −5.97474 −0.233097
\(658\) 7.71423 + 3.88163i 0.300732 + 0.151322i
\(659\) −18.0559 18.0559i −0.703357 0.703357i 0.261772 0.965130i \(-0.415693\pi\)
−0.965130 + 0.261772i \(0.915693\pi\)
\(660\) 19.1055 + 2.82843i 0.743680 + 0.110096i
\(661\) −4.55890 + 4.55890i −0.177321 + 0.177321i −0.790187 0.612866i \(-0.790017\pi\)
0.612866 + 0.790187i \(0.290017\pi\)
\(662\) −8.48889 25.6839i −0.329930 0.998232i
\(663\) 0.439861i 0.0170828i
\(664\) 33.0922 + 23.2848i 1.28423 + 0.903627i
\(665\) 1.84307i 0.0714710i
\(666\) −6.96823 + 2.30310i −0.270013 + 0.0892434i
\(667\) −5.25272 + 5.25272i −0.203386 + 0.203386i
\(668\) 34.8554 25.8661i 1.34860 1.00079i
\(669\) −1.21557 1.21557i −0.0469968 0.0469968i
\(670\) 35.5908 70.7320i 1.37499 2.73261i
\(671\) 21.5298 0.831148
\(672\) 12.2089 0.308476i 0.470969 0.0118997i
\(673\) −10.8569 −0.418504 −0.209252 0.977862i \(-0.567103\pi\)
−0.209252 + 0.977862i \(0.567103\pi\)
\(674\) −0.715856 + 1.42267i −0.0275737 + 0.0547992i
\(675\) 6.66398 + 6.66398i 0.256497 + 0.256497i
\(676\) −14.7287 + 10.9301i −0.566489 + 0.420389i
\(677\) 23.7066 23.7066i 0.911120 0.911120i −0.0852405 0.996360i \(-0.527166\pi\)
0.996360 + 0.0852405i \(0.0271659\pi\)
\(678\) 25.3094 8.36511i 0.972000 0.321260i
\(679\) 35.4045i 1.35870i
\(680\) −1.38950 + 1.97474i −0.0532847 + 0.0757277i
\(681\) 14.3059i 0.548204i
\(682\) −2.07754 6.28577i −0.0795530 0.240694i
\(683\) −17.8337 + 17.8337i −0.682386 + 0.682386i −0.960537 0.278151i \(-0.910278\pi\)
0.278151 + 0.960537i \(0.410278\pi\)
\(684\) 0.444708 + 0.0658358i 0.0170038 + 0.00251729i
\(685\) 14.2605 + 14.2605i 0.544866 + 0.544866i
\(686\) −25.4710 12.8165i −0.972489 0.489335i
\(687\) −16.9981 −0.648519
\(688\) −20.7013 38.6761i −0.789231 1.47451i
\(689\) 20.7945 0.792205
\(690\) 13.5706 + 6.82843i 0.516624 + 0.259954i
\(691\) 10.8557 + 10.8557i 0.412970 + 0.412970i 0.882772 0.469802i \(-0.155675\pi\)
−0.469802 + 0.882772i \(0.655675\pi\)
\(692\) −3.62293 + 24.4722i −0.137723 + 0.930294i
\(693\) 3.88163 3.88163i 0.147451 0.147451i
\(694\) −13.0509 39.4866i −0.495406 1.49889i
\(695\) 47.0907i 1.78625i
\(696\) 1.27314 + 7.31856i 0.0482581 + 0.277409i
\(697\) 1.32206i 0.0500765i
\(698\) −36.6225 + 12.1043i −1.38618 + 0.458154i
\(699\) −9.45963 + 9.45963i −0.357796 + 0.357796i
\(700\) 24.2502 + 32.6780i 0.916570 + 1.23511i
\(701\) −6.08875 6.08875i −0.229969 0.229969i 0.582711 0.812680i \(-0.301992\pi\)
−0.812680 + 0.582711i \(0.801992\pi\)
\(702\) −1.24392 + 2.47212i −0.0469486 + 0.0933042i
\(703\) −1.16647 −0.0439942
\(704\) 8.68119 18.3958i 0.327185 0.693317i
\(705\) 10.7422 0.404574
\(706\) 16.2672 32.3288i 0.612222 1.21671i
\(707\) −0.176805 0.176805i −0.00664943 0.00664943i
\(708\) −6.74218 9.08532i −0.253386 0.341447i
\(709\) 22.8836 22.8836i 0.859413 0.859413i −0.131856 0.991269i \(-0.542094\pi\)
0.991269 + 0.131856i \(0.0420936\pi\)
\(710\) −22.0202 + 7.27798i −0.826402 + 0.273138i
\(711\) 15.0075i 0.562826i
\(712\) −0.692453 3.98053i −0.0259508 0.149177i
\(713\) 5.20730i 0.195015i
\(714\) 0.215371 + 0.651622i 0.00806004 + 0.0243863i
\(715\) −13.3624 + 13.3624i −0.499724 + 0.499724i
\(716\) 3.40965 23.0316i 0.127425 0.860729i
\(717\) 9.45223 + 9.45223i 0.353000 + 0.353000i
