Properties

Label 48.2.j.a.13.2
Level $48$
Weight $2$
Character 48.13
Analytic conductor $0.383$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 48.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.383281929702\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.18939904.2
Defining polynomial: \(x^{8} - 4 x^{7} + 14 x^{6} - 28 x^{5} + 43 x^{4} - 44 x^{3} + 30 x^{2} - 12 x + 2\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 13.2
Root \(0.500000 - 1.44392i\) of defining polynomial
Character \(\chi\) \(=\) 48.13
Dual form 48.2.j.a.37.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.167452 - 1.40426i) q^{2} +(-0.707107 - 0.707107i) q^{3} +(-1.94392 + 0.470294i) q^{4} +(1.74912 - 1.74912i) q^{5} +(-0.874559 + 1.11137i) q^{6} +2.55765i q^{7} +(0.985930 + 2.65103i) q^{8} +1.00000i q^{9} +O(q^{10})\) \(q+(-0.167452 - 1.40426i) q^{2} +(-0.707107 - 0.707107i) q^{3} +(-1.94392 + 0.470294i) q^{4} +(1.74912 - 1.74912i) q^{5} +(-0.874559 + 1.11137i) q^{6} +2.55765i q^{7} +(0.985930 + 2.65103i) q^{8} +1.00000i q^{9} +(-2.74912 - 2.16333i) q^{10} +(0.473626 - 0.473626i) q^{11} +(1.70711 + 1.04201i) q^{12} +(2.88784 + 2.88784i) q^{13} +(3.59161 - 0.428283i) q^{14} -2.47363 q^{15} +(3.55765 - 1.82843i) q^{16} -6.44549 q^{17} +(1.40426 - 0.167452i) q^{18} +(-4.55765 - 4.55765i) q^{19} +(-2.57754 + 4.22274i) q^{20} +(1.80853 - 1.80853i) q^{21} +(-0.744406 - 0.585786i) q^{22} +2.82843i q^{23} +(1.17740 - 2.57172i) q^{24} -1.11882i q^{25} +(3.57172 - 4.53887i) q^{26} +(0.707107 - 0.707107i) q^{27} +(-1.20285 - 4.97186i) q^{28} +(-3.07931 - 3.07931i) q^{29} +(0.414214 + 3.47363i) q^{30} +6.55765 q^{31} +(-3.16333 - 4.68971i) q^{32} -0.669808 q^{33} +(1.07931 + 9.05117i) q^{34} +(4.47363 + 4.47363i) q^{35} +(-0.470294 - 1.94392i) q^{36} +(-2.72922 + 2.72922i) q^{37} +(-5.63696 + 7.16333i) q^{38} -4.08402i q^{39} +(6.36147 + 2.91245i) q^{40} +0.788632i q^{41} +(-2.84250 - 2.23681i) q^{42} +(-0.389604 + 0.389604i) q^{43} +(-0.697947 + 1.14343i) q^{44} +(1.74912 + 1.74912i) q^{45} +(3.97186 - 0.473626i) q^{46} +2.82843 q^{47} +(-3.80853 - 1.22274i) q^{48} +0.458440 q^{49} +(-1.57113 + 0.187349i) q^{50} +(4.55765 + 4.55765i) q^{51} +(-6.97186 - 4.25559i) q^{52} +(-2.57754 + 2.57754i) q^{53} +(-1.11137 - 0.874559i) q^{54} -1.65685i q^{55} +(-6.78039 + 2.52166i) q^{56} +6.44549i q^{57} +(-3.80853 + 4.83980i) q^{58} +(4.00000 - 4.00000i) q^{59} +(4.80853 - 1.16333i) q^{60} +(-4.38607 - 4.38607i) q^{61} +(-1.09809 - 9.20867i) q^{62} -2.55765 q^{63} +(-6.05588 + 5.22746i) q^{64} +10.1023 q^{65} +(0.112161 + 0.940588i) q^{66} +(-2.11882 - 2.11882i) q^{67} +(12.5295 - 3.03127i) q^{68} +(2.00000 - 2.00000i) q^{69} +(5.53304 - 7.03127i) q^{70} -5.11529i q^{71} +(-2.65103 + 0.985930i) q^{72} -14.7721i q^{73} +(4.28956 + 3.37553i) q^{74} +(-0.791128 + 0.791128i) q^{75} +(11.0031 + 6.71627i) q^{76} +(1.21137 + 1.21137i) q^{77} +(-5.73505 + 0.683878i) q^{78} -6.32000 q^{79} +(3.02461 - 9.42088i) q^{80} -1.00000 q^{81} +(1.10745 - 0.132058i) q^{82} +(0.641669 + 0.641669i) q^{83} +(-2.66510 + 4.36618i) q^{84} +(-11.2739 + 11.2739i) q^{85} +(0.612348 + 0.481868i) q^{86} +4.35480i q^{87} +(1.72256 + 0.788632i) q^{88} +6.31724i q^{89} +(2.16333 - 2.74912i) q^{90} +(-7.38607 + 7.38607i) q^{91} +(-1.33019 - 5.49824i) q^{92} +(-4.63696 - 4.63696i) q^{93} +(-0.473626 - 3.97186i) q^{94} -15.9437 q^{95} +(-1.07931 + 5.55294i) q^{96} +12.6533 q^{97} +(-0.0767667 - 0.643772i) q^{98} +(0.473626 + 0.473626i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 4q^{4} - 12q^{8} + O(q^{10}) \) \( 8q - 4q^{4} - 12q^{8} - 8q^{10} - 8q^{11} + 8q^{12} + 12q^{14} - 8q^{15} + 4q^{18} - 8q^{19} + 16q^{20} + 4q^{24} + 20q^{26} + 8q^{28} - 16q^{29} - 8q^{30} + 24q^{31} + 24q^{35} - 4q^{36} - 16q^{37} - 8q^{38} + 16q^{40} - 20q^{42} - 8q^{43} - 40q^{44} - 8q^{46} - 16q^{48} - 8q^{49} - 36q^{50} + 8q^{51} - 16q^{52} + 16q^{53} + 4q^{54} - 16q^{58} + 32q^{59} + 24q^{60} + 16q^{61} - 12q^{62} + 8q^{63} + 8q^{64} - 16q^{65} + 24q^{66} - 16q^{67} + 32q^{68} + 16q^{69} + 32q^{70} - 4q^{72} + 52q^{74} + 16q^{75} + 8q^{76} + 16q^{77} - 12q^{78} - 24q^{79} + 8q^{80} - 8q^{81} + 40q^{82} - 40q^{83} - 24q^{84} - 16q^{85} - 16q^{86} + 32q^{88} - 8q^{90} - 8q^{91} - 16q^{92} + 8q^{94} - 48q^{95} - 40q^{98} - 8q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/48\mathbb{Z}\right)^\times\).

