Properties

Label 48.2.j
Level $48$
Weight $2$
Character orbit 48.j
Rep. character $\chi_{48}(13,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $8$
Newform subspaces $1$
Sturm bound $16$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 48.j (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(16\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(48, [\chi])\).

Total New Old
Modular forms 20 8 12
Cusp forms 12 8 4
Eisenstein series 8 0 8

Trace form

\( 8q - 4q^{4} - 12q^{8} + O(q^{10}) \) \( 8q - 4q^{4} - 12q^{8} - 8q^{10} - 8q^{11} + 8q^{12} + 12q^{14} - 8q^{15} + 4q^{18} - 8q^{19} + 16q^{20} + 4q^{24} + 20q^{26} + 8q^{28} - 16q^{29} - 8q^{30} + 24q^{31} + 24q^{35} - 4q^{36} - 16q^{37} - 8q^{38} + 16q^{40} - 20q^{42} - 8q^{43} - 40q^{44} - 8q^{46} - 16q^{48} - 8q^{49} - 36q^{50} + 8q^{51} - 16q^{52} + 16q^{53} + 4q^{54} - 16q^{58} + 32q^{59} + 24q^{60} + 16q^{61} - 12q^{62} + 8q^{63} + 8q^{64} - 16q^{65} + 24q^{66} - 16q^{67} + 32q^{68} + 16q^{69} + 32q^{70} - 4q^{72} + 52q^{74} + 16q^{75} + 8q^{76} + 16q^{77} - 12q^{78} - 24q^{79} + 8q^{80} - 8q^{81} + 40q^{82} - 40q^{83} - 24q^{84} - 16q^{85} - 16q^{86} + 32q^{88} - 8q^{90} - 8q^{91} - 16q^{92} + 8q^{94} - 48q^{95} - 40q^{98} - 8q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(48, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
48.2.j.a \(8\) \(0.383\) 8.0.18939904.2 None \(0\) \(0\) \(0\) \(0\) \(q+(-\beta _{4}+\beta _{5})q^{2}-\beta _{5}q^{3}+(-1+\beta _{2}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(48, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(48, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 2}\)