\(718\) −4.76638 2.39834i −0.177880 0.0895052i
\(719\) −1.46744 −0.0547262 −0.0273631 0.999626i \(-0.508711\pi\)
−0.0273631 + 0.999626i \(0.508711\pi\)
\(720\) 13.3938 7.16902i 0.499157 0.267174i
\(721\) −28.8233 −1.07344
\(722\) −23.9389 12.0455i −0.890913 0.448288i
\(723\) 0.149535 + 0.149535i 0.00556126 + 0.00556126i
\(724\) −18.8096 2.78463i −0.699055 0.103490i
\(725\) −17.5020 + 17.5020i −0.650008 + 0.650008i
\(726\) 2.01260 + 6.08930i 0.0746947 + 0.225995i
\(727\) 15.3928i 0.570889i −0.958395 0.285445i \(-0.907859\pi\)
0.958395 0.285445i \(-0.0921412\pi\)
\(728\) −6.87640 + 9.77267i −0.254856 + 0.362199i
\(729\) 1.00000i 0.0370370i
\(730\) −30.4697 + 10.0707i −1.12773 + 0.372733i
\(731\) 1.74311 1.74311i 0.0644711 0.0644711i
\(732\) 13.5993 10.0920i 0.502644 0.373010i
\(733\) −12.4185 12.4185i −0.458688 0.458688i 0.439536 0.898225i \(-0.355143\pi\)
−0.898225 + 0.439536i \(0.855143\pi\)
\(734\) −17.4473 + 34.6743i −0.643993 + 1.27985i
\(735\) −8.88325 −0.327664
\(736\) 11.0243 11.5959i 0.406362 0.427429i
\(737\) −37.4844 −1.38075
\(738\) −3.73875 + 7.43027i −0.137625 + 0.273512i
\(739\) −14.6559 14.6559i −0.539127 0.539127i 0.384146 0.923273i \(-0.374496\pi\)
−0.923273 + 0.384146i \(0.874496\pi\)
\(740\) −31.6543 + 23.4905i −1.16364 + 0.863528i
\(741\) −0.311029 + 0.311029i −0.0114259 + 0.0114259i
\(742\) −30.8055 + 10.1817i −1.13090 + 0.373780i
\(743\) 31.7821i 1.16597i 0.812482 + 0.582986i \(0.198116\pi\)
−0.812482 + 0.582986i \(0.801884\pi\)
\(744\) −4.25870 2.99657i −0.156131 0.109860i
\(745\) 5.52518i 0.202427i
\(746\) −7.92273 23.9709i −0.290072 0.877637i
\(747\) 10.1158 10.1158i 0.370118 0.370118i
\(748\) 1.13074 + 0.167398i 0.0413440 + 0.00612068i
\(749\) 15.7127 + 15.7127i 0.574131 + 0.574131i
\(750\) 21.2275 + 10.6812i 0.775117 + 0.390022i
\(751\) 29.7594 1.08594 0.542968 0.839753i \(-0.317301\pi\)
0.542968 + 0.839753i \(0.317301\pi\)
\(752\) 3.27798 10.8284i 0.119536 0.394872i
\(753\) 14.7555 0.537720
\(754\) −6.49268 3.26697i −0.236449 0.118976i
\(755\) −5.47036 5.47036i −0.199087 0.199087i
\(756\) 0.632339 4.27133i 0.0229980 0.155347i
\(757\) 15.6355 15.6355i 0.568282 0.568282i −0.363365 0.931647i \(-0.618372\pi\)
0.931647 + 0.363365i \(0.118372\pi\)
\(758\) 7.32361 + 22.1582i 0.266005 + 0.804822i
\(759\) 7.19173i 0.261043i
\(760\) 2.37887 0.413828i 0.0862908 0.0150111i
\(761\) 4.55957i 0.165284i 0.996579 + 0.0826422i \(0.0263359\pi\)
−0.996579 + 0.0826422i \(0.973664\pi\)
\(762\) −5.12374 + 1.69347i −0.185614 + 0.0613480i
\(763\) −15.2002 + 15.2002i −0.550284 + 0.550284i
\(764\) 24.7945 + 33.4114i 0.897032 + 1.20878i
\(765\) 0.603650 + 0.603650i 0.0218250 + 0.0218250i
\(766\) −10.9261 + 21.7142i −0.394777 + 0.784567i
\(767\) 11.0698 0.399706
\(768\) −3.13946 15.6890i −0.113285 0.566127i
\(769\) 36.5794 1.31909 0.659543 0.751667i \(-0.270750\pi\)
0.659543 + 0.751667i \(0.270750\pi\)
\(770\) 13.2527 26.3380i 0.477595 0.949157i
\(771\) −0.524797 0.524797i −0.0189001 0.0189001i
\(772\) −16.8593 22.7185i −0.606780 0.817657i
\(773\) −18.7108 + 18.7108i −0.672981 + 0.672981i −0.958402 0.285421i \(-0.907867\pi\)
0.285421 + 0.958402i \(0.407867\pi\)
\(774\) −14.7261 + 4.86720i −0.529319 +