\(n\) \(17\) \(31\) \(37\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.167452 1.40426i −0.118406 0.992965i
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) −1.94392 + 0.470294i −0.971960 + 0.235147i
\(5\) 1.74912 1.74912i 0.782229 0.782229i −0.197977 0.980207i \(-0.563437\pi\)
0.980207 + 0.197977i \(0.0634373\pi\)
\(6\) −0.874559 + 1.11137i −0.357037 + 0.453716i
\(7\) 2.55765i 0.966700i 0.875427 + 0.483350i \(0.160580\pi\)
−0.875427 + 0.483350i \(0.839420\pi\)
\(8\) 0.985930 + 2.65103i 0.348579 + 0.937279i
\(9\) 1.00000i 0.333333i
\(10\) −2.74912 2.16333i −0.869347 0.684105i
\(11\) 0.473626 0.473626i 0.142804 0.142804i −0.632091 0.774894i \(-0.717803\pi\)
0.774894 + 0.632091i \(0.217803\pi\)
\(12\) 1.70711 + 1.04201i 0.492799 + 0.300803i
\(13\) 2.88784 + 2.88784i 0.800943 + 0.800943i 0.983243 0.182300i \(-0.0583543\pi\)
−0.182300 + 0.983243i \(0.558354\pi\)
\(14\) 3.59161 0.428283i 0.959899 0.114463i
\(15\) −2.47363 −0.638687
\(16\) 3.55765 1.82843i 0.889412 0.457107i
\(17\) −6.44549 −1.56326 −0.781630 0.623742i \(-0.785611\pi\)
−0.781630 + 0.623742i \(0.785611\pi\)
\(18\) 1.40426 0.167452i 0.330988 0.0394688i
\(19\) −4.55765 4.55765i −1.04560 1.04560i −0.998910 0.0466864i \(-0.985134\pi\)
−0.0466864 0.998910i \(-0.514866\pi\)
\(20\) −2.57754 + 4.22274i −0.576357 + 0.944234i
\(21\) 1.80853 1.80853i 0.394654 0.394654i
\(22\) −0.744406 0.585786i −0.158708 0.124890i
\(23\) 2.82843i 0.589768i 0.955533 + 0.294884i \(0.0952810\pi\)
−0.955533 + 0.294884i \(0.904719\pi\)
\(24\) 1.17740 2.57172i 0.240336 0.524950i
\(25\) 1.11882i 0.223765i
\(26\) 3.57172 4.53887i 0.700471 0.890145i
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) −1.20285 4.97186i −0.227317 0.939593i
\(29\) −3.07931 3.07931i −0.571813 0.571813i 0.360821 0.932635i \(-0.382496\pi\)
−0.932635 + 0.360821i \(0.882496\pi\)
\(30\) 0.414214 + 3.47363i 0.0756247 + 0.634194i
\(31\) 6.55765 1.17779 0.588894 0.808210i \(-0.299563\pi\)
0.588894 + 0.808210i \(0.299563\pi\)
\(32\) −3.16333 4.68971i −0.559203 0.829031i
\(33\) −0.669808 −0.116599
\(34\) 1.07931 + 9.05117i 0.185100 + 1.55226i
\(35\) 4.47363 + 4.47363i 0.756181 + 0.756181i
\(36\) −0.470294 1.94392i −0.0783823 0.323987i
\(37\) −2.72922 + 2.72922i −0.448681 + 0.448681i −0.894916 0.446235i \(-0.852765\pi\)
0.446235 + 0.894916i \(0.352765\pi\)
\(38\) −5.63696 + 7.16333i −0.914435 + 1.16205i
\(39\) 4.08402i 0.653967i
\(40\) 6.36147 + 2.91245i 1.00584 + 0.460499i
\(41\) 0.788632i 0.123164i 0.998102 + 0.0615818i \(0.0196145\pi\)
−0.998102 + 0.0615818i \(0.980385\pi\)
\(42\) −2.84250 2.23681i −0.438607 0.345148i
\(43\) −0.389604 + 0.389604i −0.0594141 + 0.0594141i −0.736190 0.676775i \(-0.763377\pi\)
0.676775 + 0.736190i \(0.263377\pi\)
\(44\) −0.697947 + 1.14343i −0.105219 + 0.172379i
\(45\) 1.74912 + 1.74912i 0.260743 + 0.260743i
\(46\) 3.97186 0.473626i 0.585619 0.0698323i
\(47\) 2.82843 0.412568 0.206284 0.978492i \(-0.433863\pi\)
0.206284 + 0.978492i \(0.433863\pi\)
\(48\) −3.80853 1.22274i −0.549714 0.176488i
\(49\) 0.458440 0.0654915
\(50\) −1.57113 + 0.187349i −0.222191 + 0.0264952i
\(51\) 4.55765 + 4.55765i 0.638198 + 0.638198i
\(52\) −6.97186 4.25559i −0.966823 0.590145i
\(53\) −2.57754 + 2.57754i −0.354053 + 0.354053i −0.861615 0.507562i \(-0.830547\pi\)
0.507562 + 0.861615i \(0.330547\pi\)
\(54\) −1.11137 0.874559i −0.151239 0.119012i
\(55\) 1.65685i 0.223410i
\(56\) −6.78039 + 2.52166i −0.906068 + 0.336971i
\(57\) 6.44549i 0.853726i
\(58\) −3.80853 + 4.83980i −0.500084 + 0.635497i
\(59\) 4.00000 4.00000i 0.520756 0.520756i −0.397044 0.917800i \(-0.629964\pi\)
0.917800 + 0.397044i \(0.129964\pi\)
\(60\) 4.80853 1.16333i 0.620779 0.150185i
\(61\) −4.38607 4.38607i −0.561579 0.561579i 0.368177 0.929756i \(-0.379982\pi\)
−0.929756 + 0.368177i \(0.879982\pi\)
\(62\) −1.09809 9.20867i −0.139458 1.16950i
\(63\) −2.55765 −0.322233
\(64\) −6.05588 + 5.22746i −0.756985 + 0.653432i
\(65\) 10.1023 1.25304
\(66\) 0.112161 + 0.940588i 0.0138060 + 0.115778i
\(67\) −2.11882 2.11882i −0.258856 0.258856i 0.565733 0.824589i \(-0.308593\pi\)
−0.824589 + 0.565733i \(0.808593\pi\)
\(68\) 12.5295 3.03127i 1.51943 0.367596i
\(69\) 2.00000 2.00000i 0.240772 0.240772i
\(70\) 5.53304 7.03127i 0.661325 0.840398i
\(71\) 5.11529i 0.607074i −0.952820 0.303537i \(-0.901832\pi\)
0.952820 0.303537i \(-0.0981676\pi\)
\(72\) −2.65103 + 0.985930i −0.312426 + 0.116193i
\(73\) 14.7721i 1.72895i −0.502676 0.864475i \(-0.667651\pi\)
0.502676 0.864475i \(-0.332349\pi\)
\(74\) 4.28956 + 3.37553i 0.498651 + 0.392398i
\(75\) −0.791128 + 0.791128i −0.0913516 + 0.0913516i
\(76\) 11.0031 + 6.71627i 1.26215 + 0.770409i
\(77\) 1.21137 + 1.21137i 0.138048 + 0.138048i
\(78\) −5.73505 + 0.683878i −0.649366 + 0.0774339i
\(79\) −6.32000 −0.711055 −0.355528 0.934666i \(-0.615699\pi\)
−0.355528 + 0.934666i \(0.615699\pi\)
\(80\) 3.02461 9.42088i 0.338162 1.05329i
\(81\) −1.00000 −0.111111
\(82\) 1.10745 0.132058i 0.122297 0.0145834i
\(83\) 0.641669 + 0.641669i 0.0704323 + 0.0704323i 0.741445 0.671013i \(-0.234141\pi\)
−0.671013 + 0.741445i \(0.734141\pi\)
\(84\) −2.66510 + 4.36618i −0.290786 + 0.476389i
\(85\) −11.2739 + 11.2739i −1.22283 + 1.22283i
\(86\) 0.612348 + 0.481868i 0.0660311 + 0.0519611i
\(87\) 4.35480i 0.466884i
\(88\) 1.72256 + 0.788632i 0.183625 + 0.0840685i
\(89\) 6.31724i 0.669626i 0.942285 + 0.334813i \(0.108673\pi\)
−0.942285 + 0.334813i \(0.891327\pi\)
\(90\) 2.16333 2.74912i 0.228035 0.289782i
\(91\) −7.38607 + 7.38607i −0.774271 + 0.774271i
\(92\) −1.33019 5.49824i −0.138682 0.573231i
\(93\) −4.63696 4.63696i −0.480830 0.480830i
\(94\) −0.473626 3.97186i −0.0488508 0.409666i
\(95\) −15.9437 −1.63579
\(96\) −1.07931 + 5.55294i −0.110157 + 0.566744i
\(97\) 12.6533 1.28475 0.642375 0.766390i \(-0.277949\pi\)
0.642375 + 0.766390i \(0.277949\pi\)
\(98\) −0.0767667 0.643772i −0.00775461 0.0650308i
\(99\) 0.473626 + 0.473626i 0.0476012 + 0.0476012i
\(100\) 0.526176 + 2.17490i 0.0526176 + 0.217490i
\(101\) 7.52480 7.52480i 0.748745 0.748745i −0.225498 0.974244i \(-0.572401\pi\)
0.974244 + 0.225498i \(0.0724010\pi\)
\(102\) 5.63696 7.16333i 0.558142 0.709275i
