Properties

Label 48.2.j
Level $48$
Weight $2$
Character orbit 48.j
Rep. character $\chi_{48}(13,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $8$
Newform subspaces $1$
Sturm bound $16$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 48 = 2^{4} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 48.j (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(16\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(48, [\chi])\).

Total New Old
Modular forms 20 8 12
Cusp forms 12 8 4
Eisenstein series 8 0 8

Trace form

\( 8 q - 4 q^{4} - 12 q^{8} - 8 q^{10} - 8 q^{11} + 8 q^{12} + 12 q^{14} - 8 q^{15} + 4 q^{18} - 8 q^{19} + 16 q^{20} + 4 q^{24} + 20 q^{26} + 8 q^{28} - 16 q^{29} - 8 q^{30} + 24 q^{31} + 24 q^{35} - 4 q^{36}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(48, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
48.2.j.a 48.j 16.e $8$ $0.383$ 8.0.18939904.2 None 48.2.j.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-\beta _{4}+\beta _{5})q^{2}-\beta _{5}q^{3}+(-1+\beta _{2}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(48, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(48, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 2}\)