\(103\) 3.33686i 0.328790i −0.986395 0.164395i \(-0.947433\pi\)
0.986395 0.164395i \(-0.0525672\pi\)
\(104\) −4.80853 + 10.5029i −0.471515 + 1.02990i
\(105\) 6.32666i 0.617419i
\(106\) 4.05117 + 3.18794i 0.393484 + 0.309640i
\(107\) −14.0625 + 14.0625i −1.35948 + 1.35948i −0.484918 + 0.874560i \(0.661151\pi\)
−0.874560 + 0.484918i \(0.838849\pi\)
\(108\) −1.04201 + 1.70711i −0.100268 + 0.164266i
\(109\) 2.76901 + 2.76901i 0.265224 + 0.265224i 0.827172 0.561949i \(-0.189948\pi\)
−0.561949 + 0.827172i \(0.689948\pi\)
\(110\) −2.32666 + 0.277444i −0.221839 + 0.0264532i
\(111\) 3.85970 0.366347
\(112\) 4.67647 + 9.09921i 0.441885 + 0.859794i
\(113\) 2.23765 0.210500 0.105250 0.994446i \(-0.466436\pi\)
0.105250 + 0.994446i \(0.466436\pi\)
\(114\) 9.05117 1.07931i 0.847720 0.101087i
\(115\) 4.94725 + 4.94725i 0.461334 + 0.461334i
\(116\) 7.43411 + 4.53775i 0.690240 + 0.421320i
\(117\) −2.88784 + 2.88784i −0.266981 + 0.266981i
\(118\) −6.28687 4.94725i −0.578753 0.455431i
\(119\) 16.4853i 1.51120i
\(120\) −2.43882 6.55765i −0.222633 0.598629i
\(121\) 10.5514i 0.959214i
\(122\) −5.42475 + 6.89367i −0.491134 + 0.624123i
\(123\) 0.557647 0.557647i 0.0502814 0.0502814i
\(124\) −12.7475 + 3.08402i −1.14476 + 0.276953i
\(125\) 6.78863 + 6.78863i 0.607194 + 0.607194i
\(126\) 0.428283 + 3.59161i 0.0381545 + 0.319966i
\(127\) 12.2145 1.08386 0.541931 0.840423i \(-0.317693\pi\)
0.541931 + 0.840423i \(0.317693\pi\)
\(128\) 8.35480 + 7.62872i 0.738467 + 0.674290i
\(129\) 0.550984 0.0485114
\(130\) −1.69166 14.1864i −0.148368 1.24423i
\(131\) −3.77568 3.77568i −0.329883 0.329883i 0.522659 0.852542i \(-0.324940\pi\)
−0.852542 + 0.522659i \(0.824940\pi\)
\(132\) 1.30205 0.315007i 0.113329 0.0274178i
\(133\) 11.6569 11.6569i 1.01078 1.01078i
\(134\) −2.62059 + 3.33019i −0.226384 + 0.287685i
\(135\) 2.47363i 0.212896i
\(136\) −6.35480 17.0872i −0.544920 1.46521i
\(137\) 5.10587i 0.436224i −0.975924 0.218112i \(-0.930010\pi\)
0.975924 0.218112i \(-0.0699898\pi\)
\(138\) −3.14343 2.47363i −0.267587 0.210569i
\(139\) 11.7757 11.7757i 0.998800 0.998800i −0.00119925 0.999999i \(-0.500382\pi\)
0.999999 + 0.00119925i \(0.000381735\pi\)
\(140\) −10.8003 6.59245i −0.912791 0.557164i
\(141\) −2.00000 2.00000i −0.168430 0.168430i
\(142\) −7.18323 + 0.856566i −0.602803 + 0.0718814i
\(143\) 2.73551 0.228755
\(144\) 1.82843 + 3.55765i 0.152369 + 0.296471i
\(145\) −10.7721 −0.894578
\(146\) −20.7440 + 2.47363i −1.71679 + 0.204719i
\(147\) −0.324166 0.324166i −0.0267368 0.0267368i
\(148\) 4.02185 6.58892i 0.330594 0.541606i
\(149\) −7.90774 + 7.90774i −0.647827 + 0.647827i −0.952467 0.304640i \(-0.901464\pi\)
0.304640 + 0.952467i \(0.401464\pi\)
\(150\) 1.24343 + 0.978478i 0.101526 + 0.0798924i
\(151\) 14.6506i 1.19225i 0.802893 + 0.596123i \(0.203293\pi\)
−0.802893 + 0.596123i \(0.796707\pi\)
\(152\) 7.58892 16.5760i 0.615543 1.34449i
\(153\) 6.44549i 0.521087i
\(154\) 1.49824 1.90393i 0.120731 0.153423i
\(155\) 11.4701 11.4701i 0.921300 0.921300i
\(156\) 1.92069 + 7.93901i 0.153778 + 0.635629i
\(157\) −3.15196 3.15196i −0.251553 0.251553i 0.570054 0.821607i \(-0.306922\pi\)
−0.821607 + 0.570054i \(0.806922\pi\)
\(158\) 1.05830 + 8.87495i 0.0841935 + 0.706053i
\(159\) 3.64520 0.289083
\(160\) −13.7359 2.66981i −1.08592 0.211067i
\(161\) −7.23412 −0.570128
\(162\) 0.167452 + 1.40426i 0.0131563 + 0.110329i
\(163\) 5.50490 + 5.50490i 0.431177 + 0.431177i 0.889029 0.457852i \(-0.151381\pi\)
−0.457852 + 0.889029i \(0.651381\pi\)
\(164\) −0.370889 1.53304i −0.0289616 0.119710i
\(165\) −1.17157 + 1.17157i −0.0912068 + 0.0912068i
\(166\) 0.793624 1.00852i 0.0615972 0.0782765i
\(167\) 20.1814i 1.56168i 0.624730 + 0.780841i \(0.285209\pi\)
−0.624730 + 0.780841i \(0.714791\pi\)
\(168\) 6.57754 + 3.01138i 0.507469 + 0.232333i
\(169\) 3.67923i 0.283018i
\(170\) 17.7194 + 13.9437i 1.35902 + 1.06943i
\(171\) 4.55765 4.55765i 0.348532 0.348532i
\(172\) 0.574131 0.940588i 0.0437771 0.0717191i
\(173\) 4.35322 + 4.35322i 0.330969 + 0.330969i 0.852955 0.521985i \(-0.174808\pi\)
−0.521985 + 0.852955i \(0.674808\pi\)
\(174\) 6.11529 0.729220i 0.463599 0.0552820i
\(175\) 2.86156 0.216313
\(176\) 0.819003 2.55098i 0.0617347 0.192288i
\(177\) −5.65685 −0.425195
\(178\) 8.87108 1.05783i 0.664915 0.0792880i
\(179\) −13.2833 13.2833i −0.992843 0.992843i 0.00713130 0.999975i \(-0.497730\pi\)
−0.999975 + 0.00713130i \(0.997730\pi\)
\(180\) −4.22274 2.57754i −0.314745 0.192119i
\(181\) 6.34628 6.34628i 0.471715 0.471715i −0.430754 0.902469i \(-0.641752\pi\)
0.902469 + 0.430754i \(0.141752\pi\)
\(182\) 11.6088 + 9.13519i 0.860503 + 0.677145i
\(183\) 6.20285i 0.458528i
\(184\) −7.49824 + 2.78863i −0.552777 + 0.205581i
\(185\) 9.54745i 0.701943i
\(186\) −5.73505 + 7.28798i −0.420514 + 0.534381i
\(187\) −3.05275 + 3.05275i −0.223239 + 0.223239i
\(188\) −5.49824 + 1.33019i −0.401000 + 0.0970142i
\(189\) 1.80853 + 1.80853i 0.131551 + 0.131551i
\(190\) 2.66981 + 22.3892i 0.193688 + 1.62428i
\(191\) 5.60058 0.405243 0.202622 0.979257i \(-0.435054\pi\)
0.202622 + 0.979257i \(0.435054\pi\)
\(192\) 7.97852 + 0.585786i 0.575800 + 0.0422755i
\(193\) −19.4514 −1.40014 −0.700071 0.714074i \(-0.746848\pi\)
−0.700071 + 0.714074i \(0.746848\pi\)
\(194\) −2.11882 17.7686i −0.152123 1.27571i
\(195\) −7.14343 7.14343i −0.511552 0.511552i
\(196\) −0.891171 + 0.215602i −0.0636551 + 0.0154001i
\(197\) 1.23793 1.23793i 0.0881988 0.0881988i −0.661631 0.749830i \(-0.730135\pi\)
0.749830 + 0.661631i \(0.230135\pi\)
\(198\) 0.585786 0.744406i 0.0416300 0.0529026i
\(199\) 0.993710i 0.0704422i 0.999380 + 0.0352211i \(0.0112135\pi\)
−0.999380 + 0.0352211i \(0.988786\pi\)
\(200\) 2.96603 1.10308i 0.209730 0.0779997i
\(201\) 2.99647i 0.211355i
\(202\) −11.8268 9.30676i −0.832134 0.654822i
\(203\) 7.87579 7.87579i 0.552772 0.552772i
\(204\) −11.0031 6.71627i −0.770373 0.470233i
\(205\) 1.37941 + 1.37941i 0.0963422 + 0.0963422i
\(206\) −4.68583 + 0.558763i −0.326477 + 0.0389309i
\(207\) −2.82843 −0.196589
\(208\) 15.5541 + 4.99371i 1.07848 + 0.346251i
\(209\) −4.31724 −0.298630
\(210\) −8.88431 + 1.05941i −0.613076 + 0.0731064i
\(211\) 4.22432 + 4.22432i 0.290814 + 0.290814i 0.837402 0.546588i \(-0.184073\pi\)
−0.546588 + 0.837402i \(0.684073\pi\)
\(212\) 3.79834 6.22274i 0.260871 0.427380i
\(213\) −3.61706 + 3.61706i −0.247837 + 0.247837i
\(214\) 22.1023 + 17.3927i 1.51088 + 1.18894i
\(215\) 1.36293i 0.0929509i
\(216\) 2.57172 + 1.17740i 0.174983 + 0.0801120i
\(217\) 16.7721i 1.13857i
\(218\) 3.42475 4.35211i 0.231954 0.294762i
\(219\) −10.4455 + 10.4455i −0.705841 + 0.705841i
\(220\) 0.779208 + 3.22079i 0.0525342 + 0.217146i
\(221\) −18.6135 18.6135i −1.25208 1.25208i
\(222\) −0.646314 5.42004i −0.0433778 0.363769i
\(223\) −23.7659 −1.59148 −0.795740 0.605639i \(-0.792918\pi\)
−0.795740 + 0.605639i \(0.792918\pi\)
\(224\) 11.9946 8.09069i 0.801424 0.540582i
\(225\) 1.11882 0.0745883
\(226\) −0.374699 3.14225i −0.0249246 0.209019i
\(227\) −0.641669 0.641669i −0.0425891 0.0425891i 0.685492 0.728081i \(-0.259587\pi\)
−0.728081 + 0.685492i \(0.759587\pi\)
\(228\) −3.03127 12.5295i −0.200751 0.829787i
\(229\) 5.34275 5.34275i 0.353059 0.353059i −0.508188 0.861246i \(-0.669684\pi\)
0.861246 + 0.508188i \(0.169684\pi\)
\(230\) 6.11882 7.77568i 0.403463 0.512713i
\(231\) 1.71313i 0.112716i
\(232\) 5.12735 11.1993i 0.336627 0.735271i
\(233\) 23.2271i 1.52166i −0.648954 0.760828i \(-0.724793\pi\)
0.648954 0.760828i \(-0.275207\pi\)
\(234\) 4.53887 + 3.57172i 0.296715 + 0.233490i
\(235\) 4.94725 4.94725i 0.322723 0.322723i
\(236\) −5.89450 + 9.65685i −0.383699 + 0.628608i
\(237\) 4.46891 + 4.46891i 0.290287 + 0.290287i
\(238\) −23.1497 + 2.76049i −1.50057 + 0.178936i
\(239\) 26.9213 1.74140 0.870698 0.491817i \(-0.163667\pi\)
0.870698 + 0.491817i \(0.163667\pi\)
\(240\) −8.80029 + 4.52284i −0.568056 + 0.291948i
\(241\) −10.3494 −0.666664 −0.333332 0.942809i \(-0.608173\pi\)
−0.333332 + 0.942809i \(0.608173\pi\)
\(242\) 14.8169 1.76685i 0.952466 0.113577i
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) 10.5889 + 6.46343i 0.677886 + 0.413779i
\(245\) 0.801866 0.801866i 0.0512293 0.0512293i
\(246\) −0.876464 0.689705i −0.0558813 0.0439740i
\(247\) 26.3235i 1.67492i
\(248\) 6.46538 + 17.3845i 0.410552 + 1.10392i
\(249\) 0.907457i 0.0575077i
\(250\) 8.39627 10.6698i 0.531027 0.674818i
\(251\) −9.75696 + 9.75696i −0.615854 + 0.615854i −0.944465 0.328611i \(-0.893419\pi\)
0.328611 + 0.944465i \(0.393419\pi\)
\(252\) 4.97186 1.20285i 0.313198 0.0757722i
\(253\) 1.33962 + 1.33962i 0.0842209 + 0.0842209i
\(254\) −2.04534 17.1524i −0.128336 1.07624i
\(255\) 15.9437 0.998435
\(256\) 9.31371 13.0098i 0.582107 0.813112i
\(257\) 16.9965 1.06021 0.530105 0.847932i \(-0.322152\pi\)
0.530105 + 0.847932i \(0.322152\pi\)
\(258\) −0.0922633 0.773727i −0.00574406 0.0481701i
\(259\) −6.98038 6.98038i −0.433740 0.433740i
\(260\) −19.6381 + 4.75107i −1.21791 + 0.294649i
\(261\) 3.07931 3.07931i 0.190604 0.190604i
\(262\) −4.66981 + 5.93430i −0.288502 + 0.366622i
\(263\) 29.9929i 1.84944i 0.380643 + 0.924722i \(0.375703\pi\)
−0.380643 + 0.924722i \(0.624297\pi\)
\(264\) −0.660384 1.77568i −0.0406438 0.109285i
\(265\) 9.01686i 0.553901i
\(266\) −18.3213 14.4173i −1.12335 0.883984i
\(267\) 4.46696 4.46696i 0.273374 0.273374i
\(268\) 5.11529 + 3.12235i 0.312466 + 0.190728i
\(269\) 20.6003 + 20.6003i 1.25602 + 1.25602i 0.952976 + 0.303046i \(0.0980037\pi\)
0.303046 + 0.952976i \(0.401996\pi\)
\(270\) −3.47363 + 0.414214i −0.211398 + 0.0252082i
\(271\) −26.6506 −1.61891 −0.809453 0.587184i \(-0.800236\pi\)
−0.809453 + 0.587184i \(0.800236\pi\)
\(272\) −22.9308 + 11.7851i −1.39038 + 0.714577i
\(273\) 10.4455 0.632190
\(274\) −7.16999 + 0.854988i −0.433155 + 0.0516517i
\(275\) −0.529904 0.529904i −0.0319544 0.0319544i
\(276\) −2.94725 + 4.82843i −0.177404 + 0.290637i
\(277\) 12.1220 12.1220i 0.728338 0.728338i −0.241951 0.970289i \(-0.577787\pi\)
0.970289 + 0.241951i \(0.0777872\pi\)
\(278\) −18.5080 14.5643i −1.11004 0.873509i
\(279\) 6.55765i 0.392596i
\(280\) −7.44902 + 16.2704i −0.445164 + 0.972341i
\(281\) 2.76588i 0.164999i −0.996591 0.0824993i \(-0.973710\pi\)
0.996591 0.0824993i \(-0.0262902\pi\)
\(282\) −2.47363 + 3.14343i −0.147302 + 0.187189i
\(283\) 4.48528 4.48528i 0.266622 0.266622i −0.561115 0.827738i \(-0.689628\pi\)
0.827738 + 0.561115i \(0.189628\pi\)
\(284\) 2.40569 + 9.94372i 0.142752 + 0.590051i
\(285\) 11.2739 + 11.2739i 0.667809 + 0.667809i
\(286\) −0.458067 3.84138i −0.0270860 0.227146i
\(287\) −2.01704 −0.119062
\(288\) 4.68971 3.16333i 0.276344 0.186401i
\(289\) 24.5443 1.44378
\(290\) 1.80382 + 15.1270i 0.105924 + 0.888285i
\(291\) −8.94725 8.94725i −0.524497 0.524497i
\(292\) 6.94725 + 28.7159i 0.406557 + 1.68047i
\(293\) −8.20793 + 8.20793i −0.479512 + 0.479512i −0.904976 0.425463i \(-0.860111\pi\)
0.425463 + 0.904976i \(0.360111\pi\)
\(294\) −0.400933 + 0.509498i −0.0233829 + 0.0297145i
\(295\) 13.9929i 0.814700i
\(296\) −9.92606 4.54441i −0.576940 0.264139i
\(297\) 0.669808i 0.0388662i
\(298\) 12.4287 + 9.78039i 0.719977 + 0.566563i
\(299\) −8.16804 + 8.16804i −0.472370 + 0.472370i
\(300\) 1.16583 1.90995i 0.0673091 0.110271i
\(301\) −0.996470 0.996470i −0.0574356 0.0574356i
\(302\) 20.5733 2.45327i 1.18386 0.141170i
\(303\) −10.6417 −0.611348
\(304\) −24.5478 7.88118i −1.40791 0.452016i
\(305\) −15.3435 −0.878567
\(306\) −9.05117 + 1.07931i −0.517421 + 0.0617000i
\(307\) 10.4549 + 10.4549i 0.596693 + 0.596693i 0.939431 0.342738i \(-0.111354\pi\)
−0.342738 + 0.939431i \(0.611354\pi\)
\(308\) −2.92450 1.78510i −0.166639 0.101716i
\(309\) −2.35951 + 2.35951i −0.134228 + 0.134228i
\(310\) −18.0277 14.1864i −1.02391 0.805731i
\(311\) 15.0761i 0.854885i −0.904043 0.427442i \(-0.859415\pi\)
0.904043 0.427442i \(-0.140585\pi\)
\(312\) 10.8268 4.02656i 0.612950 0.227959i
\(313\) 23.0027i 1.30019i −0.759852 0.650096i \(-0.774729\pi\)
0.759852 0.650096i \(-0.225271\pi\)
\(314\) −3.89838 + 4.95398i −0.219998 + 0.279569i
\(315\) −4.47363 + 4.47363i −0.252060 + 0.252060i
\(316\) 12.2856 2.97226i 0.691117 0.167203i
\(317\) −6.75892 6.75892i −0.379618 0.379618i 0.491346 0.870964i \(-0.336505\pi\)
−0.870964 + 0.491346i \(0.836505\pi\)
\(318\) −0.610396 5.11882i −0.0342293 0.287049i
\(319\) −2.91688 −0.163314
\(320\) −1.44902 + 19.7359i −0.0810025 + 1.10327i
\(321\) 19.8874 1.11001
\(322\) 1.21137 + 10.1586i 0.0675069 + 0.566118i
\(323\) 29.3763 + 29.3763i 1.63454 + 1.63454i
\(324\) 1.94392 0.470294i 0.107996 0.0261274i
\(325\) 3.23099 3.23099i 0.179223 0.179223i
\(326\) 6.80853 8.65214i 0.377090 0.479198i
\(327\) 3.91598i 0.216554i
\(328\) −2.09069 + 0.777537i −0.115439 + 0.0429323i
\(329\) 7.23412i 0.398830i
\(330\) 1.84138 + 1.44902i 0.101365 + 0.0797657i
\(331\) −19.6631 + 19.6631i −1.08078 + 1.08078i −0.0843464 + 0.996436i \(0.526880\pi\)
−0.996436 + 0.0843464i \(0.973120\pi\)
\(332\) −1.54913 0.945580i −0.0850193 0.0518954i
\(333\) −2.72922 2.72922i −0.149560 0.149560i
\(334\) 28.3400 3.37941i 1.55070 0.184913i
\(335\) −7.41215 −0.404969
\(336\) 3.12735 9.74088i 0.170611 0.531408i
\(337\) 3.00980 0.163954 0.0819771 0.996634i \(-0.473877\pi\)
0.0819771 + 0.996634i \(0.473877\pi\)
\(338\) 5.16662 0.616095i 0.281027 0.0335111i
\(339\) −1.58226 1.58226i −0.0859364 0.0859364i
\(340\) 16.6135 27.2176i 0.900995 1.47608i
\(341\) 3.10587 3.10587i 0.168192 0.168192i
\(342\) −7.16333 5.63696i −0.387349 0.304812i
\(343\) 19.0761i 1.03001i
\(344\) −1.41697 0.648728i −0.0763981 0.0349771i
\(345\) 6.99647i 0.376677i
\(346\) 5.38412 6.84203i 0.289452 0.367830i
\(347\) 6.27521 6.27521i 0.336871 0.336871i −0.518317 0.855188i \(-0.673441\pi\)
0.855188 + 0.518317i \(0.173441\pi\)
\(348\) −2.04804 8.46538i −0.109786 0.453792i
\(349\) −4.74255 4.74255i −0.253863 0.253863i 0.568690 0.822552i \(-0.307451\pi\)
−0.822552 + 0.568690i \(0.807451\pi\)
\(350\) −0.479174 4.01839i −0.0256129 0.214792i
\(351\) 4.08402 0.217989
\(352\) −3.71940 0.722930i −0.198245 0.0385323i
\(353\) −8.75882 −0.466185 −0.233093 0.972455i \(-0.574884\pi\)
−0.233093 + 0.972455i \(0.574884\pi\)
\(354\) 0.947252 + 7.94372i 0.0503459 + 0.422204i
\(355\) −8.94725 8.94725i −0.474871 0.474871i
\(356\) −2.97096 12.2802i −0.157460 0.650849i
\(357\) −11.6569 + 11.6569i −0.616946 + 0.616946i
\(358\) −16.4290 + 20.8776i −0.868300 + 1.10342i
\(359\) 32.7917i 1.73068i −0.501184 0.865341i \(-0.667102\pi\)
0.501184 0.865341i \(-0.332898\pi\)
\(360\) −2.91245 + 6.36147i −0.153500 + 0.335279i
\(361\) 22.5443i 1.18654i
\(362\) −9.97455 7.84916i −0.524251 0.412543i
\(363\) 7.46094 7.46094i 0.391598 0.391598i
\(364\) 10.8843 17.8316i 0.570493 0.934628i
\(365\) −25.8382 25.8382i −1.35243 1.35243i
\(366\) 8.71044 1.03868i 0.455302 0.0542926i
\(367\) 20.6435 1.07758 0.538791 0.842439i \(-0.318881\pi\)
0.538791 + 0.842439i \(0.318881\pi\)
\(368\) 5.17157 + 10.0625i 0.269587 + 0.524546i
\(369\) −0.788632 −0.0410546
\(370\) 13.4072 1.59874i 0.697005 0.0831145i
\(371\) −6.59245 6.59245i −0.342263 0.342263i
\(372\) 11.1946 + 6.83314i 0.580413 + 0.354282i
\(373\) −16.6167 + 16.6167i −0.860378 + 0.860378i −0.991382 0.131004i \(-0.958180\pi\)
0.131004 + 0.991382i \(0.458180\pi\)
\(374\) 4.79806 + 3.77568i 0.248102 + 0.195236i
\(375\) 9.60058i 0.495772i
\(376\) 2.78863 + 7.49824i 0.143813 + 0.386692i
\(377\) 17.7851i 0.915979i
\(378\) 2.23681 2.84250i 0.115049 0.146202i
\(379\) 7.77844 7.77844i 0.399552 0.399552i −0.478523 0.878075i \(-0.658828\pi\)
0.878075 + 0.478523i \(0.158828\pi\)
\(380\) 30.9933 7.49824i 1.58992 0.384651i
\(381\) −8.63696 8.63696i −0.442485 0.442485i
\(382\) −0.937828 7.86469i −0.0479834 0.402393i
\(383\) −17.2037 −0.879070 −0.439535 0.898225i \(-0.644857\pi\)
−0.439535 + 0.898225i \(0.644857\pi\)
\(384\) −0.513421 11.3021i −0.0262004 0.576755i
\(385\) 4.23765 0.215971
\(386\) 3.25717 + 27.3149i 0.165786 + 1.39029i
\(387\) −0.389604 0.389604i −0.0198047 0.0198047i
\(388\) −24.5970 + 5.95078i −1.24873 + 0.302105i
\(389\) −23.8515 + 23.8515i −1.20932 + 1.20932i −0.238069 + 0.971248i \(0.576514\pi\)
−0.971248 + 0.238069i \(0.923486\pi\)
\(390\) −8.83509 + 11.2275i −0.447382 + 0.568524i
\(391\) 18.2306i 0.921961i
\(392\) 0.451990 + 1.21534i 0.0228290 + 0.0613838i
\(393\) 5.33962i 0.269348i
\(394\) −1.94567 1.53109i −0.0980216 0.0771350i
\(395\) −11.0544 + 11.0544i −0.556208 + 0.556208i
\(396\) −1.14343 0.697947i −0.0574597 0.0350732i
\(397\) −10.2673 10.2673i −0.515299 0.515299i 0.400847 0.916145i \(-0.368716\pi\)
−0.916145 + 0.400847i \(0.868716\pi\)
\(398\) 1.39543 0.166399i 0.0699467 0.00834081i
\(399\) −16.4853 −0.825296
\(400\) −2.04569 3.98038i −0.102284 0.199019i
\(401\) 32.2274 1.60936 0.804681 0.593708i \(-0.202337\pi\)
0.804681 + 0.593708i \(0.202337\pi\)
\(402\) 4.20784 0.501765i 0.209868 0.0250258i
\(403\) 18.9374 + 18.9374i 0.943341 + 0.943341i
\(404\) −11.0887 + 18.1665i −0.551685 + 0.903815i
\(405\) −1.74912 + 1.74912i −0.0869143 + 0.0869143i
\(406\) −12.3785 9.74088i −0.614335 0.483432i
\(407\) 2.58526i 0.128146i
\(408\) −7.58892 + 16.5760i −0.375708 + 0.820633i
\(409\) 11.5702i 0.572110i 0.958213 + 0.286055i \(0.0923440\pi\)
−0.958213 + 0.286055i \(0.907656\pi\)
\(410\) 1.70607 2.16804i 0.0842569 0.107072i
\(411\) −3.61040 + 3.61040i −0.178088 + 0.178088i
\(412\) 1.56930 + 6.48658i 0.0773140 + 0.319571i
\(413\) 10.2306 + 10.2306i 0.503414 + 0.503414i
\(414\) 0.473626 + 3.97186i 0.0232774 + 0.195206i
\(415\) 2.24471 0.110188
\(416\) 4.40792 22.6783i 0.216116 1.11190i
\(417\) −16.6533 −0.815517
\(418\) 0.722930 + 6.06255i 0.0353597 + 0.296529i
\(419\) 6.74717 + 6.74717i 0.329621 + 0.329621i 0.852442 0.522822i \(-0.175121\pi\)
−0.522822 + 0.852442i \(0.675121\pi\)
\(420\) 2.97539 + 12.2985i 0.145184 + 0.600106i
\(421\) −17.2239 + 17.2239i −0.839443 + 0.839443i −0.988785 0.149343i \(-0.952284\pi\)
0.149343 + 0.988785i \(0.452284\pi\)
\(422\) 5.22470 6.63944i 0.254334 0.323203i
\(423\) 2.82843i 0.137523i
\(424\) −9.37442 4.29186i −0.455262 0.208431i
\(425\) 7.21137i 0.349803i
\(426\) 5.68499 + 4.47363i 0.275439 + 0.216748i
\(427\) 11.2180 11.2180i 0.542879 0.542879i
\(428\) 20.7229 33.9500i 1.00168 1.64103i
\(429\) −1.93430 1.93430i −0.0933888 0.0933888i
\(430\) 1.91391 0.228225i 0.0922970 0.0110060i
\(431\) 40.7088 1.96087 0.980437 0.196832i \(-0.0630654\pi\)
0.980437 + 0.196832i \(0.0630654\pi\)
\(432\) 1.22274 3.80853i 0.0588293 0.183238i
\(433\) 7.31371 0.351474 0.175737 0.984437i \(-0.443769\pi\)
0.175737 + 0.984437i \(0.443769\pi\)
\(434\) 23.5525 2.80853i 1.13056 0.134814i
\(435\) 7.61706 + 7.61706i 0.365210 + 0.365210i
\(436\) −6.68499 4.08049i −0.320153 0.195420i
\(437\) 12.8910 12.8910i 0.616659 0.616659i
\(438\) 16.4173 + 12.9191i 0.784451 + 0.617299i
\(439\) 17.7122i 0.845356i 0.906280 + 0.422678i \(0.138910\pi\)
−0.906280 + 0.422678i \(0.861090\pi\)
\(440\) 4.39236 1.63354i 0.209398 0.0778761i
\(441\) 0.458440i 0.0218305i
\(442\) −23.0215 + 29.2552i −1.09502 + 1.39153i
\(443\) 15.6944 15.6944i 0.745664 0.745664i −0.227997 0.973662i \(-0.573218\pi\)
0.973662 + 0.227997i \(0.0732178\pi\)
\(444\) −7.50295 + 1.81519i −0.356074 + 0.0861453i
\(445\) 11.0496 + 11.0496i 0.523801 + 0.523801i
\(446\) 3.97964 + 33.3736i 0.188441 + 1.58028i
\(447\) 11.1832 0.528949
\(448\) −13.3700 15.4888i −0.631673 0.731778i
\(449\) −28.3400 −1.33745 −0.668723 0.743511i \(-0.733159\pi\)
−0.668723 + 0.743511i \(0.733159\pi\)
\(450\) −0.187349 1.57113i −0.00883173 0.0740636i
\(451\) 0.373517 + 0.373517i 0.0175882 + 0.0175882i
\(452\) −4.34981 + 1.05235i −0.204598 + 0.0494985i
\(453\) 10.3595 10.3595i 0.486732 0.486732i
\(454\) −0.793624 + 1.00852i −0.0372466 + 0.0473323i
\(455\) 25.8382i 1.21131i
\(456\) −17.0872 + 6.35480i −0.800179 + 0.297591i
\(457\) 17.3396i 0.811113i −0.914070 0.405557i \(-0.867078\pi\)
0.914070 0.405557i \(-0.132922\pi\)
\(458\) −8.39729 6.60798i −0.392380 0.308771i
\(459\) −4.55765 + 4.55765i −0.212733 + 0.212733i
\(460\) −11.9437 7.29040i −0.556879 0.339917i
\(461\) −1.69284 1.69284i −0.0788434 0.0788434i 0.666585 0.745429i \(-0.267755\pi\)
−0.745429 + 0.666585i \(0.767755\pi\)
\(462\) −2.40569 + 0.286867i −0.111923 + 0.0133463i
\(463\) 2.70238 0.125590 0.0627951 0.998026i \(-0.479999\pi\)
0.0627951 + 0.998026i \(0.479999\pi\)
\(464\) −16.5854 5.32480i −0.769957 0.247198i
\(465\) −16.2212 −0.752239
\(466\) −32.6169 + 3.88942i −1.51095 + 0.180174i
\(467\) −17.1136 17.1136i −0.791924 0.791924i 0.189883 0.981807i \(-0.439189\pi\)
−0.981807 + 0.189883i \(0.939189\pi\)
\(468\) 4.25559 6.97186i 0.196715 0.322274i
\(469\) 5.41921 5.41921i 0.250236 0.250236i
\(470\) −7.77568 6.11882i −0.358665 0.282240i
\(471\) 4.45754i 0.205393i
\(472\) 14.5478 + 6.66038i 0.669618 + 0.306569i
\(473\) 0.369053i 0.0169691i
\(474\) 5.52721 7.02387i 0.253873 0.322617i
\(475\) −5.09921 + 5.09921i −0.233968 + 0.233968i
\(476\) 7.75293 + 32.0461i 0.355355 + 1.46883i
\(477\) −2.57754 2.57754i −0.118018 0.118018i
\(478\) −4.50803 37.8047i −0.206193 1.72915i
\(479\) −22.2251 −1.01549 −0.507745 0.861508i \(-0.669521\pi\)
−0.507745 + 0.861508i \(0.669521\pi\)
\(480\) 7.82490 + 11.6006i 0.357156 + 0.529491i
\(481\) −15.7631 −0.718735
\(482\) 1.73303 + 14.5333i 0.0789373 + 0.661974i
\(483\) 5.11529 + 5.11529i 0.232754 + 0.232754i
\(484\) −4.96224 20.5110i −0.225556 0.932318i
\(485\) 22.1322 22.1322i 1.00497 1.00497i
\(486\) 0.874559 1.11137i 0.0396708 0.0504128i
\(487\) 13.9839i 0.633672i −0.948480 0.316836i \(-0.897380\pi\)
0.948480 0.316836i \(-0.102620\pi\)
\(488\) 7.30324 15.9520i 0.330602 0.722111i
\(489\) 7.78510i 0.352055i
\(490\) −1.26031 0.991758i −0.0569348 0.0448031i
\(491\) 7.23412 7.23412i 0.326471 0.326471i −0.524772 0.851243i \(-0.675849\pi\)
0.851243 + 0.524772i \(0.175849\pi\)
\(492\) −0.821763 + 1.34628i −0.0370480 + 0.0606950i
\(493\) 19.8476 + 19.8476i 0.893893 + 0.893893i
\(494\) −36.9652 + 4.40792i −1.66314 + 0.198322i
\(495\) 1.65685 0.0744701
\(496\) 23.3298 11.9902i 1.04754 0.538375i
\(497\) 13.0831 0.586858
\(498\) −1.27431 + 0.151955i −0.0571032 + 0.00680929i
\(499\) 2.59078 + 2.59078i 0.115979 + 0.115979i 0.762715 0.646735i \(-0.223866\pi\)
−0.646735 + 0.762715i \(0.723866\pi\)
\(500\) −16.3892 10.0039i −0.732948 0.447388i
\(501\) 14.2704 14.2704i 0.637554 0.637554i
\(502\) 15.3352 + 12.0675i 0.684443 + 0.538601i
\(503\) 39.6443i 1.76765i −0.467817 0.883825i \(-0.654959\pi\)
0.467817 0.883825i \(-0.345041\pi\)
\(504\) −2.52166 6.78039i −0.112324 0.302023i
\(505\) 26.3235i 1.17138i
\(506\) 1.65685 2.10550i 0.0736562 0.0936008i
\(507\) 2.60161 2.60161i 0.115542 0.115542i
\(508\) −23.7440 + 5.74441i −1.05347 + 0.254867i
\(509\) 20.2875 + 20.2875i 0.899229 + 0.899229i 0.995368 0.0961393i \(-0.0306494\pi\)
−0.0961393 + 0.995368i \(0.530649\pi\)
\(510\) −2.66981 22.3892i −0.118221 0.991411i
\(511\) 37.7819 1.67137
\(512\) −19.8288 10.9004i −0.876317 0.481734i
\(513\) −6.44549 −0.284575
\(514\) −2.84609 23.8675i −0.125536 1.05275i
\(515\) −5.83655 5.83655i −0.257189 0.257189i
\(516\) −1.07107 + 0.259124i −0.0471511 + 0.0114073i
\(517\) 1.33962 1.33962i 0.0589162 0.0589162i
\(518\) −8.63343 + 10.9712i −0.379331 + 0.482046i
\(519\) 6.15639i 0.270235i
\(520\) 9.96021 + 26.7816i 0.436784 + 1.17445i
\(521\) 23.1784i 1.01546i 0.861515 + 0.507732i \(0.169516\pi\)
−0.861515 + 0.507732i \(0.830484\pi\)
\(522\) −4.83980 3.80853i −0.211832 0.166695i
\(523\) −5.78550 + 5.78550i −0.252982 + 0.252982i −0.822192 0.569210i \(-0.807249\pi\)
0.569210 + 0.822192i \(0.307249\pi\)
\(524\) 9.11529 + 5.56394i 0.398203 + 0.243062i
\(525\) −2.02343 2.02343i −0.0883096 0.0883096i
\(526\) 42.1180 5.02238i 1.83643 0.218986i
\(527\) −42.2672 −1.84119
\(528\) −2.38294 + 1.22470i −0.103704 + 0.0532980i
\(529\) 15.0000 0.652174
\(530\) 12.6621 1.50989i 0.550005 0.0655855i
\(531\) 4.00000 + 4.00000i 0.173585 + 0.173585i
\(532\) −17.1778 + 28.1421i −0.744754 + 1.22012i
\(533\) −2.27744 + 2.27744i −0.0986470 + 0.0986470i
\(534\) −7.02080 5.52480i −0.303820 0.239081i
\(535\) 49.1941i 2.12685i
\(536\) 3.52805 7.70607i 0.152388 0.332852i
\(537\) 18.7855i 0.810653i
\(538\) 25.4787 32.3778i 1.09847 1.39591i
\(539\) 0.217129 0.217129i 0.00935241 0.00935241i
\(540\) 1.16333 + 4.80853i 0.0500618 + 0.206926i
\(541\) 4.55175 + 4.55175i 0.195695 + 0.195695i 0.798152 0.602457i \(-0.205811\pi\)
−0.602457 + 0.798152i \(0.705811\pi\)
\(542\) 4.46269 + 37.4245i 0.191689 + 1.60752i
\(543\) −8.97499 −0.385154
\(544\) 20.3892 + 30.2274i 0.874180 + 1.29599i
\(545\) 9.68667 0.414931
\(546\) −1.74912 14.6682i −0.0748553 0.627742i
\(547\) −27.7355 27.7355i −1.18588 1.18588i −0.978195 0.207689i \(-0.933406\pi\)
−0.207689 0.978195i \(-0.566594\pi\)
\(548\) 2.40126 + 9.92540i 0.102577 + 0.423992i
\(549\) 4.38607 4.38607i 0.187193 0.187193i
\(550\) −0.655392 + 0.832859i −0.0279460 + 0.0355132i
\(551\) 28.0688i 1.19577i
\(552\) 7.27391 + 3.33019i 0.309598 + 0.141742i
\(553\) 16.1643i 0.687377i
\(554\) −19.0523 14.9926i −0.809454 0.636974i
\(555\) 6.75107 6.75107i 0.286567 0.286567i
\(556\) −17.3529 + 28.4290i −0.735929 + 1.20566i
\(557\) −1.17538 1.17538i −0.0498026 0.0498026i 0.681767 0.731569i \(-0.261212\pi\)
−0.731569 + 0.681767i \(0.761212\pi\)
\(558\) 9.20867 1.09809i 0.389834 0.0464859i
\(559\) −2.25023 −0.0951745
\(560\) 24.0953 + 7.73588i 1.01821 + 0.326901i
\(561\) 4.31724 0.182274
\(562\) −3.88403 + 0.463152i −0.163838 + 0.0195369i
\(563\) −28.7346 28.7346i −1.21102 1.21102i −0.970692 0.240326i \(-0.922746\pi\)
−0.240326 0.970692i \(-0.577254\pi\)
\(564\) 4.82843 + 2.94725i 0.203313 + 0.124102i
\(565\) 3.91391 3.91391i 0.164659 0.164659i
\(566\) −7.04959 5.54745i −0.296316 0.233177i
\(567\) 2.55765i 0.107411i
\(568\) 13.5608 5.04332i 0.568998 0.211613i
\(569\) 27.0004i 1.13191i 0.824435 + 0.565957i \(0.191493\pi\)
−0.824435 + 0.565957i \(0.808507\pi\)
\(570\) 13.9437 17.7194i 0.584038 0.742184i
\(571\) −14.8284 + 14.8284i −0.620550 + 0.620550i −0.945672 0.325122i \(-0.894595\pi\)
0.325122 + 0.945672i \(0.394595\pi\)
\(572\) −5.31761 + 1.28649i −0.222341 + 0.0537910i
\(573\) −3.96021 3.96021i −0.165440 0.165440i
\(574\) 0.337758 + 2.83246i 0.0140977 + 0.118225i
\(575\) 3.16451 0.131969
\(576\) −5.22746 6.05588i −0.217811 0.252328i
\(577\) −37.6372 −1.56686 −0.783429 0.621481i \(-0.786531\pi\)
−0.783429 + 0.621481i \(0.786531\pi\)
\(578\) −4.10999 34.4667i −0.170953 1.43363i
\(579\) 13.7542 + 13.7542i 0.571605 + 0.571605i
\(580\) 20.9402 5.06608i 0.869494 0.210357i
\(581\) −1.64116 + 1.64116i −0.0680869 + 0.0680869i
\(582\) −11.0661 + 14.0625i −0.458704 + 0.582911i
\(583\) 2.44158i 0.101120i
\(584\) 39.1614 14.5643i 1.62051 0.602675i
\(585\) 10.1023i 0.417680i
\(586\) 12.9005 + 10.1517i 0.532917 + 0.419362i
\(587\) −31.2574 + 31.2574i −1.29013 + 1.29013i −0.355429 + 0.934703i \(0.615665\pi\)
−0.934703 + 0.355429i \(0.884335\pi\)
\(588\) 0.782607 + 0.477700i 0.0322742 + 0.0197000i
\(589\) −29.8874 29.8874i −1.23149 1.23149i
\(590\) −19.6498 + 2.34315i −0.808969 + 0.0964658i
\(591\) −1.75070 −0.0720140
\(592\) −4.71942 + 14.6998i −0.193967 + 0.604157i
\(593\) −3.59611 −0.147675 −0.0738373 0.997270i \(-0.523525\pi\)
−0.0738373 + 0.997270i \(0.523525\pi\)
\(594\) −0.940588 + 0.112161i −0.0385928 + 0.00460201i
\(595\) −28.8347 28.8347i −1.18211 1.18211i
\(596\) 11.6530 19.0910i 0.477327 0.781996i
\(597\) 0.702659 0.702659i 0.0287579 0.0287579i
\(598\) 12.8379 + 10.1023i 0.524979 + 0.413115i
\(599\) 22.0296i 0.900104i 0.893002 + 0.450052i \(0.148595\pi\)
−0.893002 + 0.450052i \(0.851405\pi\)
\(600\) −2.87730 1.31730i −0.117465 0.0537787i
\(601\) 10.7721i 0.439405i −0.975567 0.219703i \(-0.929491\pi\)
0.975567 0.219703i \(-0.0705087\pi\)
\(602\) −1.23245 + 1.56617i −0.0502308 + 0.0638323i
\(603\) 2.11882 2.11882i 0.0862852 0.0862852i
\(604\) −6.89007 28.4795i −0.280353 1.15882i
\(605\) 18.4556 + 18.4556i 0.750325 + 0.750325i
\(606\) 1.78197 + 14.9437i 0.0723875 + 0.607047i
\(607\) 5.47453 0.222204 0.111102 0.993809i \(-0.464562\pi\)
0.111102 + 0.993809i \(0.464562\pi\)
\(608\) −6.95668 + 35.7914i −0.282130 + 1.45153i
\(609\) −11.1380 −0.451336
\(610\) 2.56930 + 21.5464i 0.104028 + 0.872387i
\(611\) 8.16804 + 8.16804i 0.330444 + 0.330444i
\(612\) 3.03127 + 12.5295i 0.122532 + 0.506475i
\(613\) −10.5049 + 10.5049i −0.424289 + 0.424289i −0.886677 0.462389i \(-0.846993\pi\)
0.462389 + 0.886677i \(0.346993\pi\)
\(614\) 12.9308 16.4322i 0.521843 0.663148i
\(615\) 1.95078i 0.0786631i
\(616\) −2.01704 + 4.40569i −0.0812690 + 0.177510i
\(617\) 22.2235i 0.894686i 0.894363 + 0.447343i \(0.147630\pi\)
−0.894363 + 0.447343i \(0.852370\pi\)
\(618\) 3.70849 + 2.91828i 0.149177 + 0.117390i
\(619\) 11.6398 11.6398i 0.467843 0.467843i −0.433372 0.901215i \(-0.642676\pi\)
0.901215 + 0.433372i \(0.142676\pi\)
\(620\) −16.9026 + 27.6913i −0.678826 + 1.11211i
\(621\) 2.00000 + 2.00000i 0.0802572 + 0.0802572i
\(622\) −21.1708 + 2.52452i −0.848871 + 0.101224i
\(623\) −16.1573 −0.647327
\(624\) −7.46734 14.5295i −0.298933 0.581646i
\(625\) 29.3424 1.17369
\(626\) −32.3019 + 3.85185i −1.29105 + 0.153951i
\(627\) 3.05275 + 3.05275i 0.121915 + 0.121915i
\(628\) 7.60949 + 4.64480i 0.303652 + 0.185348i
\(629\) 17.5912 17.5912i 0.701405 0.701405i
\(630\) 7.03127 + 5.53304i 0.280133 + 0.220442i
\(631\) 4.06977i 0.162015i −0.996713 0.0810075i \(-0.974186\pi\)
0.996713 0.0810075i \(-0.0258138\pi\)
\(632\) −6.23108 16.7545i −0.247859 0.666458i
\(633\) 5.97409i 0.237449i
\(634\) −8.35951 + 10.6231i −0.331999 + 0.421897i
\(635\) 21.3646 21.3646i 0.847828 0.847828i
\(636\) −7.08597 + 1.71431i −0.280977 + 0.0679770i
\(637\) 1.32390 + 1.32390i 0.0524549 + 0.0524549i
\(638\) 0.488437 + 4.09607i 0.0193374 + 0.162165i
\(639\) 5.11529 0.202358
\(640\) 27.9570 1.27001i 1.10510 0.0502016i
\(641\) −8.41958 −0.332553 −0.166277 0.986079i \(-0.553174\pi\)
−0.166277 + 0.986079i \(0.553174\pi\)
\(642\) −3.33019 27.9272i −0.131432 1.10220i
\(643\) −7.37275 7.37275i −0.290753 0.290753i 0.546625 0.837378i \(-0.315912\pi\)
−0.837378 + 0.546625i \(0.815912\pi\)
\(644\) 14.0625 3.40216i 0.554142 0.134064i
\(645\) 0.963735 0.963735i 0.0379470 0.0379470i
\(646\) 36.3329 46.1712i 1.42950 1.81658i
\(647\) 11.6132i 0.456560i −0.973595 0.228280i \(-0.926690\pi\)
0.973595 0.228280i \(-0.0733102\pi\)
\(648\) −0.985930 2.65103i −0.0387310 0.104142i
\(649\) 3.78901i 0.148731i
\(650\) −5.07819 3.99612i −0.199183 0.156741i
\(651\) 11.8597 11.8597i 0.464818 0.464818i
\(652\) −13.2900 8.11216i −0.520477 0.317697i
\(653\) −1.93049 1.93049i −0.0755458 0.0755458i 0.668324 0.743870i \(-0.267012\pi\)
−0.743870 + 0.668324i \(0.767012\pi\)
\(654\) −5.49907 + 0.655738i −0.215031 + 0.0256414i
\(655\) −13.2082 −0.516088
\(656\) 1.44196 + 2.80568i 0.0562990 + 0.109543i
\(657\) 14.7721 0.576316
\(658\) 10.1586 1.21137i 0.396024 0.0472240i
\(659\) 22.3102 + 22.3102i 0.869081 + 0.869081i 0.992371 0.123290i \(-0.0393444\pi\)
−0.123290 + 0.992371i \(0.539344\pi\)
\(660\) 1.72646 2.82843i 0.0672024 0.110096i
\(661\) 10.7033 10.7033i 0.416311 0.416311i −0.467619 0.883930i \(-0.654888\pi\)
0.883930 + 0.467619i \(0.154888\pi\)
\(662\) 30.9049 + 24.3196i 1.20115 + 0.945208i
\(663\) 26.3235i 1.02232i
\(664\) −1.06844 + 2.33372i −0.0414635 + 0.0905660i
\(665\) 40.7784i 1.58132i
\(666\) −3.37553 + 4.28956i −0.130799 + 0.166217i
\(667\) 8.70960 8.70960i 0.337237 0.337237i
\(668\) −9.49118 39.2310i −0.367225 1.51789i
\(669\) 16.8050 + 16.8050i 0.649719 + 0.649719i
\(670\) 1.24118 + 10.4086i 0.0479509 + 0.402120i
\(671\) −4.15472 −0.160391
\(672\) −14.2025 2.76049i −0.547871 0.106488i
\(673\) −20.6345 −0.795401 −0.397700 0.917515i \(-0.630192\pi\)
−0.397700 + 0.917515i \(0.630192\pi\)
\(674\) −0.503997 4.22655i −0.0194132 0.162801i
\(675\) −0.791128 0.791128i −0.0304505 0.0304505i
\(676\) −1.73032 7.15213i −0.0665508 0.275082i
\(677\) 26.8246 26.8246i 1.03095 1.03095i 0.0314484 0.999505i \(-0.489988\pi\)
0.999505 0.0314484i \(-0.0100120\pi\)
\(678\) −1.95696 + 2.48686i −0.0751564 + 0.0955073i
\(679\) 32.3627i 1.24197i
\(680\) −41.0027 18.7721i −1.57238 0.719879i
\(681\) 0.907457i 0.0347738i
\(682\) −4.88155 3.84138i −0.186924 0.147094i
\(683\) 12.9026 12.9026i 0.493705 0.493705i −0.415766 0.909472i \(-0.636487\pi\)
0.909472 + 0.415766i \(0.136487\pi\)
\(684\) −6.71627 + 11.0031i −0.256803 + 0.420715i
\(685\) −8.93077 8.93077i −0.341227 0.341227i
\(686\) 26.7878 3.19432i 1.02276 0.121960i
\(687\) −7.55579 −0.288271
\(688\) −0.673711 + 2.09844i −0.0256850 + 0.0800022i
\(689\) −14.8871 −0.567152
\(690\) −9.82490 + 1.17157i −0.374027 + 0.0446010i
\(691\) −21.3923 21.3923i −0.813803 0.813803i 0.171399 0.985202i \(-0.445171\pi\)
−0.985202 + 0.171399i \(0.945171\pi\)
\(692\) −10.5096 6.41502i −0.399515 0.243863i
\(693\) −1.21137 + 1.21137i −0.0460161 + 0.0460161i
\(694\) −9.86286 7.76126i −0.374389 0.294614i
\(695\) 41.1941i 1.56258i
\(696\) −11.5447 + 4.29353i −0.437600 + 0.162746i
\(697\) 5.08312i 0.192537i
\(698\) −5.86564 + 7.45394i −0.222018 + 0.282136i
\(699\) −16.4240 + 16.4240i −0.621213 + 0.621213i
\(700\) −5.56264 + 1.34577i −0.210248 + 0.0508655i
\(701\) 14.2040 + 14.2040i 0.536479 + 0.536479i 0.922493 0.386014i \(-0.126148\pi\)
−0.386014 + 0.922493i \(0.626148\pi\)
\(702\) −0.683878 5.73505i −0.0258113 0.216455i
\(703\) 24.8776 0.938278
\(704\) −0.392364 + 5.34408i −0.0147878 + 0.201413i
\(705\) −6.99647 −0.263502
\(706\) 1.46668 + 12.2997i 0.0551993 + 0.462906i
\(707\) 19.2458 + 19.2458i 0.723812 + 0.723812i
\(708\) 10.9965 2.66038i 0.413273 0.0999834i
\(709\) −29.5474 + 29.5474i −1.10968 + 1.10968i −0.116485 + 0.993192i \(0.537163\pi\)
−0.993192 + 0.116485i \(0.962837\pi\)
\(710\) −11.0661 + 14.0625i −0.415302 + 0.527758i
\(711\) 6.32000i 0.237018i
\(712\) −16.7472 + 6.22836i −0.627627 + 0.233418i
\(713\) 18.5478i 0.694622i
\(714\) 18.3213 + 14.4173i 0.685656 + 0.539556i
\(715\) 4.78473 4.78473i 0.178939 0.178939i
\(716\) 32.0688 + 19.5747i 1.19847 + 0.731540i
\(717\) −19.0363 19.0363i −0.710922 0.710922i
\(718\) −46.0483 + 5.49104i −1.71851 + 0.204924i
\(719\) 28.3683 1.05796 0.528979 0.848635i \(-0.322575\pi\)
0.528979 + 0.848635i \(0.322575\pi\)
\(720\) 9.42088 + 3.02461i 0.351095 + 0.112721i
\(721\) 8.53450 0.317841
\(722\) 31.6582 3.77509i 1.17819 0.140494i
\(723\) 7.31814 + 7.31814i 0.272165 + 0.272165i
\(724\) −9.35204 + 15.3213i −0.347566 + 0.569411i
\(725\) −3.44521 + 3.44521i −0.127952 + 0.127952i
\(726\) −11.7265 9.22778i −0.435210 0.342475i
\(727\) 20.4843i 0.759722i −0.925044 0.379861i \(-0.875972\pi\)
0.925044 0.379861i \(-0.124028\pi\)
\(728\) −26.8628 12.2985i −0.995603 0.455814i
\(729\) 1.00000i 0.0370370i
\(730\) −31.9570 + 40.6104i −1.18278 + 1.50306i
\(731\) 2.51119 2.51119i 0.0928797 0.0928797i
\(732\) −2.91716 12.0578i −0.107821 0.445670i
\(733\) 33.9961 + 33.9961i 1.25567 + 1.25567i 0.953138 + 0.302536i \(0.0978331\pi\)
0.302536 + 0.953138i \(0.402167\pi\)
\(734\) −3.45680 28.9889i −0.127593 1.07000i
\(735\) −1.13401 −0.0418286
\(736\) 13.2645 8.94725i 0.488936 0.329800i
\(737\) −2.00706 −0.0739310
\(738\) 0.132058 + 1.10745i 0.00486112 + 0.0407658i
\(739\) 15.1645 + 15.1645i 0.557836 + 0.557836i 0.928691 0.370855i \(-0.120935\pi\)
−0.370855 + 0.928691i \(0.620935\pi\)
\(740\) −4.49011 18.5595i −0.165060 0.682260i
\(741\) −18.6135 + 18.6135i −0.683785 + 0.683785i
\(742\) −8.15363 + 10.3615i −0.299329 + 0.380381i
\(743\) 2.17431i 0.0797677i −0.999204 0.0398839i \(-0.987301\pi\)
0.999204 0.0398839i \(-0.0126988\pi\)
\(744\) 7.72098 16.8644i 0.283065 0.618279i
\(745\) 27.6631i 1.01350i
\(746\) 26.1167 + 20.5517i 0.956200 + 0.752451i
\(747\) −0.641669 + 0.641669i −0.0234774 + 0.0234774i
\(748\) 4.49861 7.36999i 0.164485 0.269473i
\(749\) −35.9670 35.9670i −1.31421 1.31421i
\(750\) −13.4818 + 1.60764i −0.492284 + 0.0587026i
\(751\) 29.8980 1.09099 0.545497 0.838113i \(-0.316341\pi\)
0.545497 + 0.838113i \(0.316341\pi\)
\(752\) 10.0625 5.17157i 0.366943 0.188588i
\(753\) 13.7984 0.502843
\(754\) −24.9750 + 2.97815i −0.909536 + 0.108458i
\(755\) 25.6256 + 25.6256i 0.932610 + 0.932610i
\(756\) −4.36618 2.66510i −0.158796 0.0969286i
\(757\) −15.3294 + 15.3294i −0.557157 + 0.557157i −0.928497 0.371340i \(-0.878899\pi\)
0.371340 + 0.928497i \(0.378899\pi\)
\(758\) −12.2255 9.62047i −0.444050 0.349431i
\(759\) 1.89450i 0.0687661i
\(760\) −15.7194 42.2672i −0.570203 1.53319i
\(761\) 4.29449i 0.155675i −0.996966 0.0778375i \(-0.975198\pi\)
0.996966 0.0778375i \(-0.0248015\pi\)
\(762\) −10.6823 + 13.5749i −0.386979 + 0.491765i
\(763\) −7.08216 + 7.08216i −0.256392 + 0.256392i
\(764\) −10.8871 + 2.63392i −0.393880 + 0.0952918i
\(765\) −11.2739 11.2739i −0.407609 0.407609i
\(766\) 2.88080 + 24.1586i 0.104088 + 0.872886i
\(767\) 23.1027 0.834191
\(768\) −15.7851 + 2.61353i −0.569596 + 0.0943076i
\(769\) 33.8819 1.22181 0.610907 0.791703i \(-0.290805\pi\)
0.610907 + 0.791703i \(0.290805\pi\)
\(770\) −0.709603 5.95078i −0.0255723 0.214451i
\(771\) −12.0183 12.0183i −0.432829 0.432829i
\(772\) 37.8119 9.14787i 1.36088 0.329239i
\(773\) −35.0230 + 35.0230i −1.25969 + 1.25969i −0.308450 + 0.951240i \(0.599810\pi\)
−0.951240 + 0.308450i \(0.900190\pi\)
\(774\) −0.481868 + 0.612348i −0.0173204